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Abstract: Soil moisture (SM) products presently available in permafrost regions, especially on
the Qinghai–Tibet Plateau (QTP), hardly meet the demands of evaluating and modeling climatic,
hydrological, and ecological processes, due to their significant bias and low spatial resolution. This
study developed an algorithm to generate high-spatial-resolution SM during the thawing season
using Sentinel-1 (S1) and Sentinel-2 (S2) temporal data in the permafrost environment. This algorithm
utilizes the seasonal backscatter differences to reduce the effect of surface roughness and uses the
normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI)
to characterize vegetation contribution. Then, the SM map with a grid spacing of 50 m × 50 m in
the hinterland of the QTP with an area of 505 km × 246 km was generated. The results were
independently validated based on in situ data from active layer monitoring sites. It shows that
this algorithm can retrieve SM well in the study area. The coefficient of determination (R2) and
root-mean-square error (RMSE) are 0.82 and 0.06 m3/m3, respectively. This study analyzed the
SM distribution of different vegetation types: the alpine swamp meadow had the largest SM of
0.26 m3/m3, followed by the alpine meadow (0.23), alpine steppe (0.2), and alpine desert (0.16),
taking the Tuotuo River basin as an example. We also found a significantly negative correlation
between the coefficient of variation (CV) and SM in the permafrost area, and the variability of SM is
higher in drier environments and lower in wetter environments. The comparison with ERA5-Land,
GLDAS, and ESA CCI showed that the proposed method can provide more spatial details and
achieve better performance in permafrost areas on QTP. The results also indicated that the developed
algorithm has the potential to be applied in the entire permafrost regions on the QTP.

Keywords: soil moisture; SAR; retrieval algorithm; high spatial resolution; permafrost

1. Introduction

Soil moisture (SM) is an essential component of the terrestrial hydrological cycle
ecosystem [1,2]. In ecology, SM affects the growth and activity of vegetation and microor-
ganisms by controlling the division of water [3], and can also mitigate changes in soil
organic carbon content caused due to climate warming [4]. In hydrology, SM is not only an
important parameter of the water cycle but is also used to infer surface- and ground-water
exchanges [5]. In climatology, SM affects regional climate through changing surface albedo,
evapotranspiration intensity, and sensible and latent heat fluxes [6]. In the permafrost
environment of the Qinghai–Tibet Plateau (QTP), the SM in the active layer is signifi-
cantly altered by the seasonal freezing and thawing processes and influences the energy
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exchange between permafrost terrain and the atmosphere [7,8]. The accurate information
on the spatial and temporal distribution of SM helps advance hydrological, ecological, and
climatological studies in permafrost areas [9].

In the permafrost area of 1.06 × 106 km2 of the QTP [10], it is critical for various scien-
tific studies to obtain accurate spatial distribution data of SM on a large scale. Due to the
harsh environment and inconvenience of accessing the QTP, the traditional methods of ob-
taining SM by sampling measurement and monitoring are limited. Several meteorological
and hydrological stations have been deployed over the past few decades, and data scarcity
has been filled to a degree [11]. These restricted sites are unevenly distributed on the edge
of permafrost areas or on seasonally frozen ground areas, which makes it challenging to
study SM with high spatial heterogeneity [6,12]. Remote sensing technology has achieved
significant advances in SM monitoring, with its unique large-area observation capabilities,
and some remote sensing products and reanalysis data have been produced, such as the
fifth generation of the land component of the European Centre for Medium-Range Weather
Forecast atmospheric reanalysis (ERA5-Land) [13], the European Space Agency Climate
Change Initiative (ESA CCI) [14], and the Noah land surface model driven by Global Land
Data Assimilation System (GLDAS-Noah) [15]. Xing et al. evaluated seven SM data prod-
ucts (SMAP, SMOS-IC, ASCAT, ERA5-Land, ESA CCI, LPRM, AMSR2) over the permafrost
region of the QTP based on in situ SM measurements and found that the SM data of ESA
CCI had the highest accuracy [16]. Due to the lack of adequate measurement data, SM
products generated by the model assimilation are significantly biased in the QTP [17]. In
addition, the SM product data at a spatial resolution of tens of kilometers are affected by
mixed pixels and do not accurately describe the SM distribution. The coefficient of variation
(CV) analysis is often used to describe significant patterns in regional mean SM content,
with the relationship between CV and SM often showing a hysteresis pattern in spatial
variability [18–20]. The spatial–temporal SM variations have never been revealed over the
permafrost area in the QTP, where the relationship between the CV and mean SM is similar
to that found in other regions is unclear [21,22]. The lack of high-spatial-resolution SM
data in the permafrost region of the QTP greatly limits the studies of the spatial–temporal
distribution characteristics of SM. Few studies are able to analyze the spatial–temporal
variations of SM in permafrost areas on a fine scale.

