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Abstract: Wetlands play a vital role in our ecosystems, preserving water quality, controlling flooding,
and supplying aquifers. Wetlands are rapidly degrading due to threats by human encroachment and
rising sea levels. Effective and timely mapping of wetland ecosystems is vital to their preservation.
Unoccupied Aircraft Systems (UAS) have demonstrated the capability to access and record data
from difficult-to-reach wetlands at a rapid pace, increasing the viability of wetland identification
and classification through machine learning (ML) methods. This study proposes a UAS-based
gradient boosting approach to wetland classification in coastal regions using hyperspatial LiDAR and
multispectral (MS) data, implemented on a series of wetland sites in the Atlantic Coastal Plain region
of North Carolina, USA. Our results demonstrated that Xtreme Gradient Boosting performed the best
on a cross-site dataset with an accuracy of 83.20% and an Area Under Curve (AUC) score of 0.8994.
The study also found that Digital Terrain Model-based variables had the greatest feature importance
on a cross-site dataset. This study’s novelty lies in utilizing cross-site validation using Gradient
Boosting methods with limited amounts of UAS data while explicitly considering topographical
features and vegetation characteristics derived from multi-source UAS collections for both wetland
and non-wetland classes. Future work is encouraged with a larger dataset or with semi-supervised
learning techniques to improve the accuracy of the model.

Keywords: wetland classification; gradient boosting; UAS; machine learning

1. Introduction

In the 1600s, there were an estimated 392 million acres of wetlands recorded in the
United States, 221 million of which were in the contiguous states alone. Today, over half
of the original wetland cover in the lower 48 states has been drained and converted for
other land uses [1]. At the same time, nearly 70% of worldwide wetlands have been lost
since the 1900s [2]. With continued rapid urbanization in coastal regions across the world,
wetlands are at heightened risk of degradation [3]. Wetlands play an essential role in the
hydrological cycle, often reducing floods, recharging groundwater aquifer sources, and
augmenting low flows during dry periods [4]. They also play a vital role in a variety of
other ecological services including preserving water quality, providing habitat for fish and
wildlife, preventing erosion, and providing aesthetically pleasing spaces for recreational
activity [5].

Although wetlands are degrading at a rapid pace, the Environmental Protection
Agency (EPA) has recognized both the importance and vulnerability of these ecosystems
and moved to protect them with the Clean Water Act, signed in 1972. This act prohibits the
discharge of pollutant materials into the “waters” which includes wetlands, of the United
States [6]. Although regulations that afford protection to wetlands have provided some
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degree of protection against degradation and replacement, wetlands that have not yet been
classified cannot be recognized by the Clean Water Act and remain vulnerable to human
encroachment. The most reliable system for classifying and protecting wetlands in the
United States is the National Wetlands Inventory (NWI) system, created by the U.S. Fish
and Wildlife Service in response to an order from the Emergency Wetlands Resources Act
of 1986 [7]. Yet, in many places in the country, the maps produced by the NWI are severely
outdated and lacking in precision and accuracy [8].

Oftentimes, wetlands are classified in the field using wetland classification systems
such as field guides, delineation manuals, and other tools [9–11]. Additionally, many
wetlands are classified via evaluation of their hydrology, vegetation, and hydric soils [12].
This approach, however, is often impractical on larger scales. Field-based methods are
frequently infeasible due to the time and cost associated with the process [13]. Additionally,
many wetlands are located in rural, topographically isolated areas making field visitation
challenging and impractical [14]. Additionally, it should be noted that given the temporal
variability of wetlands, visiting the sites frequently is necessary to ensure the accuracy of
wetland inventories.

To tackle these challenges in field-based classification, researchers are finding new
ways of accurately collecting data and classifying wetlands using remote sensing technology.
For decades, various machine learning methods (such as K Nearest Neighbors, Decision
Trees, and Support Vector Machines) have been used to classify wetlands using remote
sensing data [15–18]. In more recent years, Convolutional Neural Networks (CNNs), as
well as other Artificial Neural Networks (ANNs), have been used to analyze images to
classify wetland cover [19–21]. However, CNNs are plagued by high computational costs
and a tendency to overfit with limited amounts of training data [22]. Ensemble tree-based
methods have recently gained popularity for land cover classification, especially due to
their high accuracy [23]. Additionally, they reduce the risk of choosing a poor classifier by
averaging the votes of individual classifiers. Random forests have been successful with
their performance due to their high accuracy [24–26]. Meanwhile, methods like Gradient
Boosting have seen great usage and success in the field of remote sensing with both satellite
and drone-based imagery [27–30]. Gradient Boosting works by sequentially building weak
classification algorithms based on the residuals of previous algorithms, improving based
on observations that are poorly predicted by predecessors [31,32].

These classifications, which have been conducted primarily on satellite-based remote
sensing data collected by Landsat or Sentinel satellites, have their limitations [33]. Past
literature has used Landsat or Sentinel-2b for standardized global topographic data using
Multi-spectral Instruments (MSI) [34]. Satellite-based datasets only perform at a 10 m
resolution, limiting the amount of data available [33]. Current research seeks to use
pixel-based datasets with finer resolutions to increase the sample size and improve the
performance of wetland classification [35].

Unoccupied Aerial Systems (UAS) have risen to prominence as effective tools for
remote sensing due to the high costs and barriers to using satellite-based imagery [36].
They also serve as alternatives to occupied aircraft systems, which are limited by their
cost and complexity [37]. The removal of these barriers allows for more on-demand flight
control for independent researchers [38]. Cloud cover is also a major detriment to using
satellite-based imagery, as clouds can often obscure topographical features from satellites,
but UAS can fly under the clouds and collect topographical data [39].

