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Abstract: White leaf disease (WLD) is an economically significant disease in the sugarcane industry.
This work applied remote sensing techniques based on unmanned aerial vehicles (UAVs) and deep
learning (DL) to detect WLD in sugarcane fields at the Gal-Oya Plantation, Sri Lanka. The established
methodology to detect WLD consists of UAV red, green, and blue (RGB) image acquisition, the
pre-processing of the dataset, labelling, DL model tuning, and prediction. This study evaluated
the performance of the existing DL models such as YOLOv5, YOLOR, DETR, and Faster R-CNN
to recognize WLD in sugarcane crops. The experimental results indicate that the YOLOv5 network
outperformed the other selected models, achieving a precision, recall, mean average precision@0.50
(mAP@0.50), and mean average precision@0.95 (mAP@0.95) metrics of 95%, 92%, 93%, and 79%,
respectively. In contrast, DETR exhibited the weakest detection performance, achieving metrics values
of 77%, 69%, 77%, and 41% for precision, recall, mAP@0.50, and mAP@0.95, respectively. YOLOv5 is
selected as the recommended architecture to detect WLD using the UAV data not only because of its
performance, but this was also determined because of its size (14 MB), which was the smallest one
among the selected models. The proposed methodology provides technical guidelines to researchers
and farmers for conduct the accurate detection and treatment of WLD in the sugarcane fields.

Keywords: convolutional neural networks; machine learning; object detection; precision agriculture;
remote sensing; sugarcane; white leaf disease (WLD)

1. Introduction

Sugarcane (Saccharum officinarum) is one of the most significant economic crops in the
world [1–3]. It is a tropical crop used for sugar extraction, especially in Sri Lanka [4,5].
It may be grown in various soil types, including sand, hard clay, and organic soils [6].
One of the most economically impacting diseases in the sugarcane sector and affecting
sugarcane yields is white leaf disease (WLD) [7]. A phytoplasma causes WLD, and it is
transmitted by leafhoppers [8], and sugarcane crops infected with WLD do not always
exhibit symptoms [8]. Farmers use a variety of agronomic practices for disease management.
However, most of them are based on conventionally monitoring them, which is inaccurate
and time-consuming. Moreover, modern techniques have been slowly adopted to the
crops due to a lack of knowledge and technological resources, a high level of investment,
and unwillingness to adopt the new technologies. Consequently, it may diminish the
sugarcane’s productivity [6].
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The traditional approach to disease diagnosis primarily evaluates the crop health or
type of disease by employing human-based field monitoring and assessments [4,9–14]. This
technique regulates the agricultural output by manually observing the colour, size, and
form of the disease spots on the crop leaves, which has issues such as the need for field
experts, lengthy diagnosis times, and a low work efficiency [15]. In addition, numerous
researchers are striving to improve the WLD diagnosis methods by laboratory-based
testing, particularly the polymerase chain reaction (PCR) test, which is time-consuming
and costly [8]. The methods based on precision agriculture have been recently adopted as
one of the effective applications [16–19] that improve the productivity of the sugarcane as
they offer the quick and simple detection of WLD-affected areas in the sugarcane fields,
enabling the timely control and prevention of propagating the infestation [8].

The use of small unmanned aerial vehicles (UAVs) or drones combined with arti-
ficial intelligence (AI) techniques for object detection from airborne UAV imagery have
been recently established as one of the most effective precision agricultural practices in
crop fields [20–23] in recent years [24–34]. UAVs equipped with various image sensors or
cameras such as red, green, and blue (RGB), multispectral, and hyperspectral ones, have
become alternatives for rapid, accurate, and non-destructive high-throughput phenotyp-
ing [35] which generates high-resolution images, which has great potential in identifying
pests and diseases in agriculture [36–38]. In recent years, remote sensing applications
have increasingly employed deep learning (DL) methods [35,39–44] as they can offer more
effective processing models than traditional image processing algorithms can, and they
appear to hold considerable potential for improved precision [45–47]. Many researchers
are working with different DL models for various agricultural applications, including crop
mapping, the detection of fruits, the identification of pests and diseases, crop counting, and
the identification of weeds. Table 1 illustrates some DL techniques used in agricultural
applications in recent years.