Synthetic Aperture Radar (SAR) has proven its high potential for retrieving high-
spatial-resolution SM using the backscatter coefficient (σ◦) [23,24]. Some empirical [25,26],
semi-empirical [27], and physical scattering models [28] have been developed to relate
backscattering with surface SM, roughness, and vegetation. Surface scattering models
are commonly used for bare soil including the semi-empirical Dubios model [29], the
Oh model [30], and the physically based Integrate Equation Model (IEM) [31]. These are
usually integrated with vegetation scattering models, such as semi-empirical water cloud
models (WCM), to predict scattering from vegetated areas [32,33]. Studies have developed
algorithms for retrieving SM based on IEM or WCM inversion using minimization, LUT,
and machine learning approaches. In 2014, He et al. estimated SM in the alpine meadow
region by coupling the IEM and the WCM with R2 and RMSE reaching 0.71 and 0.03 m3/m3,
respectively [34]. In 2017, Bai et al. first estimated SM in the alpine steppe region of Magu
using Sentinel-1 (S1) data with the WCM [35]. In 2021, Yang et al. coupled the improved Oh
model in 2004 and WCM to estimate SM in the Nagqu region based on S1 data and MODIS
optical data with the assumption of constant surface roughness [36]. Despite the significant
advance in scattering modeling, SM inversion from these microwave scattering models
are commonly ill-posed and complicated [37,38]. Besides utilizing microwave scattering,
several algorithms have been successively developed and widely used to retrieve SM, such
as change detection (CD) and neural network (NN) [39–41]. NN are mathematical models
that are commonly trained by vegetation coefficients, backscatter coefficients, and other
parameters in studies of SM retrieval using SAR data, which have high requirements for
the data volume. However, the NN method requires a large amount of data for training
and validation, which greatly limits its application in the permafrost region of the QTP.
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The principle of the CD algorithm is based on the assumption that by differencing the
backscattering coefficients in two periods, the effect of soil roughness and vegetation is
reduced, and the backscatter difference is mainly due to the changes in SM [39]. Thus,
it is more suitable than the NN algorithm for permafrost areas where a large amount of
training data acquirement is difficult. Gao et al. mapped SM distributions at a 100 m
spatial resolution located in Urgell using a CD algorithm by combining S1 and Sentinel-
2 (S2) data [40]. Bauer-Marschallinger et al. used the CD algorithm to build the first
global SM dataset with 1 km spatial resolution, which greatly advanced the progress of
SM studies [42]. Zhu et al. proposed an unsupervised CD method as a pre-processing
procedure for multi-temporal retrieval and improved the accuracy of the CD algorithm by
reducing the uncertainty caused by changes in vegetation and roughness [43,44].

Over the QTP, studies of SM retrieval using SAR data have also been conducted in recent
years. Yang et al. and Bai et al. estimated SM in alpine grassland environments in Nagqu
and Magu, respectively, both with favorable results [35,36]. In the Beiluhe, Zhang et al.
used estimated SM in alpine meadows and alpine deserts and improved the accuracy of
estimating SM by the WCM and CD algorithms [45]. However, these SM retrieving studies
on the QTP were conducted outside or in the margin/border of the permafrost area or
within a very small permafrost region. The study area was very small, i.e., covering only a
few square kilometers, and the effectiveness and accuracy of the retrieving algorithms or
models were not tested in other areas. To our knowledge, no SM retrieving study has yet
been conducted on the large-scale hinterland permafrost regions.

The freeze–thaw cycle of active layer soils and the water barrier of the frozen layer
in the permafrost area play an active role in determining vegetation growth and SM
retention [46,47]. It implies that in areas with high SM, the vegetation cover has significant
interference with the radar signal. The vegetation canopy complicates the extraction of
underlying soil water, as the canopy contains water and can also block or scatter radar
signals [48]. Therefore, in the retrieval process, vegetation is another important factor
that affects the radar signal in addition to SM. In the many ecological, hydrological, and
agricultural studies, the vegetation canopy is usually expressed by the vegetation indices,
such as Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), and the
Enhanced Vegetation Index (EVI), biomass, vegetation height, etc. [35,45,49–52]. Several
studies have shown that NDVI is easier to derive and has fewer errors than other vegetation
indices and is widely used in SM retrieval studies [50,53]. In addition, in partially vegetated
areas, Bao et al. found that Normalized Difference Moisture Index (NDMI) can also perform
well in SM retrieval studies based on S1 data [54].

In the permafrost region on the QTP, the ground has a distinct freeze–thaw cycle
process. The soil water is in a liquid state during summer and in a state of combination of
ice and unfrozen water in other seasons [9]. The real implication of SM values obtained by in
situ monitoring and sampling drying measurements could be different. In situ monitoring
measures the unfrozen water (liquid water) content by monitoring the dielectric constant in
the soil, such as the Hydra soil moisture sensor. The field-oven sampling acquires the total
soil water content (unfrozen water and ice) by collecting in the field and then calculating
the volumetric water content from the wet and dry weight of the soil. Meanwhile, σ◦ is
sensitive to unfrozen soil water, and the frozen part is neglected in the retrieval process.
The σ◦ could not represent the gross soil water content in all seasons except for the thawing
season. Therefore, we need to be careful when choosing field “SM” data in developing and
training SM retrieving algorithms [55].