UAS are being combined with various sensors such as RGB cameras for visible spec-
trum data, Hyperspatial Light Detection and Ranging Sensors (LiDAR), Multispectral
Sensors (MS), and Synthetic Aperture Radar (SAR) [32,40,41]. The advantage that LiDAR
data offers is a high resolution that allows more data to be drawn from a smaller site, im-
proving performance on smaller sites [42]. Data collected from the drone-based sensors are
often used in ensemble-based Machine Learning (ML) algorithms such as Gradient Boosting
and its variants such as Extreme Gradient Boosting and Light Gradient Boosting [43–46].
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A majority of past literature using Gradient Boosting to classify wetlands utilizes
satellite-based imagery [32,40,47]. These studies, however, are restricted to one site and
only train the model on wetland land-cover, not considering non-wetland land-cover.
Additionally, these studies use large amounts of training data (over 10,000 samples). Some
studies have used a combination of both satellite and UAS data to classify wetlands using
Gradient Boosting while others consider only one study site in the development of a
model [48].

This study aims to investigate whether Gradient Boosting used on LiDAR and Multi-
spectral data is an effective way of identifying wetlands through UAS-based remote sensing.
This study’s novelty lies in using cross-site validation with UAS-collected data while ex-
plicitly considering the topographical and vegetation-based variables of non-wetlands for
training the model. Two objectives are proposed:

(1) Explore the effectiveness of different Gradient Boosting models used on LiDAR and
Multispectral data for identifying wetland and non-wetland classes across multiple
sites.

(2) Determine the best variables to classify wetlands using Gradient Boosting.

2. Materials and Methods
2.1. Study Areas

Data at seven sites (the Masonboro site was sampled twice based on tide conditions)
shown in Table 1 and Figure 1 were collected in a Coastal Plain region in Southeastern North
Carolina, United States using UAS and ground surveys. These wetlands sites were chosen
to include various types of wetlands, such as Palustrine Forested (PFO), Palustrine Scrub-
Shrub (PSS), Palustrine Emergent (PEM), Unknown Perennial Riverine Unconsolidated
Bottom (R5UB), Intertidal Estuarine Emergent (E2EM), Marine Intertidal Unconsolidated
Shore (M2US), and Subtidal Estuarine Unconsolidated Bottom (E1UB). Both UAV LiDAR
and multispectral data, as well as ground reference habitat points were collected during
same-day surveys at all sites between May 2020 and January 2021.

Table 1. List and Characteristics of Study Areas.

Site Name Coordinates Wetland Types Date Surveyed
Wetland
Habitat
Points

Non-
Wetland
Habitat
Points

Area of
Interest
(Acres)

Spatial
Resolution

(cm)

St. James 78◦8′22′′W
33◦57′7′′N PFO, PSS 12 May 2020 80 28 178.00 12.69

Topsail 77◦41′6′′W
34◦23′51′′N PFO, PSS 2 June 2020 47 43 113.27 11.99

Castle Bay 77◦42′18′′W
34◦24′42′′N

PFO, PSS, PEM,
R5UB 29 June 2020 91 70 128.45 12.00

River Road 77◦55′11′′W
34◦5′12′′N PFO, PEM, E1UB 2 October 2020 95 40 54.34 12.50

Surf City 77◦33′15′′W
34◦26′24′′N

PFO, PSS, E2EM,
E1UB 6 November 2020 96 61 78.28 12.61

Masonboro
High Tide

77◦49′39′′W
34◦10′15′′N

E1UB, E2US, M2US,
E2EM 7 December 2020 97 56 109.98 12.44

Masonboro
Low Tide

77◦49′39′′W
34◦10′15′′N

E1UB, E2US, M2US,
E2EM 11 December 2020 96 56 109.98 12.44

Maysville 77◦14′17′′W
34◦54′1′′N PFO, R5UB 22 January 2021 27 53 43.80 12.69
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Figure 1. Study area in southeastern North Carolina, United States and the associated survey loca-
tions for each site. 

Figure 1. Study area in southeastern North Carolina, United States and the associated survey locations
for each site.

2.2. Data Collection and Preprocessing

The field collected data used in this research were acquired using a DJI Matrice 600
Pro drone outfitted with a Quanergy M8 LiDAR sensor that collected hyperspatial LiDAR
data and a fixed-wing SenseFly eBee Plus drone with a Parrot Sequoia sensor that collected
multispectral data. The Parrot Sequoia sensor can detect green, red, red-edge, and near-
infrared wavelengths of light, which are typically used to classify vegetation and ground
soil [49]. The difference between the data collected using UAS LiDAR and Sentinel-2b
and RapidEye imagery is that satellite cover may be blocked by topographic weather
conditions, and it may be difficult to procure the most recent data. It is also difficult to add
active sensors (radar imagery) to Sentinel-2b, adding restrictions to the elevation variables
that can be measured [50]. The difference between these two datasets is that hyperspatial
LiDAR is a newer technology and is capable of higher quality resolutions of less than
1 cubic meter [41].

Ground reference data for each wetland and non-wetland land cover type (hereby
called habitat points) were collected on the same day as the aerial surveys using a Trimble
R10 GNSS RTK System. Where habitat points that had been randomly generated prior to
fieldwork were not accessible, they were supplemented using the 2020 National Agriculture
Imagery Program (NAIP) as described in detail in Pricope et al., 2022 [41]. Habitat points
were used to train the model and were randomly selected to produce roughly 15 samples
of each wetland type and 50 samples of non-wetlands for distinguishing among the land
cover types present in the surveys.

