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Abstract: PolInSAR is an active remote sensing technique that is widely used for forest canopy height
estimation, with the random volume over ground (RVoG) model being the most classic and effective
forest canopy height inversion approach. However, penetration of microwave energy into the forest
often leads to a downward shift of the canopy phase center, which leads to model underestimation
of the forest canopy height. In addition, in the case of sparse and low forests, the canopy height is
overestimated, owing to the large ground-to-volume amplitude ratio in the RVoG model and severe
temporal decorrelation effects. To solve this problem, in this study, we conducted an experiment on
forest canopy height estimation with the RVoG model using L-band multi-baseline fully polarized
PolInSAR data obtained from the Lope and Pongara test areas of the AfriSAR project. We also
propose various RVoG model error correction methods based on penetration depth by analyzing
the model’s causes of underestimation and overestimation. The results show that: (1) In tall forest
areas, there is a general underestimation of canopy height, and the value of this underestimation
correlates strongly with the penetration depth, whereas in low forest areas, there is an overestimation
of canopy height owing to severe temporal decorrelation; in this instance, overestimation can also
be corrected by the penetration depth. (2) Based on the reference height RH100, we used training
sample iterations to determine the correction thresholds to correct low canopy overestimation and
tall canopy underestimation; by applying these thresholds, the inversion error of the RVoG model can
be improved to some extent. The corrected R2 increased from 0.775 to 0.856, and the RMSE decreased
from 7.748 m to 6.240 m in the Lope test area. (3) The results obtained using the infinite-depth volume
condition p-value as the correction threshold were significantly better than the correction results
for the reference height, with the corrected R2 value increasing from 0.775 to 0.914 and the RMSE
decreasing from 7.748 m to 4.796 m. (4) Because p-values require a true height input, we extended the
application scale of the method by predicting p-values as correction thresholds via machine learning
methods and polarized interference features; accordingly, the corrected R2 increased from 0.775 to
0.845, and the RMSE decreased from 7.748 m to 6.422 m. The same pattern was obtained for the
Pongara test area. Overall, the findings of this study strongly suggest that it is effective and feasible
to use penetration depth to correct for RVoG model errors.

Keywords: forest canopy height; penetration depth; overestimation; underestimation; PolInSAR

1. Introduction

Forest canopy height is one of the most fundamental forest structure parameters and
represents an essential indicator to characterize both forest growth and carbon sink capac-
ity [1,2]. Traditional manual methods to measure forest height are not only laborious and
time-consuming but are also limited to obtaining information from specific plots, making
it difficult to achieve large-scale and long-term observations; in addition, topographic
and climatic limitations can hinder large regional-scale surveys, resulting in gaps in for-
est canopy height monitoring coverage [3,4]. Currently, remote sensing techniques are
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primarily used to measure forest canopy height information at large regional scales, and
commonly applied remote sensing methods include optical, LiDAR, and synthetic aperture
radar remote sensing [5]. Optical remote sensing is less sensitive to the vertical structure of
forests, prone to saturation, and affected by weather. Benefits of LiDAR include that it is
applicable under all weather conditions and can actively describe the 3D vertical structure
information of vegetation. However, the observation scale and time scale of this approach
are limited by the high operational costs and time-consuming nature of aerial LiDAR sur-
veys. In contrast, synthetic aperture radar (SAR) avoids the abovementioned shortcomings
in measuring forest height information over large areas via mechanistic models or empirical
or semi-empirical models, and its observation time scale is relatively large [6].

Polarimetric interferometric SAR (PolInSAR) is an active remote sensing technique
that is widely used for forest canopy height inversion [4,7]. Current forest canopy height
inversion methods based on PolInSAR include the ground phase difference method, the
coherence amplitude method, the combined-phase coherence amplitude inversion method,
and the two-layer random volume over ground (RVoG) scattering model. Among these,
the RVoG three-stage algorithm is the most commonly used and has been successfully
applied to various frequencies, including C-, L-, P-, and even X-band data [8–11], with
various forest types included in [12–14]. This method is based on interferometric com-
plex coherence distribution characteristics, which are used to solve for the ground phase
and construct a lookup table (LUT) to invert the forest height by setting a reasonable
extinction coefficient and forest height threshold [15–17]. However, unbiased estimation of
the ground phase is impossible in RVoG models affected by temporal decorrelation and
variations in topography, vegetation, and baseline, as temporal decorrelation represents an
important factor affecting forest height estimation. Mette et al. [18] found that temporal
decorrelation leads to large errors in inversion results based on a study of three error
sources in vegetation height inversion using the RVoG model. Therefore, to improve the
inversion accuracy, it is necessary to reduce the errors caused by temporal decorrelation.
Lee et al. [19–23] studied temporal decorrelation using L- and P-band SAR data and found
that temporal decorrelation not only reduced the coherence coefficient but also increased
the volatility of the coherence phase in vegetated areas. Papathanassiou and Cloude [17]
proposed the RVoG + VDT and RMoG models; however, these approaches are limited by
an excessive number of model parameters, complex solution processes, and low efficiency,
which reduce their generalization. In addition, the ground-to-volume magnitude ratio
is usually assumed to be zero in the RVoG model; however, this assumption is not fully
valid in practice, especially in areas of low forest cover [20,21]. Lee [22,23] showed that
the temporal decorrelation effect is more severe in low vegetation areas; in these areas,
temporal decorrelation causes increased estimates of the volume coherence phase center
height, leading to overestimation of the low canopy, which is a common problem in forest
height estimation using PolInSAR.