In summary, a retrieval algorithm for SM is urgently needed to obtain SM spatial data
which could promote hydrological, ecological, climatic, and engineering studies in the
permafrost region of the QTP. In this study, the hinterland of the QTP was selected for SM
retrieval, where a variety of surface types are included. The retrieval algorithm is trained
and validated using multi-year in situ observations of different surface environments. We
chose the months of July and August as the study period, which can reduce the errors
caused by the freeze–thaw process of the soil. The SM retrieval during the thawing
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season could represent the gross soil water content. In addition, the CD algorithm is a
promising method for SM retrieval in the permafrost region where a priori knowledge is
scarce [39,40]. The liquid soil water is very small in the coldest winter season, by reference
to the CD algorithm, the effect of surface roughness is minimized. Then, the vegetation
effect is further represented and reduced by vegetation indexes (NDVI, NDMI) from optical
data. Finally, the objectives of this study are: (1) to develop an SM retrieval algorithm
suitable for permafrost environments on the QTP using high spatial-resolution SAR data to
obtain spatial data of SM for the thawing season; and (2) to explore the spatial–temporal
distribution characteristics of SM on the large extent of permafrost region on the QTP.

2. Materials and Methods
2.1. Study Area

In this study, an area of 505 km × 246 km in the hinterland of QTP along the Qinghai–
Tibet Highway was selected as the study area, as shown in Figure 1. This area covers most
of the stations of the SM and temperature monitoring of the permafrost networks [11]. The
study area includes typical permafrost regions and seasonally frozen ground regions with
an altitude between 4189 m and 6402 m a.s.l. The average annual temperature in this region
is between −5.8 ◦C and −2.4 ◦C, and the trend of temperature increase is consistent, with
an average rate of change of about 0.05 ◦C/a. The annual precipitation is in the range of
approximately 210–580 mm, with sizeable interannual variation [56,57]. The precipitation
is mainly concentrated between May and September, and there is an apparent upward
fluctuation in annual precipitation, with an average variable rate of 7.49 mm/a from 2004
to 2016 [58].

The vegetation types in the study area are classified as alpine swamp meadows, alpine
meadows, alpine steppes, and alpine deserts. The alpine meadows cover the largest areas,
followed by alpine steppes and alpine swamp meadows at the least [59]. The degradation
of the permafrost has affected the ecological situation in the QTP. The vegetation ecosystem
degradation is significant, mainly manifested as the degradation of alpine swamp meadow
to the alpine meadow and alpine meadow to alpine steppe [59].

The frozen ground undergoes seasonal freeze–thaw cycles [8]. On the QTP, the thawing
process begins in mid-to-late May and lasts until late September to early November each
year [58,60,61]. The effect of water transport during soil freezing and thawing on SM
distribution is very significant. The measured data in the in situ show that the SM in the
thawing season varies roughly between 0.1 m3/m3 and 0.5 m3/m3. When the soil is frozen
in winter, the unfrozen water content is low.
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2.2. Datasets
2.2.1. In Situ Observations

The in situ SM measurements are acquired from the SM and temperature observation
network built by the Chinese Academy of Sciences (CAS) [11]. SM was measured by a
Hydra soil moisture sensor and recorded by a CR10X/CR1000/CR3000 data logger, with
an accuracy of ±2.5%. Table 1 shows detailed information on the stations used in the
study. The elevation of these stations ranges from 4468 m to 5100 m a.s.l and spans about
420 km from north to south. The sites also contain several typical vegetation types of the
QTP, including alpine swamp meadows, alpine meadows, and alpine steppes. They could
represent the varied permafrost environment on the QTP to some extent. We collected 129
in situ SM data during the thawing season (months July, and August) from 2016 to 2019 at
these sites, of which 100 were used for training the model and 29 for validation.

Table 1. Information of SM monitoring sites.

Sites Lon. (◦E) Lat. (◦N) Location Altitude(m) Vegetation Types

CN03 92.727 34.47 Wuli 4625 Alpine steppe
CN04 91.737 31.81 Liangdaohe 4808 Alpine swamp meadow
CN06 94.063 35.62 Kunlun Pass 4746 Alpine meadow
QT01 93.043 35.14 Hoh Xil 4734 Alpine meadow
QT02 93.921 34.82 Beiluhe 4656 Alpine swamp meadow
QT04 91.941 33.07 Tanggula 5100 Alpine meadow
QT05 92.338 33.95 Kaixinling 4652 Alpine meadow
QT06 92.239 33.77 Tongtian 4650 Alpine steppe
QT08 93.084 35.22 Wudaoliang 4783 Alpine steppe
QT09 94.125 35.72 Xidatan 4538 Alpine steppe
QT14 93.600 35.43 Suonandaje 4468 Alpine meadow
QT18 92.892 34.73 Fenghuo 4773 Alpine swamp meadow

2.2.2. Sentinel-1

The Sentinel-1 (S1) satellites were launched by the European Space Agency (ESA) in
the frame of Europe’s Copernicus program, including Sentinel-1A (S1A) and Sentinel-1B
(S1B). The orbital period of S1A is 98.6 min, the revisit period is 12 days, and the combined
AB satellite is 6 days. The interferometric wide (IW) imaging model with a spatial resolution
of 5 m × 20 m provides a more accurate σ◦ and better meets the needs of this study [50].