For each of the surveyed sites, two flights were conducted to minimize within site
variability and tidal and environmental conditions changes as much as possible. The UAS
LiDAR surveys were referenced using static and aircraft GNSS data, both collected using a
Trimble RTK device as described in detail in Pricope et al., 2022. Data from the Internal
Navigation System (INS) and the Global Navigation Satellite System (GNSS) collected by
the GPS receiver were then downloaded and converted to a text file. After the file was
converted, spatial and distance filtering settings were applied to remove noise, and then
converted into point cloud data. Points that did not have Ground Control Points (GCPs)
could not be georeferenced and were excluded from the dataset. The constrained point
clouds, however, had corresponding GCPs and could be georeferenced. The data was



Remote Sens. 2022, 14, 6002 5 of 19

further processed to remove any noise, such as birds or leaves under the drone. Known
ground surveyed points in the area were then compared to all nearby LiDAR scanned
points in terms of elevation. Lastly, the elevation of the points was changed to the average
of the known RTK ground points and the LiDAR points to compute the final elevation of
each point. For a detailed description of the LiDAR preprocessing workflow, please see
Pricope et al., 2022 [41].

Sequoia Multispectral Data was preprocessed in two parts, the first being Post-
Processed Kinematic correction (PPK), and the second being image processing [50]. The
PPK correction method used location data collected from the onboard eBee system to track
the position of the drone at the time each picture was taken and accurately position each of
the images at their location. Through image processing, the location of each of the images
was considered and compared to target radiometric calibration images taken at the same
location and during the same environmental conditions. The same GCPs used in the LiDAR
processing workflow were used to georeference the multispectral imagery with an accuracy
of 10–27 cm [50]. The result from the preprocessing of the multispectral images created
a TIFF image file that included 4 raster layers for green, red, red edge, and near-infrared
reflectance values.

The processed image is a pixel grid, where each pixel has a set of variables mapped to
it. Each dataset consists of topographical features shown in Table 2, as well as a variable
representing whether the area is a wetland, which is collected from the habitat points
sampling. The multispectral sensor is used to map the mass and density of vegetation in a
sampled area.

Table 2. Summary showing the predictors and response variables derived from the UAS-collected
LiDAR and multispectral data.

Raster Layer Variable Data Input Definition

1 DSM Digital Surface Model Max height elevation in meters (including vegetation and
artificial objects) [51]

2 DTM Digital Elevation Model Ground elevation in meters (vegetation and artificial objects
removed) [52]

3 sDTM Smoothed DTM Ground elevation in meters, where microtopographic noise is
removed [53]

4 hDTM Hydro-condition DTM Hydro-conditioning resolves topographic depressions before
modeling flow paths [54]

5 Aspect Aspect Compass direction of the steepest downhill gradient [55]

6 Slope Slope The rate of change of elevation per DTM cell [56]

7 Curvature Curvature Combined curvature value from PlanCurv and ProfileCurv [57]

8 PlanCurv Plan Curvature The horizontal curvature of the slope [57]

9 ProfileCurv Profile Curvature The vertical curvature of the slope [57]

10 NDVI Normalized Difference
Vegetation Index

Uses the contrast of vegetation between near-infrared and red
light to calculate the relative biomass in an area [58]

11 NDWI Normalized Difference
Water Index

An index that is used to measure the water content in vegetation
at the canopy level using the green (550 nm ± 40 nm) and
near-infrared band (790 nm ± 40 nm) reflectance values based on
the McFeeters NDWI Index [59]

12 NDRE Normalized Difference
Red Edge Index

Measures the relative chlorophyll in plants due to reflecting light
using the red edge (735 nm ± 10 nm) and near-infrared
(790 nm ± 40 nm) band reflectance values [60]

13 CHM Canopy Height Model Maps the height of the canopy layer as a continuous function [61]
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2.3. Gradient Boosting Classification

Tree boosting models are widely used in the realm of machine learning due to their
high effectiveness with state-of-the-art results in many real-world applications. In our
preliminary studies, Gradient Boosting models consistently outperformed the popular
machine learning algorithms. As shown in Figure 2, the data was applied to a range of
other models, such as K-Nearest Neighbors (KNN), Decision Trees, Bagging, and Random
Forest (RF). In our preliminary data analysis, KNN with K = 10 achieved an accuracy of
58.88%, Decision Trees an accuracy of 77.12%, Bagging an accuracy of 81.27%, and RF an
accuracy of 81.76%, while Gradient Boosting methods achieve an accuracy of 83.20%.
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Therefore, three types of Gradient Boosting models were considered in this study:
Gradient Boosting (GBM) [62], Xtreme Gradient Boosting (XGBM) [63], and Light Gradient
Boosting (LGBM) [64]. These models create an ensemble of multiple decision trees while
growing sequentially, fitting a modified version of the original dataset each time. Gradient
Boosting models have the advantage of being able to handle substantial amounts of data
and provide a high degree of accuracy.

XGBM improves the classical GBM in terms of high scalability for big data by several
important systems and algorithmic optimizations, such as a novel tree learning algorithm
to handle sparse data, the weighted quantile sketch for approximate tree learning, parallel
and distributed computing with effective out-of-core tree learning. XGBM uses L1 and L2
regularization to smooth the final learned weights to avoid overfitting, and it implements
parallel processing to greatly improve speed [64]. On the other hand, LGBM tackles two
main challenges of efficiency and scalability in XGBM, especially in big data settings with
high dimensional features and a large number of instances. LGBM aims to find solutions
through the utilization of two novel techniques: Gradient-Based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB). GOSS retains data instances with larger gradients
while using random sampling on smaller gradients to contribute toward information gain.
EFB reduces the dimensionality of the data to improve efficiency by bundling the features
together [65].