Table 1. Application of DL techniques in precision agriculture.

Location Application DL Technique Literature

Brazil Detection of apple fruits

Adaptive Training Sample Selection (ATSS)
Retina Net, Cascade R-CNN, Faster R-CNN,
Feature Selective Anchor-Free (FSAF), and

High-Resolution Network (HRNet)

[20]

Colombia Weed detection in a lettuce field YOLOV3, Mask R-CNN [48]
China Detection of the survival rate of rape YOLOV5, Faster R-CNN, YOLOv3, and YOLOv4 [49]
Brazil Detection of grape YOLOv2 and YOLOv3 [50]

Florida Detect, count, and geolocate Citrus trees YOLOv3 [35]
China Detection of Pine wilt disease YOLOv3 and Faster R-CNN [51]

China Tomato Leaf Diseases Classification GG16, VGG19, ResNet34, ResNeXt50 (32 × 4 d),
EfficientNet-b7, and MobileNetV2 [52]

China Detection of citrus leaf diseases
CenterNet, YOLOv4, Faster R-CNN, DetectoRS,

Cascade R-CNN, Foveabox and Deformabe
DETR

[53]

China Detection of tomato virus diseases YOLOv5 [54]
China Detection of plant diseases YOLOv5 [15]

Thailand Detection of rice disease LINE Bot System [55]
China Detection strawberry RTSD-Net [56]

Australia real-time fruit detection in apple orchards LedNet [57]
China Fruit detection for strawberry harvesting Mask R-CNN [58]

Australia Estimation of apple flower phenology VGG-16, YOLOv5 [59]
China classify strawberry disease LFC-Net [60]

India Disease detection in rice MobileNet, ResNet 50, ResNet 101, Inception V3,
Xception, and RiceDenseNet [61]

China Plant Disease Recognition YOLOv5 [46]
China Detection of Kiwifruit Defects YOLOv5 [62]
India Detection of maturity stages of coconuts Faster R-CNN [21]
India Rice false smut detection Faster R-CNN [63]
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Most of the recent studies focused on similar agricultural applications have employed
three key DL models: (1) the you only look once (YOLO) ones such as YOLOv5 and YOLOR,
(2) faster region-based convolutional neural networks (R-CNN), and (3) detection trans-
formers (DETR). YOLO is a widespread neural network that can recognize the bounding
boxes of objects from raw image pixels in an image and the probability that they belong
to a particular class in a single step [53,64]. One of the recent versions of YOLO, namely
YOLOv5, is a one-stage object detection detector that accurately detects objects in real time.
Another version of YOLO is YOLOR, a cutting-edge DL technique for object detection that
differs from YOLOv1–YOLOv5 as it is a unified network that encodes implicit and explicit
information [65]. Faster R-CNNs aim to detect objects in any input image by constructing
their bounds. The key benefits of Faster R-CNN models include a very high mean average
precision (mAP), a single-stage training employing multitask loss, and no need for disc
storage for feature caching [53]. The DETR networks are set-based object detectors that
use a transformer on a convolutional backbone [66]. DETR can predict all of the items
concurrently, and they are trained end-to-end with a loss function that matches the expected
and ground truth objects [67].

There have been many studies conducted using existing DL models for different
crops. Nevertheless, there has been little research conducted to improve the productivity
in sugarcane crops using DL [68–73]. Only a few studies were conducted in different
countries to detect WLD in sugarcane crops using classical image processing techniques,
but no studies have been conducted to detect WLD using DL models with UAV imagery
in Sri Lanka. The closest implementation by Narmilan et al. [74] presented a pipeline to
detect WLD using classical machine learning (ML) techniques from multispectral UAV
imagery, highlighting a few limitations in the prediction of the areas with WLD using ML
models. Therefore, this study aims to evaluate the performance of the existing cutting-edge
DL models from the collected airborne UAV imagery in sugarcane crops exposed to WLD.
The four primary objectives of this study were to: (1) detect WLD using YOLOv5, YOLOR,
DETR, and Faster R-CNN models; (2) compare the performance of existing models by
evaluating the predictive accuracy of these models for WLD detection; (3) converge on a
pipeline and DL model that will aid in monitoring and managing WLD by eliminating
the need for conventional techniques for crop assessment and validation; (4) establish the
guidelines for detecting WLD using the DL techniques with UAV imagery for researchers
and farmers.