We use the ground range detection (GRD) products of S1 in IW acquisition mode
with the VV and VH polarizations from Google Earth Engine (GEE). Compared to the VH
polarization of S1, the VV polarization has greater potential for SM retrieval [40,65–67].
Some researchers have used both VV and VH in SM retrieval studies and characterized the
effect of vegetation by the ratio of VV and VH [41,68]. However, in the study, only VV single
polarized data is acquired before February 2017. Therefore, the optical vegetation index
NDVI is used in this study for characterizing vegetation. The backscattered images of VV
polarization in the completely thawed season (months July, and August) and the completely
frozen season (January to February) from 2016 to 2019, in a total of 89 acquisitions, are
employed for the SM retrieval algorithm development and validation.

2.2.3. Sentinel-2

Sentinel-2 (S2) is a high-resolution imaging satellite that carries a multi-spectral imager
(MSI). The revisit period for one satellite is 10 days, and the revisit period for two satellites
is 5 days [69,70]. In this study, cloud-free S2 TOA Level-1C data one week before and after
the S1 acquisition is selected to calculate vegetation and water indices using the green band
(B3: Green), red band (B4: Red), near-infrared band (B8: NIR), and short-wave infrared
(B11: SWIR) [71].
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2.2.4. SRTM DEM

Shuttle Radar Topography Mission (SRTM) data is mainly measured jointly by the
National Aeronautics and Space Administration (NASA) and the National Imagery and
Mapping Agency (NIMA). Interferometric radar data is captured using dual radar antennas
and converted into digital terrain data. This study uses the “NASA SRTM Digital Elevation
30-m” elevation dataset provided by the GEE platform [64].

2.2.5. SM Data Products

In this study, we also compared the retrieval SM with three SM data products, such
as the fifth generation of the land component of the European Centre for Medium-Range
Weather Forecasts atmospheric reanalysis (ERA5-Land) [13], the Noah land surface model
driven by Global Land Data Assimilation System (GLDAS-Noah) [15], and the European
Space Agency Climate Change Initiative (ESA CCI) [14]. The specific information of the
three datasets and the first layer of the depth range are shown in Table 2. In this study, the
SM product data for 2 July and 19 August 2018 were selected for comparing the spatial
distribution and average SM content with the retrieval results.

Table 2. Information on SM products.

Product type Sensor Period Spatial Resolution Temporal Resolution Depth

Remote sensing products ESA CCI 1978–2019 0.25◦ × 0.25◦ Daily ~0–5 cm

Reanalysis products ERA5-Land 2000–present 0.1◦ × 0.1◦ 3-Hourly 0–7 cm
GLDAS-Noah 1948–present 0.25◦ × 0.25◦ 3-Hourly 0–10 cm

2.3. Methods

The workflow of the SM retrieval algorithm development is illustrated in Figure 2.
The main steps are summarized as (1) S1 backscatter preprocessing; (2) Reducing the effect
of surface roughness; (3) Reducing the effect of vegetation; (4) SM retrieval algorithm
construction; (5) SM result post-processing; and (6) Retrieval result validation.
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2.3.1. S1 Backscatter Preprocessing

Data preprocessing was performed on the GEE platform [72]. GEE has performed
some preprocessing of the S1 data using the ESA S1 Toolbox (S1TBX), including applying
orbit files, removing thermal noise, removing GRD border noise, radiometric calibration,
and Range-Doppler terrain correction. Furthermore, the S1 incident angle normalization
and spatial filtering are needed to make the data as correct as possible.

• S1 incident angle normalization

The σ◦ is affected by the incidence angle (θ0) of S1 and has a slight deviation from the
actual situation. There is a certain correlation between θ0 and σ◦, which can be expressed
as a slope β [73,74]. This study chose the central incidence angle of the study area (38◦)
as the reference angle to reduce the overall error caused by extrapolation [42]. Therefore,
as shown in Equation (1), we uniformly correct the σ to the value corresponding to the
incident angle of 38◦ (σ◦ (38◦)).

σ◦(38◦) = σ◦ (θ0) − β (θ0 − 38◦) [dB]. (1)

The calculation of Equation (1) can be performed on the GEE.