In addition, the height estimation error caused by the penetration effect of microwave
signals in forests is commonly disregarded in forest height inversion by InSAR and PolIn-
SAR. Previous studies have typically assumed that penetration of C- and X-bands into
the forest canopy is minimal; thus, InSAR and PolInSAR heights represent the true forest
canopy surface height [24–26]. However, larger penetrations have also been recorded in X-
and C-bands [27,28]; for example, Kugler et al. [29] found that TanDEM-X data penetrated
up to 12 m in boreal and temperate forests, with significant differences in penetration
depth observed between the growing and defoliation seasons. C-band InSAR data obtained
from microwave remote sensing experiments in Indonesian tropical forests (INDREX 1996)
showed that the one-way extinction coefficient was 0.15–0.3 db/m, with a penetration
depth of 3–7 m, which was much less than the forest height [30]. TOPSAR results show
that the extinction coefficient was around 1 db/m, with a penetration depth of 4 m; for
boreal coniferous forests, the penetration depth is 11–22 m at an extinction coefficient of
0.2–0.4 db/m [15]. For L-band SAR data, stronger penetration can accurately reflect vertical
forest structure information, especially in tropical rainforests. However, large penetration
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depths cause a downward shift of the phase center, resulting in an underestimation of
forest height, an issue that has not been effectively resolved in previous studies. In response
to the forest canopy height estimation errors caused by microwave signal penetration
into the forest, Dall [31] the only theoretical framework published to date to estimate the
penetration depth and height bias of infinitely deep volumes; this represents an extremely
useful resource for correcting errors in the penetration of SAR data, and the theory was
validated by the results reported by Michael Schlund [10].

In summary, the effects of temporal decorrelation and penetration lead to tall canopy
underestimation and low canopy overestimation in the RVoG model of forest canopy height
inversion, representing an important error source in this model. To address these issues,
in this study, we used unmanned aerial vehicle synthetic aperture radar (UAVSAR) data
obtained from the AfirSAR project in 2016 as a basis to analyze the relationship between
microwave penetration depth and low canopy overestimation/tall canopy underestimation
in the RVoG model; we then corrected the forest canopy height estimation error of the
RVoG model using the penetration depth to improve the accuracy of forest height inversion.
The corrected results were validated using the RH100 LiDAR relative height variable. The
purpose of this research is to explore an error correction method for PolInSAR canopy
height estimation to serve global forest parameter estimation for spaceborne LiDAR (GEDI
and ICESat-2) in collaboration with spaceborne PolInSAR (e.g., ALOS-2 and the upcoming
TanDEM-L and BIOMASS satellites and NISAR programs).

2. Materials and Methods
2.1. Study Area and Data

In this study, airborne multibaseline PolInSAR data and LiDAR validation data were
derived from publicly available datasets from the AfriSAR project (see Tables 1 and 2).
In 2016, NASA and the European Space Agency collaborated with the Gabonese Space
Agency on the AfriSAR project; during this mission, NASA’s UAVSAR and airborne LiDAR
sensors acquired L-band multibaseline fully polarized PolInSAR data and full-waveform
LVIS LiDAR datasets, respectively. The UAVSAR dataset is polarization-calibrated, baseline
fine-coregistered, and spectrally filtered to provide a single-look complex [32], and each
track contains SLC data for four polarization channels (i.e., HH, HV, VH, and VV). In this
study, Lope and Pongara, located in the Republic of Gabon on the west coast of Africa,
were selected as the test areas (Figure 1). Lope is mainly characterized by inland tropical
forests, and Pongara comprises mainly mangrove forests. There are eight tracks in the Lope
test area and five in the Pongara test area. The relative height variable, RH100, from LVIS
LiDAR data was used as the true value to evaluate the accuracy of forest canopy height
estimation by the RVoG model [33].

Table 1. Forest conditions.

Test Area Type of Forest
Forest Height Information (m)

Max Height Min Height Average Height

Lope Inland tropical forest 84.28 1.94 36.94
Pongara Mangrove forest 65.11 1.80 20.71

Table 2. Summary of UAVSAR data.

Test Area Number of
Tracks

Vertical Baseline
(m)

Range
Resolution (m)

Azimuth
Resolution (m)

Lope 8 0, 20, 45, 105 3.33 4.8
Pongara 5 0, 20, 40, 60, 80, 100, 120 3.33 4.8
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2.2. RVoG Coherence Scattering Model

Research on PolInSAR forest parameter inversion represents an important branch
of SAR research. With the help of the backscattering model, forest parameters that are
difficult to obtain by other remote sensing means, especially forest vegetation height, can be
obtained. Backscattering model approaches are currently dominated by the RVoG model,
which is the simplest and most effective forest canopy height inversion approach and
has been widely used and confirmed. This model describes the forest scattering process
as a forest volume scattering layer and an impenetrable ground layer, treats the volume
scattering layer as an isotropic homogeneous medium of thickness (hv), and describes the
scattering and absorption losses of electromagnetic waves in this layer via the polarization-
independent average attenuation coefficient (σ) [15,17,34]. The interferometric complex
coherence of the various polarization channels of the primary and secondary images can
be expressed as follows.

γ(ω) = ejϕ0 γv+m(ω)
1+m(ω)

= ejϕ0 [γv + L(ω)(1− γv)]

L(ω) = m(ω)
1+m(ω)

(1)

where m(ω) is the effective ground-to-volume amplitude ratio, and ϕ0 is the ground phase.
m(ω) = ∞ indicates ground scattering, and m(ω) = 0 indicates volume scattering. γv
represents the “pure” volume coherence and can be expressed as Equation (2).

γv =
∫ hv

0 f (z)ejkzzdz∫ hv
0 f (z)dz

= 2σ

cos

(
e

2σhv
cos (θ) −1

) ∫ hv
0 ejkzze

2σz
cos (θ) dz

= p
p1

ep1hv−1
ephv−1

p = 2σ cos(α)
cos(θ−α)

p1 = p + jkz

kz =
2nπ∆θ

λ sin(θ−α)
= 2nπB⊥

λR sin(θ−α)

(2)
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where σ is the average extinction coefficient, hv is the forest height, kz is the vertical effective
wave number, R is the slant distance, B⊥ is the vertical baseline length, and n depends on
the acquisition mode of the radar image [35].

The forest canopy height was inverted using the RVoG three-stage method. According
to this approach, the ground phase (ϕ0) is solved based on the intersection of the coherence
line with the unit circle, the volume scattering complex coherence (γH) is selected with
reference to the ground phase, and an LUT is constructed to invert the forest height. In this
study, we used the kapok open-source package for this calculation [36]. A two-dimensional
LUT was created by setting reasonable values of hv and σ based on the relationship between
γv, hv, and σ in Equation (2), where the forest height (hv) and extinction coefficient (σ)
corresponding to the γv with the shortest distance from γH are identified.

min
hv ,σL = ‖γH − ejϕ0 γv‖ (3)

where γH denotes the complex coherence farthest from the ground phase.