These tree boosting models were applied to predict the wetland presence by using the
habitat points of various sites with all the predictors obtained from the LiDAR and Multi-
spectral data (Table 2). Figure 2 shows the data-preprocessing methods that comprised of
creating the final dataset as well as the outputs from the final Gradient Boosting models.
Hyperparameters were tuned to improve the classification accuracy with the consideration
of low runtimes. The set of hyperparameters were listed as below: n estimators = 500, learn-
ing rate = 0.1, max depth = 6, loss = log loss, subsample = 1.0, criterion = Friedman Mean
Squared Error, min samples split = 2, min samples leaf = 1, min weight fraction leaf = 0,
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minimum impurity decrease = 0.0, ccp alpha = 0. The random state was kept constant in all
models to avoid unexpected experimental variability.

The n estimators parameter measured the number of boosting iterations to perform.
Since Gradient Boosting overfits at a lower rate than other methods as a result of the
stagewise method of combining weak learners [66], we adopted the n estimators to be 500.
Additionally, the max depth was set at 6 since it works well in the context of boosting [66].
The learning rate was set to 0.1 to shrink the contribution of each tree to the overall model.
Since the amount of data was small, the subsample parameter was set to 1.0 since Stochastic
Gradient Boosting was not necessary. The criterion was set as the Friedman Mean Squared
Error due to its ability to compute the impurity of the current node and reduce it [63]. Each
of the models was run using 5-fold cross-validation to assess its generalization performance
and estimate the prediction accuracy of the models on new data. The following metrics
were collected in all of the experiments: Runtime, Classification Report, Confusion Matrix,
Accuracy, Receiver Operating Characteristic Curve (ROC), Area Under the ROC Curve
(AUC) Score, Feature Importance, and the decision tree for visualization.

The decision trees are run for each datapoint in the input, which allows it to create a
comprehensive output for a particular site. For each datapoint, the output is determined
by following the path in the tree until a terminal node is reached. The value attached to
the terminal node is then used to determine the classification of that specific pixel. Since
gradient boosting is a generalized additive model (GAM), the results of each tree from
previous iterations are combined to create an estimate of a “score” for classification. The
score is then transformed using a logistic transformation, leading to the final classification.

3. Results
3.1. Individual Sites

GBM, XGBM, and LGBM were trained on each site separately using 5-fold cross-
validation, and the trained model was used to test the pixel-based unlabeled data points
for each site. Figure 3 shows the performance metrics of the GBM, LGBM, and XGBM on
different sites: accuracy, sensitivity, and specificity. Sensitivity, which is also called the
true positive rate, represents the probability of predicting as wetland given the true state is
wetland. On the other hand, Specificity, which is also called true negative rate, represents
the probability of predicting as non-wetland given the true state is non-wetland. Accuracy
is the proportion of correct prediction among the total observations.
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As shown in Figure 3, the St. James site has the highest Accuracy (91.67%) and
Specificity (85.71%) with the XGBM model, while the River Road site has the highest
sensitivity (94.74%) with the LGBM model. On the other hand, for all three Gradient
Boosting models, the Castle Bay site has the lowest accuracies (73.29% for XGBM and GBM;
70.81% for LGBM), while the Maysville site consistently has the lowest sensitivities (55.56%
for GBM; 66.67% for XGBM; 62.96% for LGBM). Furthermore, the Castle Bay site and the
Surf City site have overall low specificity for all three models. This was most likely a result
of the size of the dataset, as Maysville had only 80 habitat points compared to the 108 points
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of St. James and the 135–161 points of the other sites (excluding Topsail). Additionally,
Maysville was the only site where the specificities were higher than the sensitivities for all
three models. This was most likely because Maysville has a significantly higher proportion
of non-wetlands than wetlands, while the rest of the sites have more wetlands than non-
wetland. Lastly, Maysville and St James both have the highest specificities with the XGBM
model. The reason why St James performed so well, despite not having the most habitat
points, was likely because it had very few wetland types in the dataset (only PFO and PSS).
This meant the model had less differences among wetland features to distinguish from in
its final classification.

Supplementary Figure S7 shows the ROC curves for St James, Maysville, and Castle
Bay as a model comparison, in addition to the AUC scores which serve as a summary
to these ROC curves. The ROC and AUC are analyzed based on 5-fold cross-validation.
For all ROC curves, a ±1 standard deviation was shown to account for the variability of
individual folds.

For the AUC plot, the center represents the mean AUC, and the endpoints of the line
segments represent the values of the AUC one standard deviation away. Across the various
sites, GBM tends to have overall the highest variability, likely resulting from its greedy
approach toward creating splits in the tree. Additionally, GBM tends to perform worse than
the other models regarding AUC, similar to the other metrics of model accuracy. XGBM
tended to perform the best across the sites, similar to its high performance across other
accuracy metrics, cementing it as the model of choice.

St James’ XGBM AUC score of 0.9545 makes it an ideal model, coming very close to an
AUC of 1. Its second fold in Supplementary Figure S7a had a very low AUC, most likely a
result of experimental variability, which caused the overall AUC to decrease. This was also
the case for Maysville’s XGBM ROC curve whose AUC was 0.8967.

The number of habitat points did not play a role in the ROCs or AUCs. As seen in
Supplementary Figure S7c, Castle Bay had an AUC of 0.7752, the lowest among all the sites.
While Castle Bay has the highest number of habitat points (161), its AUC is much lower
than Maysville, which has only 80 habitat points. This is most likely because Castle Bay
has six different types of habitats (the most out of any site), making it harder for the model
to distinguish between wetlands and non-wetlands.

Another important metric that was considered across the sites was feature importance.
Feature importance is a measure of how useful a variable is in the construction of the model.
Variables used at the top of the decision tree contribute to the final prediction decision of a
greater amount of input samples.