• Refined Lee Filtering

In order to reduce the speckle noise in the image while preserving the image edge
information, the Refined Lee filter with a window size of 7 × 7 is used in this study [75,76].

2.3.2. Sensitivity of Backscattering Coefficient to Soil Liquid Water

The correlation between SM and σ◦ in the permafrost region was analyzed at sites
QT08 and QT09. As shown in Figure 3, the σ◦ and SM at both stations showed obvious
seasonal variations, i.e., high in summer and low in winter. When the soil freezes, the soil’s
liquid water content decreases sharply, and therefore, the dielectric constant decreases, and
consequently, the σ◦ drops significantly.
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Figure 3. The time-series variation of SM and σ◦ at sites. (a) QT08 and (b) QT09.

Figure 3 also revealed that the same σ◦ corresponded to different SM values at the two
sites. At site QT08, the σ◦ was in the range of −17 to −10 dB, corresponding to SM of about
0.003 to 0.13 m3/m3, while at site QT09, the σ◦ range was −17 to −11 dB, corresponding
to the SM range of about 0.05 to 0.4 m3/m3. This shows that the range of σ◦ does not
vary much between the two sites, but the corresponding SM ranges are dramatically
different. Many studies have demonstrated that surface roughness and vegetation are the
major factors affecting the correlation between surface backscatter intensity and SM [77].
Therefore, it is critical to reduce the effects of surface roughness and vegetation in the
retrieval process to improve accuracy.

2.3.3. Reducing the Effect of Surface Roughness

The CD algorithm originally proposed by Wagner et al. determines the SM by linearly
scaling the observed backscatter between that at the driest and wettest conditions [78].
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The algorithm has been validated and used in many regions in SM retrieval studies in
recent years, including semi-arid areas and mountainous areas [42,79]. Rignot EJM et al.
conducted experiments in a mountainous region of the Katmai National Park and Preserve
in Alaska and found that the CD algorithm is effective in removing the topographic
influences [80]. Therefore, this study refers to the principle of the CD algorithm to eliminate
the effect of topography in permafrost areas.

According to the characteristics of soil liquid water in the permafrost regions of QTP,
the soil surface is mostly frozen in winter and holds little liquid water. Meanwhile, due to
low precipitation during the period of January–February, the snowmelt or wet snowfall
effect is limited, and the change in surface roughness in winter is not significant compared to
the melting season. We assumed that the smallest σ◦ in winter of its temporal curves could
represent the lowest liquid water content of the soil during this period. Therefore, we took
the smallest value of σ◦ in the freezing season (January, February) as the reference value
and subtracted it from the backscatter signal during the thawing season. The backscatter
difference (∆σ) between the freezing and thawing seasons (months July, and August)
represents the changes in SM and vegetation. It can be expressed as:

∆σ = σs − σw (2)

where σs is the σ◦ of the thawing season, and σw is the σ◦ of the freezing season. Figure 4
shows the distribution and details of σs, σw, and ∆σ in the study area. In the case of
Figure 4a,b, the topographic factor has a significant effect on the backscattered signal.
Figure 4c shows that the method of calculating the σ◦ difference between summer and
winter is effective in weakening this effect.
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2.3.4. Reduce the Effect of Vegetation

We applied NDVI and NDMI to reflect vegetation characteristics and the water content
in vegetation and proposed to use the combination of NDVI and NDMI to characterize the
effect of vegetation on the σ. These vegetation indices were calculated as follows:

NDVI = (ρnir − ρred)/(ρnir + ρred) (3)

NDMI = (ρnir − ρswir)/(ρnir + ρswir) (4)

where ρred, ρnir, and ρswir are the reflection value in the red spectrum, the near-infrared
spectrum, and the shortwave infrared spectrum, respectively. It is noteworthy that the
contribution of soil to NDMI is primarily negative for some areas, while the contribution of
green vegetation is mostly positive [81].

2.3.5. SM Retrieval Algorithm Construction

We collected 129 datasets (in situ data, and corresponding ∆σ, NDVI, NDMI) dur-
ing the thawing season (months July and August) from 2016 to 2019. A multiple linear
regression model was constructed based on the linear relationship between SM and the ∆σ,
NDVI, and NDMI, and the SM retrieval algorithm can be expressed as follows:

SM = a × 4σ + b × NDVI + c × NDMI + d (5)

where a, b, and c are the coefficients of the three variables (4σ, NDVI, NDMI), respectively,
and d is a constant. In order to ensure the universality of the retrieval algorithm, we arrange
the in situ data of different years together and then performed 10,000 random divisions
with a ratio of nearly 8 to 2 for determining the optimal coefficient. One part is used to
obtain model coefficients (a, b, c, d). The other is used to verify the accuracy of retrieved
SM. Thus, we can obtain 10,000 sets of coefficients, training, and validation of R2. Finally,
we calculate the sum of R2 for training and validation processes using their sample size as
the weights. The coefficients corresponding to the maximum sum of R2 are determined as
the optimal coefficient.