2.3. Baseline Selection Method

Based on forest canopy height inversion theory, the height of ambiguity (HoA) PolIn-
SAR data has an important influence on the final inversion results. HoA reflects the height
change caused by an interference phase change of 2π, with low forests requiring smaller
HoA and taller forests requiring larger HoA; in contrast, multibaseline PolInSAR can ef-
fectively solve this problem. Multibaseline PolInSAR has the advantage of more baseline
combinations within the same observation unit relative to single-baseline data. Among
these combinations, the best baseline needs to be selected to invert the forest height. Based
on the RVoG model, the distribution area of the complex coherence within the complex
plane is approximately elliptical; accordingly, the baseline that best fits the assumptions
of the RVoG model can be determined among several baseline combinations considering
factors such as the coherence separation, coherence magnitude, and coherence region
shape. In previous studies, we compared the differences in forest height inversion accuracy
between baseline selection methods using the RVoG model and found that the results of
baseline selection via the product of average coherence magnitude and separation (PROD)
method were the most satisfactory [22,23,36,37]. In this study, we used the PROD method
to select baselines (Equation (4)), using the product of coherence separation degree and
average coherence amplitude as the judgment criterion; when the product of the coher-
ence separation degree and coherence amplitude corresponding to the baseline reaches its
maximum value, it is more consistent with the RVoG model hypothesis.

PROD = absγH − γL × absγH + γL (4)

where γL denotes the complex coherence near the surface.

2.4. Error Source Analysis of Underestimation and Overestimation in the RVoG Model
2.4.1. Analysis of the Error Sources of Overestimation for Low Canopy

The RVoG model relies on polarized interferometric features to estimate forest canopy
height from PolInSAR data. However, temporal decorrelation effects are not considered
in this model, and the contribution of temporal decorrelation has an important impact on
forest parameter estimation in real situations. Therefore, two distinct temporal decorre-
lation processes can be introduced in the RVoG model: γTV, which denotes the temporal
decorrelation coefficient associated with volume, and γTG, which denotes the temporal
decorrelation coefficient of ground scatter [38,39], as shown in Equation (5):

γ(ω) = ejϕ0
γvγTV + γTGm(ω)

1 + m(ω)
(5)
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According to Equation (5), the total temporal decorrelation depends on the ground-
to–volume magnitude ratio (m(ω)), which defines the relationship between the overall
temporal decorrelation and the ground–volume magnitude ratio. Thus, areas of low
vegetation with low forest depression and a high ground-to-volume magnitude ratio tend
to be severely affected by temporal decorrelation. In contrast, taller vegetation areas with
more forest depression and lower ground–to-volume magnitude ratios tend to experience
less impact from temporal decorrelation. When the temporal baseline is relatively short
(less than one hour), the surface scatterers on the ground surface can be assumed to be
constant, i.e., the dielectric constant does not change, and γTG = 1. Thus, the most common
temporal decorrelation contribution of forests is wind-induced leaf oscillation.

The distribution of the volume coherence (γv-obv) and the ground phase (ϕ0) in the
unit circle are indicated by red dots in Figure 1 when there is no temporal decorrelation.
Considering the effects of temporal decorrelation, volume coherence is more severely
affected by this issue, especially in the case of low forests. With an increase in the temporal
decorrelation factor of volume scattering (γTV), the volume coherence (γv-obv) shifts to
γvγt-obv in the direction of the center of the unit circle [20,21], causing the ground phase
estimated by the RVoG model also to shift (yellow dots in Figure 2), at which point the
ground phase calculated by the RVoG model is expressed by ϕ0-bias. Figure 2 shows that
the volume and ground phases are misestimated as a result of the effects of temporal
decorrelation, which leads to an increase in phase center height of the volume coherence
and ultimately leading to an overestimation of the forest height.
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2.4.2. Analysis of the Error Sources of Underestimation for Tall Canopy

The strong penetration of the L-band accurately reflects the vertical structure informa-
tion of the forest. However, electromagnetic wave signal penetration causes the center of
the complex coherence phase to shift downward, resulting in an underestimation of the
forest canopy height [10,31]. As shown in Figure 3, the penetrating character of SAR data
causes the observed value of the volume coherence (γv-obv) to typically be situated below
the top of the canopy. In contrast, the true phase center of the top of the forest canopy
should be γv-dep. This effect causes the height of the volume phase center to be anoma-
lously low, resulting in an underestimation of the forest height. When the forest is low, the
effect of temporal decorrelation is increased, and the volume coherence becomes γvγt-obv.
Owing to the penetration of SAR data, the true volume coherence phase center should be
γvγt-dep; however, further assessment is required to determine whether underestimation or
overestimation is dominant in this case.
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2.5. Error Correction of the RVoG Model Based on Penetration Depth
2.5.1. Method of Underestimation Correction for Tall Canopy Height

Temporal decorrelation in the RVoG model often leads to overestimation of low veg-
etation; in taller vegetation areas, despite the relatively minimal influence of temporal
decorrelation, the penetration depth of SAR becomes the main source of error. This issue is
especially prominent in the L band, for which deeper penetration often results in underesti-
mation of forest height, a problem that has been consistently difficult to resolve. To date,
no relevant studies have been conducted to explore this issue; accordingly, in this work, we
used penetration depth to correct RVoG model errors to counteract underestimation and
overestimation in the RVoG model.

In taller vegetation areas, penetration depth is the main source of error and can be
used to correct for the resulting underestimation. Equation (6) is the correction formula for
underestimation, where HRVoG is the canopy height estimated by the RVoG model, Hd is
the penetration depth, and HRVoG−cor is the corrected forest canopy height.

HRVoG−cor = HRVoG + Hd (6)

In a study on InSAR penetration depth estimation, Dall [31] proposed the only theo-
retical framework for estimating the penetration depth of infinitely deep volumes, which
is a highly useful approach for directly calculating the penetration depth of SAR data.
This theory proposes that the height deviation (Hd) can be calculated according to the
phase-normalized interferometric phase (∠γ) and the vertical wave number (kz), as shown
in Equation (7).