Supplementary Figure S6 and Table 3 show the intraclass homogeneity. Across all
sites, a large mix of wetland types were present. The XGBM model trained individually on
each site classified each wetland type as a wetland between 80% to 90% of the time, with
the exception of PEM (which had a classification rate of 97%) due to it only being prevalent
in one wetland site (River Road).

The St. James feature importance chart in Figure 4 shows that NDVI strongly correlates
with the final model of the site and is more than three times more important than the next
variable, CHM. This is easily visible in St. James’ XGBM Decision Tree in Supplementary
Figure S1a since the top-most node in the tree is a split based on NDVI which means it
has the most influence on the output. The next most important splits are CHM and DSM,
which are at depth two in the tree, also representing a strong influence on the output.

The Maysville feature importance chart in Figure 4 is also similar to St James due to
the most important variable being twice as important as the next most important variable,
sDTM. This is evident in Maysville’s XGBM Decision Tree in Supplementary Figure S1b
since DSM is the top node and thus has the most influence on the model’s final output.
This is followed by sDTM and Slope, which are towards the top of the decision tree.
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Table 3. List of sites and most important variables when creating XGBM decision trees, ranked from
highest to lowest.

Site Variables Wetland Types

St James NDVI, CHM, DSM PFO, PSS

Topsail NDVI, PlanCurv, CHM PFO, PSS

Castle Bay CHM, DSM, Slope PFO, PSS, PEM, R5UB

River Road sDTM, DTM, Slope PFO, PEM, E1UB

Surf City DTM, NDWI, NDRE PFO, PSS, E2EM, E1UB

Masonboro High Tide sDTM, hDTM, DTM E1UB, E2EM

Masonboro Low Tide sDTM, DTM, hDTM E1UB, E2US, M2US, E2EM

Maysville DTM, sDTM, Slope PFO, R5UB
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Using the Hyperspatial LiDAR data, a raster layer of the site’s area of interest (AOI)
is overlaid over a topographic map in geospatial software. This visualization uses RGB
values to map the 3 most influential variables for each site, determined by the decision
tree, with RGB color values. The blue pixels represent the CHM raster layer, the green
layer represents DTM, and the red raster layer represents the NDVI values of the AOI. In
Figure 5, the variable importance indicates that NDVI is the highest determinant for the St.
James site. The graph on the right is the graphical representation of the XGBM classification
map for the St. James site, where the green pixels represent wetlands, and the brown pixels
represent non-wetlands.
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In the RGB raster map, pixels in the middle of the site were observed to contain high
vegetation density (NDVI) and high values of CHM, which correlated to the classification
of wetlands in the respective area. Although the green pixels show a high canopy layer
around the edges of the St. James site, the absence of red pixels indicates smaller degrees
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of NDVI and much sparser vegetation towards the outside of the study area. The DTM
also contributes to the classification of wetlands, where areas with high DTM tend to be
classified at non-wetlands, while areas with low DTM tend to be classified as wetlands.

Maysville’s XGBM used Slope, DTM, and sDTM raster layers to classify areas, rep-
resented in Figure 6 (left). The highest performing variable was the DTM raster layer,
which was represented by blue colors, followed by the sDTM raster layer represented by
the green pixels, and the third highest performing variable was Slope, represented by the
red pixels. The wetlands had a distinct correlation with areas of low elevations, shown
by the distinct lack of blue and green pixels in the areas close to the center of the site in
Figure 6. Areas around the wetland areas are elevated in height as shown by the prevalence
of both green and blue pixels to the north of the site. These elevated regions also have
red hues that signify steep slopes in the center of the site, signifying changes in elevation.
Steep slopes leading to lower elevations leads to the pooling of water in water-saturated
soils, and thus the formation of wetlands. The XGBM performed poorly on the Maysville
site, over-classifying the non-wetlands and contributing to the XGBM’s low accuracy with
wetlands. Several factors may have influenced the model’s performance including the
low number of habitat points and the majority of the sampled points being classified as
non-wetlands.
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3.2. Model Performance on Pooled Data with All Sites

The data from all sites were pooled together to create a set of 1036 habitat points with
all 12 covariates. All three models—GBM, LGBM, and XGBM—were built on the pooled
dataset

Figure 7 shows the various accuracy metrics for the Gradient Boosting models. XGBM
slightly outperforms GBM in accuracy, while both greatly outperform LGBM in accuracy.
GBM displays the highest sensitivity, with XGBM as a close second, and LGBM performing
the worst. XGBM has the highest specificity, greatly larger than both GBM and LGBM.

The ROC Curves in Figure 8 show that all three models had very similar shapes and
variability. The ROC curves for individual folds also did not stray far outside of the ±1
standard deviation range. GBM had a slightly higher mean AUC than XGBM, while both
models had a higher mean AUC than LGBM. GBM had the least variability in its AUC
score, a stark difference from the large variability GBM had when trained on individual
sites in Supplementary Figure S7. This means GBM likely can perform much better with
larger sets of data, with a bigger increase in performance than XGBM and LGBM.

GBM and XGBM have very similar feature importance charts, while they both greatly
differ from the LGBM feature importance chart (all shown in Figure 9). Both GBM and
XGBM rank elevation-based variables like DSM, sDTM, hDTM, and DTM within the five
most important variables for wetland prediction. They both also rank NDVI in the top five
most important variables. On the other hand, Curvature-based variables such as PlanCurv,
ProfileCurv, and Curvature are ranked among the less important variables in XGBM and
GBM.
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LGBM was very different since the top three most important variables were those
calculated based on the multispectral sensors: NDRE, NDVI, and NDWI, respectively.
Slope is the fourth most important variable in the LGBM, although it ranks in the bottom
half for both XGBM and GBM. LGBM, however, does have one elevation-based variable,
DSM, in its top five. This discrepancy between LGBM and the other models could have
been a result of LGBM’s unique techniques: EFB and GOSS.