2.3.6. SM Result Post-Processing

There are some outlier regions in the retrieval results, which are removed in the
post-processing steps.

• Waterbody masking

The sensitivity of the σ◦ to soil liquid water is its advantage of SM retrieval, but σ◦ will
present an anomaly and deviate from the normal range when the sensor scans water bodies
such as rivers and lakes. The normalized difference water index (NDWI) is calculated
using the green band, and the near-infrared band can effectively identify the water body
information [82]. The NDWI is calculated as follows:

NDWI = (ρgreen − ρnir)/(ρgreen + ρnir) (6)

In Equation (6), ρgreen is the reflection in the green spectrum, corresponding to the B3
band of the S2. Then, a mask is created with 0 as the threshold to remove the water body
part of the retrieved results.

• Shadow masking

It is found that the σ◦ in the hillside or foothills usually shows outliers in our study
area due to the radar signal being obscured and distorted in these areas. The local incidence
angle (θ) can be calculated by using the zenith angle and azimuth angle of S1 to represent
the illumination condition of the radar signal, expressed in Equation (7),
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cosθ = cosθza × cosS + sinθza × sinS × cos(θaa − A) (7)

where θza is the zenith angle, which is the same angle as θ0, θaa is the azimuth angle, S is
the slope, and A is the aspect. The pixels with θ smaller than a threshold to be defined
are masked out. According to a visual comparison of shadow outliers and local incidence
masks, the threshold of 15◦ is adopted in our study.

• Negative ∆σ masking

Theoretically, there is a positive correlation between the σ◦ and the SM, and the σ◦ in
the thawing season should be higher than that in winter. Hence, the area where the ∆σ is
less than zero is considered abnormal and masked out during the post-processing.

2.3.7. SM Retrieval Algorithm Validation

In all, 29 samples were used to evaluate the accuracy of the retrieved SM using the
proposed algorithm. The root-mean-square error (RMSE) and coefficient of determination
(R2) are applied to indicate the accuracy of the SM retrieval result.

3. Results
3.1. Reduce the Effects of Surface Roughness and Vegetation

Figure 5 shows the correlation of σ◦ and ∆σ with the SM observations. There is no
apparent correlation between the original σ◦ and SM, with a Pearson correlation coefficient
(r) of 0.06. However, after subtracting the winter reference σw, the r between ∆σ and SM
reached 0.76. In Figure 5a, the sensitivity of the radar signal to SM is weakened by the effect
of surface roughness. The comparison of SM with σ◦ and ∆σ has proven that our method
is able to reduce the effect of surface roughness and essentially improve the sensitivity of
radar signals to SM.
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NDVI and NDMI jointly characterize the contribution of vegetation to the retrieval
of SM. As shown in Figure 6, NDVI and NDMI have high correlations with SM, with r
of 0.76 and 0.74, respectively. The results indicate that NDVI and NDMI are suitable for
characterizing the vegetation contribution in σ◦ of the study area.
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3.2. SM Retrieval Algorithm and Validation

Table 3 lists the model coefficients and R2 value of 10,000 regressions. The coefficients
which generate the highest weighted R2 were set as the optimal coefficients. The SM
retrieval algorithm is expressed as follows:

SM = 0.02 × ∆σ + 0.24 × NDVI + 0.28 × NDMI + 0.003 (8)

As illustrated in Table 3 and Figure 7, the retrieved result is satisfactory, with R2

and RMSE reaching 0.82 and 0.07 m3/m3, respectively. As shown in Table 3, the mean
values of the 10,000 sets of regression coefficients are very close to the optimal values, and
the standard deviation is also relatively small. It indicates that the model coefficients are
relatively stable, and not largely influenced by different divisions of training and validation
samples, which demonstrates the robustness of the model.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 a b c d R2 

MEAN 0.02 0.23 0.28 0.004 0.81 

STD 0.0001 0.02 0.04 0.004 0.004 

OPT 0.02 0.24 0.28 0.003 0.82 

 

Figure 7. Comparison of SM-retrieved results with measurement data. 

3.3. Map of Retrieved SM 

Figure 8 shows retrieved SM on eight days of S1 acquisitions with the grid spacing 

of 50 m × 50 m. The white areas in the retrieval results are caused by post-processing, 

where water bodies, mountain shadows, and anomalous areas are masked. To better show 

the spatial distribution characteristics of SM, Figure 9 was made by overlaying the spatial 

distribution map of SM with the topographic map. In hill areas with undulating terrain, 

SM is usually higher. In order to show the complexity of the spatial distribution of SM in 

mountainous areas of the permafrost region, this study designed two transect lines to fur-

ther show the SM variation in the hill areas and extracted the SM values corresponding to 

the two transect lines, as shown in Figure 10. The variability of SM in hill areas is well 

presented. It demonstrates the high variability of SM, which could not be revealed by 

coarse SM products. 

Figure 7. Comparison of SM-retrieved results with measurement data.