Hd = ∠γ/kz (7)

where kz is the vertical wave number. Another important interference parameter is the
height of ambiguity (HoA), which represents the height difference between the two inter-
ferometric phase differences [10,31].

HoA =
2π

kz
=

λR sin θ

pB⊥
(8)

where HoA represents the ambiguous height in the air. Considering volume refraction,
HoA can be expressed as:

HoAVol = HoA

√
n2 − sin2 θ

n2 cos θ
(9)
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where n is the refractive index. The complex coherence in an infinitely deep volume can be
expressed as:

γ =
1
2
+

1
2

1− j2πd2/HoAVol
1 + j2πd2/HoAVol

(10)

where d2 is a measure of the two-way penetration depth. According to Dall [31], d2/HoAVol
correlates with the coherence amplitude, and the normalized interference phase (∠γ) can
be derived from Equation (10):

∠γ = −sgn(HoAVol)arctan
(√
|γ|−2 − 1

)
(11)

In our study, the refraction (n) in the volume was assumed to be negligible. Thus, the
height of ambiguity in the air was used to calculate the penetration depth.

Hd = −|HoA|
2π

arctan
(√
|γ|−2 − 1

)
(12)

The above condition applies to infinitely deep volumes; Dall [31] showed that when
the ratio of canopy height to penetration depth (CH/Hd) is greater than 2–5, the forest can
be considered as an infinitely deep volume. In this study, we denoted this ratio as P; if the
infinity condition is not met, i.e., P is less than 2, then the analysis may be biased.

P = RH100/Hd (13)

2.5.2. Method of Overestimation Correction for Low Canopy Height

There are two sources of error when the forest is low; the first is overestimation caused
by temporal decorrelation, and the second is underestimation caused by penetration. These
effects appear to cancel out; however, when the overestimation resulting from temporal
decorrelation is greater than or equal to the penetration depth error, the overestimation can
be compensated for by subtracting the penetration.

HRVoG−corr = HRVoG − Hd (14)

2.5.3. Simulation Experiments

To illustrate the relationship between forest canopy height and penetration depth
in the RVoG model inversion, assume that in a scene, the corresponding incidence angle
is Inc = 0.30 rad, the vertical effective wave number is kz = 0.12, the ground phase is
ϕ0 = 0 rad, the extinction coefficient us σ = 0.0001, and the phase center height of the volume
coherence is hv = 15 m. According to RVoG model Equation (2), the volume coherence is
γv-obv = 0.87+0.29i, and the penetration depth is Hd = 4.40 m according to Equation (11),
corresponding to a real forest height of Hcor = 19.40 m according to Equation (6).

To simulate the variation law of forest height estimation error, variations in penetration
depth caused by changes in volume coherence and ground phase under various temporal
decorrelation conditions can be considered. Based on the above conditions, we assumed
that the volume coherence (γv-obv) changes from γv-obv to γv-obv’ and that the ground phase
gradually changes from ϕ0 to ϕ0

′ as a result of temporal decorrelation, as shown in Figure 4.
The following RVoG model and penetration depth model were used to calculate the forest
height error (Equation (14)) and penetration depth variation caused by the abovementioned
variation processes, as shown in Figure 5a. We simulated the variation law of the infinite-
depth volume condition P (Equation (15)) under different conditions, as shown in Figure 5b.

Error = HRVoG − hreal (15)

P = hreal/Hd (16)
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The simulation results illustrate that when the temporal decorrelation effect is small,
the height predicted by the RVoG model is lower than the true forest height (Figure 5a), and
the underestimation error is approximately equal to the penetration depth; in this scenario,
the penetration depth can be used to correct for underestimation. However, as the effect
of temporal decorrelation gradually increases, the forest height error gradually changes
from underestimation to overestimation. When the overestimated error value is greater
than or equal to the penetration depth, the overestimation error can be corrected by the
penetration depth. Secondly, as shown by the variation pattern of p-values (Figure 5b),
when the decorrelation effect is small, p-values are greater than 3 (consistent with the
infinitely deep volume scenario), and the forest height is underestimated—a finding that
is consistent with the theoretical hypothesis of Dall [31]. Our results also indicate that
when the forest height is overestimated, P is less than 3. The errors of underestimation and
overestimation relative to penetration depth are shown schematically in Figure 6.

2.6. Determination of Correction Thresholds

The material above describes how to correct the underestimation of tall canopy and
overestimation of low canopy in RVoG model inversion results using penetration depth;
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however, identification of overestimation or underestimation is key to the height correction
step. Here, we propose two schemes to determine the threshold value of the correction interval.
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2.6.1. Correction Threshold Determination Based on Reference Height (RH100)

The results reported by Lee [19–23] show that temporal decorrelation has a greater
effect on low forests, whereas forest height estimation errors in tall vegetation areas (i.e.,
infinitely deep volumes) are mainly underestimated, owing to the effect of microwave
penetration [31]. We propose correcting for these two errors using the penetration depth;
however, both underestimation and overestimation correction of forest height require a
specific threshold to determine the correction interval. Accordingly, in this study, we used
LiDAR canopy height (RH100) as a reference to determine the correction threshold using
an iterative approach. For underestimation correction of tall forests, the threshold was set
at 2 m intervals, and the correction result was calculated once for each height threshold
value, i.e., the RVoG model inversion height plus the penetration depth, where RH100
is greater than the height threshold. For instances, where RH100 is less than the height
threshold, the RVoG model inversion result remains unchanged. Each iteration returns
a set of R2 and RMSE values between the corrected RVoG model inversion height and
RH100. The method of determining the correction threshold for low forest overestimation
the same as that described above; the penetration depth is subtracted from the RVoG model
inversion height when RH100 is below the height threshold, the RVoG model inversion
result is unchanged when RH100 is greater than the height threshold, and the coefficient of
determination (R2) and root mean square error (RMSE) values are calculated between the
inversion height and RH100 after each correction. Two threshold values (Hh and Hl) are
thus obtained.