Supplementary Figure S2a shows a scatterplot of all the habitat points based on their
DTM and NDVI separated by whether they are wetlands (colored in orange) or non-
wetlands (colored in blue). Both wetlands and non-wetlands have similar distributions,
although there are slight differences. For example, it seems there are two clusters in
DTM for both wetland and non-wetland, while the pattern is more significant for wetland.
Moreover, there are many wetland habitat points that have much lower NDVI values than
non-wetland habitat points. Additionally, the wetland and non-wetland habitat points have
different ‘peaks’ in their distribution for both DTM and NDVI, creating a difference that
can be picked up by the gradient boosting models. Similarly, as shown in Supplementary
Figure S2b, there are two clusters in sDTM for wetland. Furthermore, there is a linear
trend in the sDTM vs. DSM plot. However, there are some differences in the distributions.
For example, there is a difference in the value of peaks for both sDTM and DSM between
wetlands and non-wetlands.
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3.3. Model Performance on Pooled Data with Leave-One-Site-Out Scheme

In this section, we are interested in further examining the model performance on using
the pooled data to predict for a new site, by proposing the Leave-One-Site-Out (LOSO)
scheme. A single site is used for the validation set, and the remaining sites are pooled
and made up the training set, except in the case of both Masonboro High and Low Tide
datasets. To avoid information leaking, when testing on either Masonboro High Tide or
Masonboro Low Tide, both datasets for Masonboro were removed from the training set to
prevent overfitting. The same hyperparameters from previous sections were adopted to
train these models.

As shown in Figure 10, one of the most surprising results was the vast discrepancies
between high sensitivities and low specificities, or high specificities and low sensitivities.
For example, Maysville had a sensitivity of 33.33% and a specificity of 81.13%. On the
contrary, Topsail had a sensitivity of 93.62% and a specificity of 34.88%. The discrepancies
could have been a result of the disproportionate distribution of wetlands and non-wetlands
for these sites: Maysville had 53 non-wetland habitat points and only a meager 27 wetland
habitat points, while Topsail had 27 wetland and 53 non-wetland habitat points. Addi-
tionally, both the Masonboro datasets had the highest accuracies, which came because of
having both high sensitivity and specificity.
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There are some similarities in these results to Figure 3. For example, the Maysville site
had a much lower sensitivity than specificity in Figure 3, and the same trend holds in
Figure 10. Similarly, both Surf City and Topsail had higher sensitivities than specificities
across both testing methods. However, there were some differences as well. St James had
a much higher sensitivity than specificity when models were individually trained on a
site but ended up having a much higher specificity than sensitivity when the models were
trained on a pooled dataset. This could have been because there are two distinct wetland
types within the St James Area of Interest (PFO and PSS) yet only one type of non-wetland,
leading to a more accurate non-wetland classification.

As shown in Figure 10, the AUC scores, in general, were much lower than those
in Supplementary Figure S7 when the model was trained and tested on a single site.
This is similar to the trend for the other performance metrics since those also tend to
be lower for cross site testing, when the model is trained on Leave-One-Site-Out pooled
data compared to individual sites. An exception to this trend is the Masonboro Low Tide
which had an AUC of 0.90 in Figure 10 but an AUC of 0.673 in Supplementary Figure S7.
The respective ROC curves for XGBM on four sites, chosen in order from highest to
lowest AUC, are shown in Supplementary Figure S3. The discrepancy for St James could
have been caused by the unevenness of the distribution of habitat points, with 28 non-
wetland points and 80 wetland points. On the other hand, Topsail and Castle Bay in
Supplementary Figure S3c,d, respectively, had some of the lowest AUC values and thus
the worst ROC curves out of all the sites. For some FPR values, the ROC curves did worse
than random chance and led to the low AUC values. Topsail had low AUC values due to
its large difference between sensitivity and specificity. Castle Bay had low sensitivity and
specificity values overall, contributing to the low AUC.

Most sites tended to have similar top four important variables: sDTM, hDTM, DSM,
and DTM. This was the most common in sites with PFO and PSS wetland types, as sites
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with other wetland types had slightly different important variables. For example, the third
most important variable in the Masonboro datasets was Slope, a result of the Estuarine
wetlands it was composed of. Since estuarine wetlands tend to be formed around the base
of slopes, it is expected that one of the most important variables is the Slope.

In Figure 11, both Castle Bay and St. James had the same list of the top six most
important variables (in no particular order): DTM, DSM, sDTM, hDTM, NDVI, and Slope.
Masonboro High Tide was slightly different, however, due to it including NDRE in the top
six at the expense of hDTM which ranked the second-last. These feature importance charts
were very similar to the XGBM Feature importance chart from Figure 9, but that was to be
expected since both of them are based on pooled data.
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The most important variables in Table 4 are very different compared to Table 3 when
the model was not trained on a pooled dataset. For example, out of the three most important
variables of Masonboro High Tide in Table 3 (sDTM, hDTM, DTM), only sDTM was reflected
in Table 4, with the others just being DSM and Slope. Similarly for Castle Bay, none of the
three most important variables in Table 3 (CHM, DSM, Slope) were represented in Table 4
(hDTM, DTM, NDVI). Overall, the most important variables were similar to those presented
in the XGBM Feature Importance but widely differed from the variable importance for
individual sites in Table 3.