Remote Sens. 2022, 14, 5966 12 of 21

Table 3. The optimal coefficients are selected after the regression analysis. Mean is the mean value of
each coefficient, STD is the standard deviation, and OPT is the optimal coefficient solution.

a b c d R2

MEAN 0.02 0.23 0.28 0.004 0.81
STD 0.0001 0.02 0.04 0.004 0.004
OPT 0.02 0.24 0.28 0.003 0.82

3.3. Map of Retrieved SM

Figure 8 shows retrieved SM on eight days of S1 acquisitions with the grid spacing
of 50 m × 50 m. The white areas in the retrieval results are caused by post-processing,
where water bodies, mountain shadows, and anomalous areas are masked. To better show
the spatial distribution characteristics of SM, Figure 9 was made by overlaying the spatial
distribution map of SM with the topographic map. In hill areas with undulating terrain,
SM is usually higher. In order to show the complexity of the spatial distribution of SM
in mountainous areas of the permafrost region, this study designed two transect lines to
further show the SM variation in the hill areas and extracted the SM values corresponding
to the two transect lines, as shown in Figure 10. The variability of SM in hill areas is well
presented. It demonstrates the high variability of SM, which could not be revealed by
coarse SM products.
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Figure 8. The map of SM retrieval results for thawing seasons 2018 and 2019 after post−processing.

Figure 11 shows the relationship between the spatial and temporal CV and the mean
SM in this study area. The CV tends to decrease with increasing mean SM in both spatial
and temporal dimensions, which shows that the variability of SM is higher in drier envi-
ronments and lower in wetter environments. This pattern is related to the water-holding
capacity of the soil and its spatial variability [83]. The large differences in the CV in different
regions are related to the soil water content, bulk density, and soil texture [22,84,85]. In
permafrost areas, the physicochemical properties of soils vary greatly in different areas
of topography and vegetation cover, resulting in a high spatial heterogeneity of SM. In
addition, the high CV in areas of low SM may also be explained by frequent precipitation
and strong evapotranspiration during the thawing season.
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4. Discussion
4.1. Comparison of S1-Retrieved SM with SM Products

We chose the Tuotuo River basin as an example, where the detailed investigation
was conducted, to compare with widely used SM products, such as GLDAS-Noah, ESA
CCI, and ERA5-Land (Figure 12). At the local scale, the retrieval results can present the
distribution characteristics of SM in different surface environments. The widely used SM
data products are unable to characterize the heterogeneity of SM spatial distribution in
detail. For example, the GLDAS and CCI can only identify high SM in the southernmost
glacial regions, while the distribution of SM in other areas is varied. They can only give a
very rough description of the moisture distribution over tens of kilometers limited by its
coarse resolution, and the details on SM distribution are lost. In addition, the distribution
of the three SM products in this region is also different, which also confirms the demand
for high-accuracy SM data in the QTP.
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(a) The place circled by the black line indicates the location of the Tuotuo River basin. (b–i): The SM
distribution in this region with different data. The white areas in the retrieval results are caused by
post-processing, where water bodies, mountain shadows, and regions with negative ∆σ are masked.
The white areas of SM products are caused by the lack of effective data in QTP.

Figure 13 shows the statistics of SM distribution in the study area on 2 July 2018, from
three SM products and S1 retrieval results. The average SM content of ESA CCI, ERA5-
Land, GLDAS-Noah, and retrieval result is 0.34, 0.5, 0.29, and 0.19, respectively. The upper
and lower quartiles of the in situ SM for the thawing season are 0.29 and 0.09, respectively.
Compared with the in situ data, the SM values of the three products are significantly
overestimated, while the retrieval results are in a reasonable range. In addition, previous
research found that the SM data of the ESA CCI product has the best accuracy on the QTP
compared with in situ observations, with an r of 0.63 [16]. In terms of accuracy, our SM
retrieval results also showed substantially higher accuracy, and r reached 0.9.
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Figure 13. The box plot of SM for the three SM products and S1 retrieval results for the Tuotuo river
basins on 2 July 2018. The box line diagram has six parts: lower edge, lower quartile, median, upper
quartile, upper edge, and outliers beyond the upper and lower edges.

4.2. SM Distribution Characteristics at the Local Scale

Figure 14 shows the spatial distribution of different vegetation types [86] and SM in
the Tuotuo River basin. We summarized the characteristics of SM over different vegetation
types, as shown in Figure 15. In areas with high vegetation cover, such as alpine swamp
meadows and alpine meadow areas, the SM content is significantly higher than in alpine
steppe and alpine desert areas. The average SM content over different vegetation types
from high to low is alpine swamp meadow (0.26), alpine meadow (0.23), alpine steppe
(0.20), and alpine desert (0.16).
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4.3. Regions with Very Low σ◦ in the Thawing Season

Normally, the value of σ◦ in the thawing season is higher than that in winter because
the liquid water content in the thawing state is usually higher than in the frozen state [87].
However, during the SM retrieving process, we noticed that σ◦ during the thawing season
in some regions is close to or even lower than σ◦ in winter. Therefore, we tried to find the
reason by comparing the variation of the backscattering coefficients for long time series.
As shown in Figure 16a, we consider the regions with significant seasonal variations in
the σ◦ as normal areas, i.e., σ◦ is higher in summer than in winter, and the disordered
areas as abnormal areas. To explain the potential reasons for this phenomenon, we further
examined the precipitation, vegetation, and soil texture in these particular regions.