2. Methodology
2.1. Process Pipeline

Figure 1 depicts the development of a process pipeline with five primary components:
acquisition, pre-processing, labelling, DL architecture, and prediction for detecting WLD.

2.2. Study Area

The study site is located at Gal-Oya Plantation, Hingurana, in the eastern region
of Sri Lanka (7◦16′42.94”N, 81◦42′25.53”E), with an area extent of 0.75 ha. As shown in
Figure 2, approximately 0.4 ha of the studied area was split for data training, 0.15 ha
was used for testing, and 0.2 ha was used for validation. The research site has a tropical
monsoon environment, with the annual precipitation averaging between 1100 and 1600 mm,
and the yearly air temperature averaging between 15 ◦C and 23 ◦C. The experiment was
conducted in October 2021 during the sugarcane growing season. For this experiment,
two-month-old sugarcane plants with an average plant height of 1.2 m were chosen. The
plants infected with WLD were randomly picked following the natural disease incidence
pattern throughout the field. During this experiment, field agronomists confirmed the
following: (1) the irrigation water was applied via the ridges and furrows system without
any water stress (2) the entire site was covered with homogenous sandy to clay loam soils,
and (3) the recommended amount of fertilizer was applied without any fertilizer stress.
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2.3. UAV Image Acquisition

A DJI Phantom 4 (Da-Jiang Innovations (DJI), Shenzhen, Guangdong, China) equipped
with a real-time kinematic (RTK) module was used to capture RGB images using the drone’s
inbuilt CMOS RGB sensor, which has an effective pixel resolution of 2.08 MP. The flight
mission parameters, namely the flight path, speed, height, and overlapping were set to
collect the raw images using the DJI GS Pro software. The UAV flight operation was
conducted during the growing season on a sunny day between 11:00 and 12:00 (Sri Lankan
standard time) in October 2021. The flight height above the ground, velocity, and ground
sample distance were, respectively, 20 m, 1.4 m/s, and 1.1 cm/pixel. As illustrated in
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Figure 1, the front and side overlaps of the pictures on the flight line were of 75% and
65%, respectively. Once the flights were completed, the RGB images were transferred to a
ground control station (laptop) through the plug-and-play SD card of the UAV.

2.4. Ground Truth Data Collection

Agronomists evaluated and identified the plants infected with WLD as the ground
truth before acquiring the UAV imagery [74]. As depicted in Figure 3, the red colour tags
were installed adjacent to the plants with WLD, ensuring no shading nor reflectance could
have impacted the imagery acquisition of the plants, as confirmed by the field specialists.
The infected plants were identified using their appearance of pure white leaves with stunted
growth [75].
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2.5. Image Orthomosaics

At the initial level of image pre-processing, Agisoft Metashape 1.6.6 (Agisoft LLC,
Petersburg, Russia) was used to create RGB orthomosaics for analysis. The image processing
pipeline of Agisoft Metashape consists of three primary processes, namely, alignment, the
2.5D digital elevation model (DEM), and orthomosaic creation. The output orthomosaic
was georeferenced and utilized as a basic layer for many types of maps, as well as for
additional post-processing analysis and vectorization. As illustrated in Figure 2, the above
processes were executed to generate georeferenced RGB orthomosaics for the training,
testing, and validation sites.

2.6. Image Tiles

Each RGB orthomosaic image for training, testing, and validation was sliced into
tiles using ENVI 5.5.1 (Environment for Visualizing Imagery, 2018, L3Harris Geospatial
Solutions Inc., Broomfield, CO, USA). Previous studies using YOLOv5 [76,77] have con-
firmed the optimal results by processing images in the input later with dimensions of
640 × 640 pixels, and these were dimensions that were also applied in this study per tile,
obtaining a total of 110, 40, and 60 tile images for the training, testing, and validation,
respectively. Larger image sizes usually lead to better results with the cost of taking longer
times to process them and using more memory [12]. Most of the time, optimal results can
be obtained with no changes being made to the established DL models or their training
parameters [78–80].