Table 4. List of sites and three most important variables when creating XGBM decision trees based
on Leave-One-Site-Out pooled data, ranked from highest to lowest.

Site Variables Wetland Types

St James sDTM, hDTM, DSM PFO, PSS

Topsail hDTM, DSM, DTM PFO, PSS

Castle Bay hDTM, DTM, NDVI PFO, PSS, PEM, R5UB

River Road DTM, DSM, CHM PFO, PEM, E1UB

Surf City sDTM, DSM, DTM PFO, PSS, E2EM, E1UB

Masonboro High Tide sDTM, DSM, Slope E1UB, E2US, M2US, E2EM

Masonboro Low Tide sDTM, DSM, Slope E1UB, E2US, M2US, E2EM

Maysville hDTM, DSM, DTM PFO, R5UB

The decision trees in Supplementary Figure S4 largely align with the feature impor-
tance in Figure 11. For example, the root node of the Masonboro High Tide decision tree
in Supplementary Figure S4a is based on the Slope variable, which has sDTM, DSM, and
NDVI as children or descendants. Although DTM is the fourth most important variable
for classifying Masonboro High Tide, it is not present in the decision tree. This could be
because previous iterations of the tree could have contained representations of the DTM in
their nodes, making the GAM contribute to the feature importance. Additionally, sDTM and
hDTM encode similar correlations to DTM due to the nature of the variables, so the decision
tree was able to have high accuracy because of the widespread use of sDTM and hDTM.
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Similarly, for the St James decision tree in Supplementary Figure S4b, hDTM is the
root note and has NDVI and DSM as children. DTM and sDTM, the other two out of the
five most important variables, are present as lower branch nodes. However, hDTM encodes
similar information as DTM and sDTM, meaning that the tree can still function to a certain
degree of accuracy. Lastly, in the Castle Bay decision tree in Supplementary Figure S4c,
hDTM is also the root node and only has NDVI as a child. DTM, its second most important
variable, is only present towards the branch nodes of the tree. This could be why the Castle
Bay model has such a low AUC.

Supplementary Figure S5 shows the distribution of some of the most important vari-
ables for Masonboro High Tide and Castle Bay. For Castle Bay, the third most important
variable was chosen as a replacement for the second most important variable because
the pair of hDTM and sDTM were too similar in distribution. From the DSM and sDTM
distribution in the Masonboro High Tide dataset (in Supplementary Figure S5a,b), wetlands
tend to have a much lower maximum and mean than non-wetlands. However, wetlands
happen to have similar minimum values to non-wetlands, giving wetlands a lower range
as well. This is also supported by the hDTM distribution in Castle Bay in Supplementary
Figure S5c, although to a lower extremity. The NDVI in Supplementary Figure S5d for
wetlands tends to have a similar mean to non-wetlands in the Castle Bay dataset, although
there is a lower range and higher minimum. The indistinguishability of many of Castle
Bay’s most important features could have been the primary reason behind its low accuracy
and AUC scores.

Compared to the St. James individual dataset in Figure 5, the pooled XGBM in
Figure 12 performed worse in terms of sensitivity. The pooled XGBM for the St. James
site did not reclassify any of the non-wetlands, leading to the overclassification of non-
wetlands. The disparity between the two XGBMs can best be described by the difference in
the decision trees. Whereas the individual site for St. James used NDVI, CHM, and DSM
as their classification method, the pooled data relied more on DTM derivatives to classify
wetlands. Since the different types of DTMs are all closely related as seen in the joint plot,
this led to an inconsistency between individual and pooled XGBMs. Sites that performed
well using DTM derivatives would continue to perform well, while sites that relied on
other variables to improve the sensitivity of the model, would experience a decline in
sensitivity. The St. James site’s pooled XGBM reclassified the center portion of the AOI as a
non-wetland, relying on the low elevation of sDTM, hDTM, and DSM.
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Figure 12. XGBM classification model for the StJames pooled Leave-One-Site-Out (left) and XGBM
classification model for the Maysville pooled Leave-One-Site-Out (right).

Compared to Maysville’s individual dataset in Figure 6, the pooled Leave-One-Site-
Out XGBM in Figure 12 (right) was able to more accurately define the boundaries of
wetlands using the variable raster data, but the XGBM model led to a more fragmented
classification. The majority of the wetlands from the individual model were reclassified
into non-wetlands, but non-wetlands further north were also reclassified into wetlands.
The Maysville site experienced a tradeoff of specificity from the pooled Leave-one-site-out
XGBM with sensitivity from the individual XGBM. Most of all the pooled XGBM for the
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other sites resulted in a sensitivity that outperformed the specificity of both St. James’ and
Maysville’s individual XGBM.

4. Discussion

This study showed that using gradient boosting models such as GBM, LGBM, and
XGBM to predict coastal wetlands using LiDAR and Multispectral data is a feasible ap-
proach, especially given larger sets of data with more than 1000 data points. XGBM and
GBM consistently outperformed LGBM, but XGBM would be the most feasible model on
larger-sized datasets due to its advantage over GBM regarding low runtimes due to its
scalability [64]. The overall accuracy, sensitivity, specificity, and ROC of the pooled XGBM
model were 83.20%, 87.44%, 76.66%, and 89.84%, respectively. The runtime for the XGBM
was also promising, 4.31 s compared to the 3.10 and 9.53 of LGBM and GBM, respectively.
However, the accuracy metrics of individual sites greatly vary due to differences in wetland
type and the distribution of habitat points between these types. The distribution of habitat
points also affected the sensitivity and specificity of sites. Sites with more non-wetlands
(such as Maysville) or a large difference in distribution (such as St James) tended to have a
higher specificity than sensitivity values while the rest of the sites tended to have greater or
equal sensitivity than specificity values.