2.6.2. Correction Threshold Determination Based on p-Value

Dall [31] showed that the height bias of InSAR/PolInSAR in an infinitely deep vol-
ume (p > 2–5) can be corrected by the penetration depth. This finding was verified in
our simulation experiments. However, another conclusion drawn from the simulation
experiments in this study is that when p < 3, the forest height is underestimated; in addition,
overestimation error can be mitigated using penetration depth. This conclusion provides an
important basis for determining forest height underestimation and overestimation. In this
scheme, the p-value is used as a reference to iteratively determine the correction threshold
for underestimation and overestimation. For underestimation correction of higher forests,
the threshold value was set at 0.2 intervals, and each threshold value was corrected once,
i.e., when P is greater than the height threshold, the penetration depth is added to the RVoG
model inversion height, and when P is less than the height threshold, the RVoG model
inversion results remain unchanged; each iteration returns a set of R2 and RMSE between
the corrected RVoG model inversion height and RH100. The method of determining the
correction threshold for overestimation is analogous. When P is less than the height thresh-
old, the penetration depth is subtracted from the RVoG model inversion height; when P
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is greater than the height threshold, the RVoG model inversion result is unchanged; and
the R2 and RMSE values between the corrected inversion height and RH100 are calculated.
Two threshold values (Ph and Pl) are thus obtained. The workflow of this study is shown
in Figure 7.
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2.7. Model Evaluation Indicators

The model results were evaluated using the R2, RMSE, and bias (BIAS) indicators.

R2 = 1− ∑n
i=1 (Hi − Ĥi)

2

∑n
i=1 (Hi − H)

2 (17)

RMSE =

√√√√∑n
i=1 (Hi −

_
Hi)

2

n
(18)

BIAS =
Hi −

_
Hi

n
(19)

where Hi is the LiDAR canopy height, Hi is the mean canopy height according to PolInSAR,
and Ĥi is the PolInSAR inversion canopy height value.

3. Results

We selected 6357 samples in the Lope test area and divided them into training and test
sample datasets (train = 4239, test = 2118). Pongara test area had 4602 samples (train = 3068,
test = 1534). The training samples were used to iteratively determine the correction thresh-
old and fit the machine learning model. The validation samples were used to verify the
corrected thresholds and the machine learning model.

3.1. Error Correction Based on Reference Height (RH100)

The inversion results from the RVoG model show that both underestimation of tall
canopy and overestimation of low canopy occurred in the Lope and Pongara experimental
areas. The underestimation of tall canopy areas is pronounced in the Lope experimental area
when the forest height exceeds 40 m, and low canopy overestimation is prominent when
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the forest height is less than 30 m. The Pongara test area is associated with a more obvious
overestimation of low canopy areas and a relatively minimal underestimation of tall canopy.
This result is consistent with our previous theoretical hypothesis that overestimation is
more severely affected by temporal decorrelation in low vegetation areas and that SAR
penetration causes underestimation in tall vegetation areas (Figure 8). Accordingly, the
LiDAR-derived reference height (RH100) was used to determine the correction thresholds
for underestimation and overestimation.
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The iterative results for the correction thresholds for the Lope test area are shown
in Table 3. To correct tall canopy underestimation, when the height threshold exceeds
42 m, the accuracy of the corrected value is higher than that before the correction, with the
highest accuracy achieved at a height threshold of 46 m, corresponding to an R2 value of
0.817 and an RMSE of 6.995 m. The low canopy overestimation was improved when the
height threshold was in the range of 4–38 m, with the best results achieved for a height
threshold of 30 m, corresponding to an R2 value of 0.813 and an RMSE of 7.056 m.

In the Pongara test area, when correcting for underestimation of tall canopy, the results
were improved when the height threshold was greater than 50 m. The R2 values of the
corrected results were all higher than those of the precorrection results, and the RMSE
values were all lower than those of the precorrection results; however, the differences were
marginal because the underestimation of tall canopy was relatively less pronounced in this
study area. The highest accuracy was achieved when the height threshold was set at 54 m,
corresponding to an R2 value of 0.744 and an RMSE of 7.743 m. When correcting for low
canopy overestimation, when the height threshold was in the range of 8–46 m, the accuracy
of the results improved; the highest accuracy was achieved for a height threshold of 34 m,
with an R2 value of 0.854 and an RMSE of 5.839.

After determining the thresholds for various correction schemes, independent samples
were used to validate the thresholds. The results of this analysis show that the R2 value
increased from 0.775 to 0.814, and the RMSE decreased from 7.748 m to 7.031 m in the
Lope test area after correcting for low canopy overestimation with RH100 < 30 m as
the threshold (Figure 9b), with a significant improvement in low-value overestimation
exhibited by the scatter plot. After tall canopy correction with RH100 > 46 m to correct
for underestimation (Figure 9c), the R2 value increased from 0.775 to 0.816, and the RMSE
decreased from 7.748 m to 7.005 m. The best results were achieved with simultaneous
correction of overestimation and underestimation (i.e., RH100 < 30 m and RH100 > 42 m;
Figure 9c). In this scenario, the R2 value increased from 0.775 to 0.856, and the RMSE
decreased from 7.748 m to 6.204 m, with significant improvements in both underestimation
and overestimation (Figure 9d). In the Pongara test area, correction for overestimation
of low canopy with RH100 < 34 m (Figure 9f) led to an increase in R2 from 0.752 to
0.850 and a decrease in RMSE from 7.628 m to 5.931 m, with a significant improvement
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in low canopy overestimation exhibited in the scatter plot. Similarly, for tall canopy
underestimation correction with RH100 > 54 m (Figure 9g), the R2 value increased from
0.752 to 0.755, and the RMSE decreased from 7.628 m to 7.570 m. The best results were
achieved when correcting for both overestimation and underestimation (i.e., RH100 < 34 m
and RH100 > 54 m; Figure 9f), with R2 increasing from 0.752 to 0.854 and RMSE decreasing
from 7.628 m to 5.856 m, with significant improvements in terms of both underestimation
and overestimation (Figure 9h). The results for both study areas demonstrate that it is
effective to use the true forest height as a reference height threshold to correct inversion bias
in the RVoG model; however, the scatter plots show that some samples were overcorrected
in both study areas. The key limitation of this RVoG inversion bias correction method is its
requirement of a true height reference; thus, the extrapolation scalability of this method
is limited. Furthermore, the optimum correction thresholds for the two study areas differ,
likely primarily owing to varying temporal decorrelation of SAR data, spatial baseline size,
and inconsistent forest structure in the two experimental areas.