Remote Sens. 2022, 14, 6137 6 of 21

2.7. Image Augmentation

The quantity of available data for training, testing, and validation is crucial to the
success of any technique based on DL. To increase the model’s performance, augmentation
techniques such as random rotation, flip, random blur, and random brightness were used
to generate additional images. Using the Python Augmentor package 0.2.9, the selected
DL models were tuned using a total of 1200 training images, 240 testing images, and
240 validation images. Augmenting the validation dataset is not a typical procedure in DL.
However, some exceptional cases can be applied to the augmentation step for the validation
dataset. The first case is that if the validation and/or test datasets are too small for a model
to evaluate them reliably, it might make sense to use data augmentation [81]. The second
case is that real-world data have more variations with the selected dataset for validation,
so it is possible to check the model’s performance using different augmented validation
images. Some studies have applied these techniques to develop their models in various
sectors [81–85]. In this study, all of the infected crops did not look the same. Therefore,
we applied the augmentation technique to the validation dataset to further validate the
model’s performance.

2.8. Image Labelling

The training and testing image datasets were manually labelled using the LabelImg
1.4.0 (Python based image annotation tool) as shown in Figure 4. The infected plants were
precisely marked with a bounding box, and the annotations were validated by experts
using photointerpretation. Each annotation was stored in text files as metadata using the
YOLO format, which contains key information such as the image titles, target category
names, target category IDs, and target frame locations.
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2.9. Steps in Different DL Models

This experiment compared the performance of four DL object detection models
(YOLOv5, YOLOR, DETR, and Faster R-CNN). The training phase was conducted on
the Google Colab Pro Plus platform, which was equipped with a graphics processing unit
(GPU) [23]. The images and matching labels were inputted into the models, and then, the
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position and category of the prediction box were acquired during the model’s development.
Finally, different performance indicators were used to assess the object detection models.

2.9.1. YOLOv5

After completing the annotation process mentioned in Section 2.8, the dataset was
uploaded to Google Drive and mounted into Google Colab to train a cloned instance of
YOLOv5 from https://github.com/ultralytics/yolov5 (accessed on 6 June 2022). Two
configuration files were created before training the model, namely, the model architecture
and the training configuration. The model architecture file provides information regarding
the number of classes in the dataset, the pre-computed anchors, the backbone and neck
of the model, the structure of layers, the number of layers, and the filters. The training
configuration file specifies the paths for the training and testing datasets, and the number
of classes (one), and the class names (WLD). In step 4, as shown in Figure 5, the training
procedure for YOLOv5 began by executing the training command. Finally, inference was
applied to the tuned model to evaluate the crop plants with WLD that were identified.
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2.9.2. YOLOR

The applied methodology to fit a YOLOR model is almost identical to the one ap-
plied for YOLOv5. The YOLOR model, however, comes with some pre-trained weights.
After uploading the dataset to Google Drive, the YOLOR repository was cloned from
https://github.com/roboflow-ai/yolor (accessed on 22 June 2022) into Google Colab. The
YOLOR pre-trained weights were downloaded, and a configuration was created to set the
number of classes in the dataset before training the model. Finally, training and inferencing
were performed to detect the WLD in the image as shown in Figure 6.
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2.9.3. DETR

In order to train a DETR model, the annotated dataset needed to be converted from
the YOLO formatted label files (.txt) into the COCO format (.json). The DETR repository
was cloned from https://github.com/facebookresearch/detr.git (accessed on 7 July 2022),
and a custom code for DETR was cloned from https://github.com/woctezuma/detr.git

https://github.com/ultralytics/yolov5
https://github.com/roboflow-ai/yolor
https://github.com/facebookresearch/detr.git
https://github.com/woctezuma/detr.git
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(accessed on 7 July 2022) into Google Colab. Similar to the process applied to YOLOR, the
pre-trained weights were loaded, and the first-class index, number of classes, and finetuned
classes were set before tuning the model. Finally, the tuned model was loaded for the
inference of WLD in the sugarcane field as shown in Figure 7.
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2.9.4. Faster R-CNN