• Precipitation

The precipitation process during the thawing season is one of the main reasons for SM
variations [88]. During precipitation events, the wet or flooded ground surface will cause
the σ◦ to deviate from its normal range. We examined the precipitation conditions in three
regions as in Figure 16a to test the possibility of this conjecture. The precipitation data is
from ERA5-Land precipitation reanalysis data [13], and the temporal curves are shown in
Figure 16b. The average annual precipitation of the three regions is 606 mm, 574 mm, and
624 mm, respectively, with little difference in precipitation. Therefore, precipitation is not
the cause of low σ◦ in the thawing season, and the speculation that the wet ground surface
causes low σ◦ is not true. The inference of the abnormal σ◦ caused by the accumulation of
surface water is also not valid.

• Vegetation and soil texture

The impact of vegetation coverage and soil texture on SM content should not be
neglected [89–91]. We found some differences between the two regions by examining the
temporal changes in the NDVI values in the normal and abnormal regions. As shown in
Figure 16c, the NDVI values in the abnormal areas are all relatively low (smaller than 0.1)
and do not exhibit seasonal variations. Meanwhile, we referred to the soil texture dataset
published by Liu et al. [92,93] and combined it with the field records in the anomaly areas.
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We found that the soil in this abnormal area is composed of sand. There is a big chance that
these abnormal areas are bare ground and are extremely dry during the particular period
in the thawing season, therefore leading to low values of σ◦.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

 

Figure 16. Comparison of normal and abnormal regions. (a): σ°; (b): Precipitation; (c): NDVI. 

• Precipitation 

The precipitation process during the thawing season is one of the main reasons for 

SM variations [88]. During precipitation events, the wet or flooded ground surface will 

cause the σ° to deviate from its normal range. We examined the precipitation conditions 

in three regions as in Figure 16a to test the possibility of this conjecture. The precipitation 

data is from ERA5-Land precipitation reanalysis data [13], and the temporal curves are 

shown in Figure 16b. The average annual precipitation of the three regions is 606 mm, 574 

mm, and 624 mm, respectively, with little difference in precipitation. Therefore, precipi-

tation is not the cause of low σ° in the thawing season, and the speculation that the wet 

ground surface causes low σ° is not true. The inference of the abnormal σ° caused by the 

accumulation of surface water is also not valid. 

• Vegetation and soil texture 

The impact of vegetation coverage and soil texture on SM content should not be ne-

glected [89–91]. We found some differences between the two regions by examining the 

temporal changes in the NDVI values in the normal and abnormal regions. As shown in 

Figure 16c, the NDVI values in the abnormal areas are all relatively low (smaller than 0.1) 

and do not exhibit seasonal variations. Meanwhile, we referred to the soil texture dataset 

published by Liu et al. [92,93] and combined it with the field records in the anomaly areas. 

We found that the soil in this abnormal area is composed of sand. There is a big chance 

that these abnormal areas are bare ground and are extremely dry during the particular 

period in the thawing season, therefore leading to low values of σ°. 

Figure 16. Comparison of normal and abnormal regions. (a): σ◦; (b): Precipitation; (c): NDVI.

5. Conclusions

This study developed a concise and practical algorithm for SM estimation using
Sentinel-1/2 temporal data in a permafrost environment on the QTP in the thawing season.
The R2 of this SM retrieval algorithm reached 0.82 with an RMSE of 0.06 m3/m3.

Our retrieved SM results were compared with current SM products (ERA5-Land,
GLDAS-Noah, and ESA CCI) in the Tuotuo River basin and showed that our results have
more strength and advantage in characterizing the spatial heterogeneity of SM distribution.
By analyzing the SM distribution of different vegetation types, the alpine swamp meadow
had the largest SM of 0.26 m3/m3, followed by the alpine meadow (0.23), alpine steppe (0.2),
and alpine desert (0.16). We also found a significantly negative correlation between the CV
and SM in the permafrost area that the variability of SM is higher in drier environments
and lower in wetter environments.

The study also explored the reasons for abnormal SM retrievals in some places. The
developed algorithm is not applicable in some extremely bare and dry ground with very
low SM. Overall, the proposed algorithm shows great potential to derive the detailed SM
distribution in the permafrost environment on the entire QTP, which has great significance
in studying the SM characteristics in spatial detail and helps facilitate the studies of the
response of permafrost to climate change.
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