Table 3. Iteration results based on reference height.

Lope Pongara

Underestimation
RH100 > Hi
HRVoG+Hd

Overestimation
RH100 ≤ Hi
HRVoG−Hd

Underestimation
RH100 > Hi
HRVoG+Hd

Overestimation
RH100 ≤ Hi
HRVoG−Hd

Hi (m) RMSE (m) R2 RMSE (m) R2 Hi (m) RMSE (m) R2 RMSE (m) R2

0.000 11.763 0.481 7.777 0.773 0.000 17.519 −0.310 7.789 0.741
2.000 11.763 0.481 7.777 0.773 2.000 17.519 −0.310 7.789 0.741
4.000 11.632 0.493 7.658 0.780 4.000 17.482 −0.304 7.749 0.744
6.000 11.465 0.507 7.511 0.788 6.000 17.406 −0.293 7.681 0.748
8.000 11.330 0.519 7.399 0.795 8.000 17.321 −0.280 7.602 0.753

10.000 11.207 0.529 7.299 0.800 10.000 17.248 −0.270 7.552 0.757
12.000 11.131 0.535 7.247 0.803 12.000 17.184 −0.260 7.501 0.760
14.000 11.081 0.540 7.216 0.805 14.000 17.091 −0.247 7.422 0.765
16.000 11.032 0.544 7.193 0.806 16.000 16.969 −0.229 7.303 0.772
18.000 10.953 0.550 7.151 0.808 18.000 16.852 −0.212 7.212 0.778
20.000 10.879 0.556 7.123 0.810 20.000 16.731 −0.195 7.102 0.785
22.000 10.814 0.561 7.107 0.811 22.000 16.576 −0.173 6.977 0.792
24.000 10.737 0.568 7.088 0.812 24.000 16.408 −0.149 6.878 0.798
26.000 10.659 0.574 7.077 0.812 26.000 16.130 −0.110 6.695 0.809
28.000 10.564 0.582 7.063 0.813 28.000 15.763 −0.061 6.481 0.821
30.000 10.378 0.596 7.056 0.813 30.000 15.338 −0.004 6.289 0.831
32.000 10.121 0.616 7.066 0.813 32.000 14.522 0.100 5.986 0.847
34.000 9.824 0.638 7.114 0.810 34.000 13.709 0.198 5.839 0.854
36.000 9.427 0.667 7.239 0.804 36.000 12.866 0.293 5.909 0.851
38.000 8.957 0.699 7.590 0.784 38.000 11.912 0.394 6.061 0.843
40.000 8.380 0.737 8.255 0.744 40.000 10.841 0.498 6.386 0.826
42.000 7.691 0.778 9.332 0.673 42.000 9.991 0.574 6.746 0.806
44.000 7.121 0.810 10.669 0.573 44.000 9.181 0.640 7.203 0.779
46.000 6.995 0.817 11.873 0.471 46.000 8.613 0.683 7.613 0.753
48.000 7.225 0.804 13.009 0.365 48.000 8.236 0.710 8.049 0.723
50.000 7.420 0.794 13.625 0.304 50.000 7.843 0.737 8.495 0.692
52.000 7.562 0.786 13.954 0.270 52.000 7.760 0.743 8.910 0.661
54.000 7.667 0.780 14.118 0.253 54.000 7.743 0.744 9.102 0.646
56.000 7.729 0.776 14.196 0.244 56.000 7.748 0.744 9.265 0.634
58.000 7.763 0.774 14.233 0.240 58.000 7.773 0.742 9.339 0.628
60.000 7.777 0.773 14.252 0.238 60.000 7.789 0.741 9.385 0.624
62.000 7.777 0.773 14.252 0.238 62.000 7.789 0.741 9.385 0.624
64.000 7.777 0.773 14.252 0.238 64.000 7.789 0.741 9.385 0.624
66.000 7.777 0.773 14.252 0.238 66.000 7.789 0.741 9.385 0.624
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3.2. Error Correction Based on the p-Value

Previous theoretical models and experimental simulations suggest that the penetration
depth is approximately equal to the underestimation error when the infinite-depth volume
determination condition (P) is greater than 3, which is consistent with the conclusion of
Dall’s [31] study. In addition, our experimental results suggest that when P is less than 3, the
overestimation error can be improved using the penetration depth. The scatter plot of the
error distribution also shows that in the Lope experimental area (Figure 10b), the correlation
coefficient (R) between the p-value and the RVoG model inversion error is 0.863. With
increasing p-value, the error gradually changes from negative to positive, with increased
underestimation of tall canopy samples. This observation is consistent with the performance
pattern shown in Figure 9a, as the forest height distribution in the Lope experimental area
shows a polarization phenomenon, i.e., tall and low vegetation types are more common,
whereas medium-height vegetation types are less abundant. The correlation coefficient
between the p-value and inversion error was 0.719 in the Pongara test area, and the error
gradually changed from negative to positive with increasing p-value. This observation is
consistent with the results in the Lope test area. However, the overestimation of the low
canopy was more obvious in the Pongara test area, as shown in Figure 10d. There was
more low vegetation in the Pongara test area. In addition, based on the variation patterns
of the p-value, the linearity pattern of both experimental areas was improved when the
p-value was greater than 3. Such a pattern is also consistent with our previous experimental
hypothesis that when the p-value exceeds 3, the infinite-depth volume condition is valid; in
this case, the penetration depth is the main source of error. When the p-value is less than 3,
both temporal decorrelation and penetration error occur.
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As the p-value is a reliable indicator of both overestimation and underestimation,
the corresponding correction thresholds are determined by the p-value. The data from
the Lope test area show that the results for the correction of tall canopy underestimation
are improved relative to the precorrection results when P is in the range of 3.6–8.0. The
highest accuracy was obtained when P was 3.8, corresponding to an R2 value of 0.865 and
an RMSE of 5.996 m. In the low canopy overestimation correction results, when P was in
the interval of 0.6–3, the corrected results were all improved relative to the precorrection
results. The highest accuracy was achieved with a p-value of 2.6, corresponding to an R2