The Detectron2 library, a popular PyTorch-based modular computer vision model,
was installed into Google Colab and cloned from https://github.com/facebookresearch/
detectron2 (accessed on 2 August 2022). The dataset with a COCO format was loaded to
train the model. The Detectron2 training configuration and the custom training configura-
tion were created. The model weights, the images per batch, the iterations, the batch size
per image, and the number of classes were tuned to train the model as shown in Figure 8.
Finally, the testing was conducted using the model weights, detectron2.evaluation, and the
threshold level.
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2.10. Evaluation Metrics

The evaluation metrics such as precision, recall, intersection over union (IoU), and
mAP were employed to evaluate the performance of the studied models. As defined
in Equation (1), precision is the mean between the total number of correctly detected
WLD images and the total number of rightly and wrongly detected WLD images. Recall
(Equation (2)) is the average number of correctly identified WLD images relative to the total
number of successfully identified and undetected images. mAP is computed by taking the
mean of the average accuracy (AP) of all of the classes, as shown in Equation (4), where q
is the number of queries, and AveP(q) is the average precision for the query in question.
The mAP is calculated employing IoU. A value between 0 and 1 indicates the amount of
overlap between the expected and ground truth bounding boxes (Equation (3)).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
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IoU =
Area o f Intersection

Area o f Union
(3)

mAP =
Q

∑
q=1

AveP(q)
Q

(4)

3. Results
3.1. Visual Analysis of Evaluation Indicators during Training

In this study, the tensor board visualization toolkit and the Wandb experiment tracking
tool were configured to visualize the training process and dynamically monitor each of the
model’s training performances and operations (i.e., YOLOv5, YOLOR, DETR, and Faster
R-CNN) as shown from Figures 9–12. At the completion of the training step, the DL model
reached convergence, and the optimal model weights were determined.
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In terms of the YOLOv5 training process, as shown in Figure 9, the precision, recall,
and mAP at 50% of IoU threshold (mAP@0.50) and the mAP at 95% of IoU threshold
(mAP@0.95) increased rapidly from epoch 0 to epoch 200, which was followed by a slow
increase from epoch 200 to epoch 600. At epoch 599, YOLOv5 achieved metrics values of
95%, 92%, 93%, and 79% for precision, recall, mAP@0.50, and mAP@0.95, respectively. At
the same time, the loss function value dropped rapidly from epoch 0 to epoch 300, and
then it finally reached a stable value of approximately 0.016.

In the YOLOR training process, as shown in Figure 10, the precision, recall, mAP@0.50,
and mAP@0.95 increased rapidly from epoch 0 to epoch 100. However, the mAP@0.50 did
not improve after reaching epoch 300. mAP@0.95 increased gradually from epoch 300 to
epoch 600. Finally, the model obtained stable metrics values such as 87%, 93%, 90%, and
75% for precision, recall, mAP@0.50, and mAP@0.95, respectively. At the same time, the loss
function value dropped rapidly from epoch 0 to epoch 400, and we obtained the constant
value of 0.008. As depicted in Figure 11, the mAP value of the DETR model experienced a
rapid increase from epoch 0 to epoch 300 until reaching a plateau during the remaining
epochs. The model’s converged metrics were of 77%, 69%, 77%, and 41% for precision,
recall, mAP@0.50, and mAP@0.95, respectively. Similarly, the loss function value dropped
rapidly from epoch 0 to epoch 200 for the training and testing datasets.

Figure 12 illustrates the evolution of metrics of the Faster R-CNN model during train-
ing. From iteration 0 to 2000, the model parameters fluctuated significantly. The model’s
performance was constantly adjusted as the number of model iterations rose from 2000
to 14,000. Eventually, the index became gradually stable, and the class accuracy reached
approximately 97%, and then it stabilized over the course of 14,000–15,000 iterations. In ad-
dition, the value of the loss function decreased throughout the training phase. Considering
the impact of the number of iterations on the model’s stability and performance, the ideal
number of iterations in this investigation was 14,000.