This study also found that the DTM-based variables (DTM, hDTM, DSM, and sDTM)
collected from the LiDAR data in addition to the NDVI data from the MS data had the
greatest impact on the model predicting wetlands. The correlation between the lower
elevations and wetlands can be attributed to the runoff of water. Lower elevations tend to
collect runoff from higher elevations, which leads to the unique aquatic ecosystems that
develop there. Interestingly, both Slope and Aspect, which are variables that direct water
flow, were not major influencers in most decision trees. The Aspect variable, which records
the downslope direction of the pixel, was the least influential variable when pooling the
data together. This was probably because each pixel was classified independently, instead
of influencing the classification of the adjacent pixels.

Previous literature has mainly used Sentinel-1 and Sentinel-2 data, using variables
such as Red, Green, Blue, and Near Infrared bands, polarization backscatter data, and
topographic data [32,47]. Two significant studies stand out, Wen et al. (2020) used ensemble
classifier methods for the classification of wetlands, and Sun et al. (2020) used Random For-
est models to analyze SAR remote-sensing images for wetland classification. The random
forest in Sun et al. (2020) achieved 82.7% accuracy when analyzing coastal wetlands [47].
Wen et al. (2020) introduced ensemble methods, where their XGBM and GBM achieved
an accuracy of 74.26% and 69.69%, respectively [32]. Additionally, a deep forest classifier
model used Synthetic Aperture Radar data and had a 97.25% accuracy rate [40]. However,
this model used 85,534 pixels as training data on a single site. Therefore, it is unclear
whether the high accuracy rate was a result of the size of the data or methodology.

This study had some limitations, mainly the very low amount of habitat points col-
lected for training the model. If the dataset was larger, the models would have been able to
adapt to the widely different types of wetlands present across all the sites. Additionally,
the smaller amount of data could have led to the overfitting of the model, especially con-
sidering the maximum depth of the tree was 6 nodes. St. James and Maysville sites both
had considerably lower habitat points compared to the rest of the sites. The low number of
habitat points led to the overclassification of non-wetlands for the St. James and Maysville
sites in the pooled dataset.

This study can be expanded greatly to improve the accuracy of predicting wetlands
using XGBM and these variables. Future work could include a study with more data and
a concentration on a specific type of wetland using the same variables. This could also
incorporate training and testing data on a site that was recently surveyed by the NWI to get
a larger ground truth dataset. Another avenue for exploration is the usage of deep learning
models on this dataset to identify wetlands.
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5. Conclusions

Today, wetlands are at great risk of degradation and must be protected to conserve
their ecosystems. This relies on classification from the National Wetland Inventory. Unfor-
tunately, wetland classification is often an intrusive process that is frequently ineffective
due to constantly changing ground conditions. Alternative methods like aerial or satellite-
based remote sensing have been used, but these methods are either time-intensive and/or
cost-intensive. Additionally, ground cover features may block aerial views of the area of
interest, leading to incomplete classifications. Thus, a UAS-based method of remote sensing
is proposed in the study.

This study shows that using Gradient Boosting ensemble methods as well as LiDAR
and Multispectral sensors with UAS-based remote sensing methods are feasible to be
used in identifying and classifying coastal wetlands. Furthermore, the study specifically
highlights the potential of Xtreme Gradient Boosting over other methods due to its overall
accuracy rate of 83.20%, sensitivity of 87.44%, and specificity of 76.66%. The study was
conducted on multiple wetland types across 6 sites with only 1036 training data-points. Fur-
ther research across more training data-points is recommended since that would improve
the accuracy rate and improve the robustness of the model. Future works can also include
Hyperspectral Sensors instead of hyperspatial data. The greater magnitude of spectral
bands in hyperspectral data can introduce new variables and increase the complexity of
current GBMs, especially with very few training data points.

Additionally, the study considers using training data pooled from multiple sites on
a single site and finds mixed results. Some sites (St. James, Surf City, Topsail) have over
90% values for some of their accuracy metrics, while other sites (Maysville, Castle Bay)
have under 60% values for some of their accuracy metrics. Thus, future research on more
wetland types and wetland sites is recommended to improve the model.

The study considers 12 variables based on hyperspatial and multispectral data. The
study shows that DTM-based variables (DTM, sDTM, and hDTM), DSM, and NDVI have
the highest feature importance on pooled data, meaning that they are the most effective
in differentiating wetlands from non-wetlands. However, on individual sites, the most
important variables vary, especially across various wetland types. Furthermore, a study of
intra-class separability is recommended in future work to analyze various wetland types
more.

This study’s methodology can greatly help the National Wetland Inventory in the
United States enforce the Clean Water Act and keep its data updated due to the efficacy
and speed of this method. Additionally, this can lead to advancements in UAS and sensor
technology specifically suited to classifying wetlands.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14236002/s1, Figure S1: XGBM Decision Tree for St James and
Maysville after training on individual sites; Figure S2: Joint plot showing the distributions of DTM
vs NDVI and DSM vs sDTM for every habitat point; Figure S3: ROC Curves for Masonboro High
Tide, StJames, and Topsail after training on LOSO pooled data; Figure S4: XGBM Decision Tree for
Masonboro High Tide, St. James, and Castle Bay after being trained on LOSO pooled data; Figure
S5: A violin plot showing the distribution of DSM and sDTM in Masonboro High Tide as well as
the distribution of hDTM and NDVI in Castle Bay; Figure S6: Accuracy of pooled XGBM model for
different wetland types; Figure S7: ROC Curves for St James, Maysville, and Castle Bay after training
on individual sites with XGBM, as well as AUC scores for each site and model type.
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