value of 0.823 and an RMSE of 6.877 m (see Table 4).
In the Pongara test area, the corrected results for underestimation of the tall canopy

were improved relative to the precorrection results when P was in the interval of 3.6–4.4.
The best results were obtained for tall canopy underestimation correction with a p-value
of 3.8, corresponding to an R2 value of 0.758 and an RMSE of 7.531 m. In the corrected
results for low canopy overestimation, the corrected results were improved relative to the
precorrection results when P was in the interval of 1.2–3.2; in this scenario, a p-value of
2.4 corresponded to the highest accuracy, with an R2 value of 0.880 and an RMSE of 5.308 m.

After the correction thresholds for the various compensation schemes were determined
in the previous step, independent samples were used to validate the results after correction
for the thresholds. The results for the Lope test area show that the R2 value increased
from 0.775 to 0.824, and the RMSE decreased from 7.748 m to 6.851 m after correcting
for overestimation of the low canopy at p < 2.6, with a significant improvement in low
canopy overestimation reflected by the corresponding scatter plot (Figure 11a). When
correcting for tall canopy underestimation for p > 3.8 (Figure 11b), the R2 value increased
from 0.775 to 0.865, and the RMSE decreased from 7.748 m to 6.004 m, with a similar
significant improvement reflected by the tall canopy underestimation in the scatter plot.
The best results were obtained by correcting for both factors with thresholds of p < 2.6 and
p > 3.8 (Figure 11c), with the R2 value increasing from 0.775 to 0.914 and RMSE decreasing
from 7.748 m to 4.796 m; in addition, significant improvements in both underestimation
and overestimation were achieved, as shown in the scatter plot. In the Pongara test area, the
accuracy improved significantly when correcting for low canopy overestimation at p < 2.4
(Figure 11d), with the R2 value increasing from 0.752 to 0.877 and the RMSE decreasing
from 7.628 m to 5.357 m. A significant improvement in the overestimation of the low canopy
is illustrated in the scatter plot. At p > 3.8, when correcting for tall canopy underestimation
(Figure 11e), the R2 value increased from 0.752 to 0.770, and the RMSE decreased from
7.628 m to 7.340 m. The highest accuracy was achieved when a correction for p < 2.4
and p > 3.8 (Figure 11f) was applied; in this case, the R2 value increased from 0.752 to
0.896, and the RMSE decreased from 7.628 m to 4.939 m, with both underestimation and
overestimation significantly improved.

The results of our study demonstrate that the p-value can be effectively used as a
threshold to correct the inversion error of the RVoG model. The corrected results are
markedly different from the original inversion results, and the results achieved using the
p-value as the correction threshold are significantly better than those obtained using the
reference height as the correction threshold. Results from the test and validation samples
show the same pattern, with relatively few overcorrected samples and increased overall
accuracy under p-value correction. However, there are still a few sample points that are
uncorrected for errors, as noted above; the decorrelation, ground-to-volume magnitude
ratio, baseline, and vegetation conditions may influence this aspect.
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Table 4. Iteration results based on p-values.

Lope Pongara

Underestimation
P > Pi

HRVoG+Hd

Overestimation
P ≤ Pi

HRVoG−Hd

Underestimation
P > Pi

HRVoG+Hd

Overestimation
P ≤ Pi

HRVoG−Hd

Pi RMSE (m) R2 RMSE (m) R2 P RMSE (m) R2 RMSE (m) R2

0.000 11.763 0.481 7.777 0.773 0.000 17.519 −0.310 7.789 0.741
0.200 11.763 0.481 7.777 0.773 0.200 17.519 −0.310 7.789 0.741
0.400 11.763 0.481 7.777 0.773 0.400 17.519 −0.310 7.789 0.741
0.600 11.726 0.484 7.741 0.775 0.600 17.516 −0.309 7.785 0.741
0.800 11.670 0.489 7.683 0.779 0.800 17.477 −0.304 7.733 0.745
1.000 11.584 0.497 7.600 0.783 1.000 17.440 −0.298 7.684 0.748
1.200 11.465 0.507 7.491 0.790 1.200 17.313 −0.279 7.541 0.757
1.400 11.320 0.520 7.365 0.797 1.400 17.091 −0.247 7.305 0.772
1.600 11.191 0.530 7.260 0.802 1.600 16.767 −0.200 6.991 0.791
1.800 11.097 0.538 7.191 0.806 1.800 16.258 −0.128 6.627 0.813
2.000 10.979 0.548 7.123 0.810 2.000 15.463 −0.020 6.134 0.839
2.200 10.736 0.568 7.010 0.816 2.200 14.381 0.117 5.631 0.865
2.400 10.442 0.591 6.914 0.821 2.400 13.024 0.276 5.308 0.880
2.600 9.955 0.628 6.877 0.823 2.600 11.718 0.414 5.339 0.878
2.800 9.305 0.675 7.040 0.814 2.800 10.042 0.570 5.750 0.859
3.000 8.423 0.734 7.438 0.793 3.000 8.852 0.666 6.504 0.819
3.200 7.481 0.790 8.116 0.753 3.200 8.048 0.724 7.306 0.772
3.400 6.623 0.836 9.152 0.686 3.400 7.693 0.747 7.838 0.738
3.600 6.126 0.859 10.268 0.605 3.600 7.562 0.756 8.302 0.706
3.800 5.996 0.865 11.257 0.525 3.800 7.531 0.758 8.598 0.684
4.000 6.128 0.859 12.031 0.457 4.000 7.539 0.757 8.842 0.666
4.200 6.378 0.847 12.603 0.404 4.200 7.572 0.755 8.983 0.656
4.400 6.625 0.835 13.011 0.365 4.400 7.598 0.754 9.064 0.649
4.600 6.837 0.825 13.306 0.336 4.600 7.638 0.751 9.156 0.642
4.800 7.055 0.813 13.572 0.309 4.800 7.653 0.750 9.185 0.640
5.000 7.188 0.806 13.730 0.293 5.000 7.675 0.749 9.225 0.637
5.200 7.304 0.800 13.854 0.280 5.200 7.695 0.747 9.257 0.634
5.400 7.403 0.794 13.947 0.271 5.400 7.724 0.745 9.298 0.631
5.600 7.489 0.790 14.023 0.263 5.600 7.743 0.744 9.326 0.629
5.800 7.541 0.787 14.069 0.258 5.800 7.757 0.743 9.346 0.627
6.000 7.575 0.785 14.099 0.255 6.000 7.763 0.743 9.353 0.627
6.200 7.602 0.783 14.121 0.252 6.200 7.776 0.742 9.369 0.625
6.400 7.633 0.782 14.145 0.250 6.400 7.783 0.741 9.377 0.625
6.600 7.658 0.780 14.164 0.248 6.600 7.783 0.741 9.377 0.625
6.800 7.685 0.779 14.185 0.246 6.800 7.789 0.741 9.385 0.624
7.000 7.718 0.777 14.210 0.243 7.000 7.789 0.741 9.385 0.624
7.200 7.727 0.776 14.217 0.242 7.200 7.789 0.741 9.385 0.624
7.400 7.727 0.776 14.217 0.242 7.400 7.789 0.741 9.385 0.624
7.600 7.735 0.776 14.223 0.242 7.600 7.789 0.741 9.385 0.624
7.800 7.754 0.775 14.236 0.240 7.800 7.789 0.741 9.385 0.624
8.000 7.765 0.774 14.243 0.239 8.000 7.789 0.741 9.385 0.624
8.200 7.773 0.773 14.249 0.239
8.400 7.777 0.773 14.252 0.238
8.600 7.777 0.773 14.252 0.238
8.800 7.777 0.773 14.252 0.238
9.000 7.777 0.773 14.252 0.238
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3.3. p-Value Prediction Based on Machine Learning