3.2. Comparison of DL Model Performances

The selected DL models for WLD detection were evaluated by comparing the operation
time, final model size, precision, recall, mAP@0.50, and mAP@0.95. A synthesis of the
results is shown in Tables 2 and 3 and in Figure 13. Each trained model was evaluated
against the testing site dataset.

Table 2. Comparison of model performances for different DL models.

Model Precision Recall mAP@0.50 mAP@0.95 Model Size

YOLOv5 95 92 93 79 14 MB
YOLOR 87 93 90 75 281 MB
DETR 77 69 77 41 473 MB

Faster R-CNN 90 76 95 71 158 MB
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Table 3. Training times of selected DL models.

Model Time (Hours: Minutes: Seconds)

YOLOv5 06:02:55
YOLOR 12:10:31
DETR 30:22:47

Faster R-CNN 03:03:21
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Overall, the YOLOv5 model obtained the highest values of precision, mAP@0.50,
and mAP@0.95, of 95%, 93%, and 79%, respectively. However, the highest recall value
of 93% was obtained by YOLOR, which produced 87% precision, 90% mAP@0.50, and
75% mAP@0.95. From all of the models, DETR obtained the weakest detection metrics
of 77%, 69%, 77%, and 41% for precision, recall, mAP@0.50, and mAP@0.95, respectively.
The Faster R-CNN obtained a better overall performance than the DETR model did, but
it had an inferior detection performance than the YOLOv5 and YOLOR models did. A
graphical representation of the performance comparison for different DL models is depicted
in Figure 13.

3.3. Training Duration

As shown in Table 3, the training times of YOLOv5, YOLOR, DETR, and Faster R-CNN
were around 6 h, 12 h, 30 h, and 3 h, respectively. The Faster R-CNN was the fastest trained
model, and DETR was the model that took longer to converge.

3.4. Bounding Box Detection Results from the Different DL Models

The detection of the infected plants with WLD using bounding boxes were evaluated
against the ground truth annotations (Figure 14), and these are shown in Figures 15–18 for
YOLOv5, YOLOR, DETR, and Faster R-CNN, respectively. Based on the evaluation metrics,
the recognition effect of the YOLOv5 network for WLD was better than that of the other
models. Associated with the performance metrics, the DETR model shown poor inference
results in identifying the infected plants.
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3.5. Model Comparison with Previous Work

Narmilan et al. [74] presented an approach for detecting WLD in the same field and
during the same growing season using UAV multispectral imagery and traditional ML
classifiers such as extreme gradient boosting (XGB), random forest (RF), decision tree (DT),
and K-nearest neighbours (KNN). As shown in Table 4, the XGB, RF, and KNN models
achieved detection accuracies that were between 69% and 72% to detect WLD in the field,
which are lower than the performance metrics obtained in this study. In the previous study,
the margin of all of the leaves per infected plant was classified as WLD due to the dead
leaves, which appeared to be WLD symptoms. However, the proposed DL models did not
classify the crops with dead leaves as WLD crops in the sugarcane field.

Table 4. Performance of classical ML models from Narmilan et al. [74] to detect WLD.

XGB RF DT KNN

Precision (%) 72 71 69 71
Recall (%) 72 72 65 67

F1-score (%) 71 71 67 69

4. Discussion

This paper aimed to utilize existing DL models to detect sugarcane plants with WLD
using UAV-derived RGB imagery. The proposed DL model is crucial for sugarcane farmers
and other agronomists or researchers as they can detect the sugarcane WLD and take the
necessary precautions to avoid spreading the disease. This investigation used RGB imagery
because visible light image capture is comparatively straightforward and less expensive
than multispectral and hyperspectral sensor acquisition is. Consequently, this technique
can be broadly implemented by researchers, farmers, and other stakeholders. Other UAV
remote sensing studies used various sensors such as RGB, multispectral, hyperspectral,
and LiDAR ones based on their objectives and applications. RGB cameras are highly suited
for the determination of canopy height and lodging, multispectral cameras are highly
suited for drought stress detection, pathogen detection, the estimation of nutrients, the
determination of growth vigour, and yield prediction, and also, hyperspectral cameras are
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more suitable for the identification of diseases, weed detection, and the assessment of the
nutrient status.

In general, multispectral, and hyperspectral sensors are more suited well to identifying
plant disease characteristics in images of the canopy than RGB cameras are as they give
rich spectral and material composition information. The multispectral and hyperspectral
images provide relevant bands such as near-infra-red (NIR) and red edge ones, which
are most suitable for differentiating healthy and diseased plants. Hyperspectral cameras
have been demonstrated to be capable of characterizing vegetation type, health, and
function. Additionally, many vegetation indices (VI) can be developed through the use of
multispectral and hyperspectral images. However, the current drawback of multispectral
and hyperspectral cameras is that they have a significantly higher cost, leading to reduced
adaptation by farmers in the sugarcane industry. Based on the lower cost, light weight, ease
of use, simplicity of the data processing, and reasonably low specifications for the working
environment of RGB cameras, these were chosen in this study in combination with DL for
WLD detection.

According to the results, YOLOv5 is more effective than the other models are at de-
tecting WLD. Many other researchers also have reached the same conclusion for different
crops for different diseases. For instance, YOLOv5 was used to detect apple leaf diseases
with a mAP@0.50 of 96.04% [85]. Yao et al. [62] used a real-time kiwifruit flaw detection
system based on YOLOv5, and they attained 94.7% mAP@0.50. Using edge computing,
the smart strawberry farming model achieved efficient disease detection with a 92% accu-
racy [86]. Another experiment was conducted by Mathew et al. [87] on disease detection
in bell peppers, applying YOLOv5, and they obtained a mAP@0.50 value of 90.7%. The
apple leaf disease identification method based on improved YOLOv5 was conducted by
Wang et al. [88], and the average precision attained was 83.4%. YOLOv5 provides each
batch of training data via the data loader, and it simultaneously enriches the training
data. However, some of the previous studies achieved lower objection detection accuracy
values. For example, the DL-based rice leaf disease detection experiment with YOLOv5
was performed with 100 epochs, and it has shown the best performance with mAP values
of 62% [89]. Moreover, Yu et al. (2021) [90] conducted a study on the early identification
of pine wilt disease utilizing UAV-based multispectral imagery with YOLOv4, and they
achieved a mAP of 57.07%. Sun et al. (2022) [91] detected the pine wilt nematode from
UAV images using UAV, enhanced MobileNetv2-YOLOv4, Faster R-CNN, YOLOv4, and
SSD, and the findings indicate that the improved MobileNetv2-YOLOv4 method has an
average precision of 86.85%.

Current agricultural practices in sugarcane crops use different versions of YOLO to im-
prove the sugarcane productivity. Paliyam et al. [68] presented a pipeline for obtaining geo-
referenced points of the objects of interest in images taken from vehicles on the road using
YOLOv5 to predict the bounding boxes around sugarcane crops. Murugeswari et al. [69]
also used YOLOv5 and Faster R-CNN to detect the sugarcane eyespot disease. However,
Faster R-CNN proves to be a better and more efficient model for detecting diseases than
YOLOv5 is [69]. Chen et al. (2021) and Zhu et al. (2022) applied YOLOv4 for sugarcane stem
node recognition, and the research shows that it was a feasible method for the real-time
detection of sugarcane stem nodes in a complex natural environment [70,71]. Malik et al.
(2019) applied YOLOv3 for the recognition of different diseases, including helminthospo-
rium leaf spot, red rot, cercospora leaf spot, rust, and yellow leaf disease in sugarcane
crops [72]. In addition to this study, sugarcane red stripe disease detection using YOLO
was conducted by Kumpala et al. (2022) [73].

Next to the YOLOv5, another selected model, YOLOR, also gave good detection results.
However, previous studies on YOLOR and precision agriculture were not found in the
widely used research databases. Even though a few researchers gave applied Faster R-CNN
for plant disease detection, similar results were obtained. For example, Yu et al. (2021) [90]
performed a study on the detection of pine wilt disease using DL models and multispectral
imagery using Faster R-CNN, and they attained a mAP of 60.8%. Cynthia et al. (2019) [92]
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obtained an accuracy of 67.34% using Faster R-CNN to detect the plant disease. However,
few of the previous studies attained a good detection accuracy. For instance, the experiment
on tomato disease recognition used Faster R-CNN, and the result was obtained with
mAP values of 90.87% [93]. Another experiment on sugarcane crops for disease detection
using Faster R-CNN with an android application was performed by Murugeswari et al.
(2022) [69], and the results demonstrate that Faster R-CNN is a more effective algorithm
than YOLOv5 is for detecting diseases, which will aid the farmers in more accurately
predicting the diseases. Meanwhile, the DETR model was given the lowest accuracy for
detecting WLD, but one of the experimental results on tomato leaf disease segmentation
and damage evaluation using DETR reached 96.40% [94].

A comparison between the traditional ML and DL models was evaluated in this
study, and the findings stated that the lower precision and recall values were achieved
in XGB, RF, DT, and KNN to identify WLD. Similar research was performed by Yu et al.
(2021) [90] to examine two DL models (Faster R-CNN and YOLOv4) and two classical ML
strategies based on feature extraction (Support vector machine (SVM) and RF) to identify
the infected pine plants. The accuracy of the conventional ML models ranged from 73.28%
to 79.64%. During this study site, one of the interferences of detecting WLD crops is the
background colour (ground). The farmers applied mulch (old leaves of sugarcane crops) to
the sugarcane field. Therefore, the soil was covered entirely by mulch. Therefore, there is a
chance of misclassifying WLD and the ground (background) because of the same colour of
the WLD crops and the mulch. As a result, it affects the accuracy of the detection, and it
leads to erroneous in the assessments of plant diseases. In a future study, this interference
can be eliminated by removing the ground or background from all of the healthy and WLD
crops by applying a mask using vegetation indices such as excess green (ExG). Additionally,
future research will focus on multispectral and hyperspectral data with DL algorithms to
enhance the detection accuracy.

The proposed methodology can be applied to disease detection in other crops because
previous works (see Table 1) have also used the same proposed YOLO models in different
agricultural applications. However, some challenges limit the applications of YOLO models
in agricultural fields. These challenges include the need for high-resolution RGB images,
them consuming more time for the labelling process, and interferences with the background
or ground. However, the proposed model and methodology have several advantages
in precision agriculture. The benefits include the accurate detection of diseased plants
and their location for timely treatment. However, the economic concern is one of the
critical factors affecting the farmers’ adaptation to this technology, especially in developing
countries. The high initial investment in UAVs and sensors is a major limiting economic
factor in precision agriculture. However, the cost of identifying the disease by a traditional
method, such as a human walking through the field, is higher than the disease detection
method by the UAV technique.

5. Conclusions

Our findings offer a methodology of WLD detection based on UAV imagery and DL
techniques. The WLD detection data using YOLOv5 were superior to those of the other
models (YOLOR, DETR, and Faster R-CNN). YOLOv5 achieved the highest precision,
mAP@0.50 and mAP@0.95 for the detection of WLD. DETR, on the other hand, exhibited a
poor detection performance by reaching the lowest metrics values. The parameter size of
YOLOv5 was the smallest among the selected models. However, Faster R-CNN consumed
the shortest time to train the model among the models, and the DETR model took the
longest time to train the dataset. In this investigation, the YOLOv5 model demonstrated
obvious benefits in terms of its model size, precision, mAP@0.50, and mAP@0.95, which
can be used to detect WLD. Inference performances from the evaluated DL models can be
further enhanced by collecting very high-resolution RGB imagery, training a model with a
large quantity of images, or by using multispectral or hyperspectral images. Additionally,
future studies can be concentrated on integrating DL with UAV which will then make
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judgments independently without the use of human effort. However, the use of UAVs
in the sugarcane industry is still in its infancy, and there is an opportunity for further
growth in terms of both the technologies of UAVs and DL. In summary, the UAV-based DL
techniques are currently the most effective method of detecting WLD in sugarcane crops.
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