According to the above results, using the p-value as the correction threshold to improve
the RVoG model’s inversion error yields improved results. However, calculating P typically
requires the true forest canopy height as an input, which is not suitable as a solution at large,
regional scales. Therefore, we propose a machine learning approach to invert p-values,
allowing valid p-values to be obtained without actual tree height measurements; on this
basis, error correction of the forest canopy height estimated by the RVoG model can be
achieved. The p-value inversion was performed as follows. RH100 was used as the training
sample, and parameters derived from the RVoG three-stage method, i.e., penetration depth,
polarization interference information, and orbit information, were used as independent
variables (Table 5, Figure 12). A random forest regression model [40–42] was used to invert
p values.



Remote Sens. 2022, 14, 6145 19 of 27

Table 5. List of independent variables used in machine learning methods.

Variable Type Name Description Expressions

Geometric
parameters

Cos θ Incident angle cosine None
Sin θ Incident angle sine None
Inc Incident angle None
Kz Vertical wave number /

HoA Height of ambiguity Hoa = 2π/kz

Penetration depth Hd Penetration depth /

Coherence phase
center height and

coherence
separation

PDHsep High-coherence
separation phhsep = abs

(
γpdh − γϕ0

)
PDLsep Low-coherence

separation phhsep = abs
(

γpdl − γϕ0

)
PDHmab High-coherence

magnitude PDHmab = abs
(

γpdh

)
PDLmab Low-coherence

amplitude PDLmab = abs
(

γpdl

)
PDHarg High-coherence

phases PDHarg = arg
(

γpdh

)
PDLarg Low-coherence

phases PDLarg = arg
(

γpdl

)
Phi Ground phase /

Phimab Surface coherence
amplitude Phimab = abs

(
γϕ0
)

HeightPDH High-coherence
phase center height

HeightPDH =

arg
(

γpdh

)
exp−iϕ0 /kz

HeightPDL Low-coherence phase
center height

HeightPDL =

arg
(

γpdl

)
exp−iϕ0 /kz

Baseline selection
parameters

Sep Coherence separation SEP = abs
(

γpdh − γpdl

)
Mab Coherence amplitude mag = abs

(
γpdh + γpdl

)
Cit

Product of coherence
separation and

coherence amplitude

cit = abs
(

γpdh − γpdl

)
×

abs
(

γpdh + γpdl

)
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variable pairs for the (a) Lope and (b) Pongara test areas.

To ensure consistency with the sample data in reported in the above sections, 4239 and
3068 samples were used model training in the Lope and Pongara regions, respectively; the
scatter of the independent validation samples is shown in Figure 13. During construction
of the random forest model, the model parameters were optimized twice, first using a
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random iterative method to obtain the local optimal parameters, followed by a grid-search
function to determine the global optimal parameters, thus avoiding model overfitting or
underfitting. In the Lope test area, the R2 of the model validation result was 0.732, and the
RMSE was 0.593; in the Pongara test area, the R2 of the validation result was 0.568, and
the RMSE was 0.486. Despite some differences between the inversion results of the two
test areas, our analysis suggests that this mainly arose as a result of differences in forest
height between the two study areas, decorrelation of the SAR data, the baseline size, and
other uncertainties. In the following sections, the p-value from the random forest model
inversion is used as a threshold to correct the inversion error of the RVoG model.
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Figure 13. Scatter plots showing the validation results of p-values as correction thresholds for the
(a) Lope and (b) Pongara test areas.

3.4. Error Correction Based on PRF

The threshold value determined above was combined with the machine learning-
predicted p-value (PRF) in this scheme to correct the RVoG model error. In the Lope test
area, the inversion accuracy after correcting for low canopy overestimation when PRF < 2.6
was improved relative to the initial RVoG model inversion results (Figure 14a,b). The R2

value increased from 0.775 to 0.801, the RMSE decreased from 7.748 m to 7.283 m, and
low canopy overestimation was partially corrected, as shown in the scatter plot. Some
improvement was also achieved when PRF > 3.8 (Figure 14c); using the penetration depth
correction for tall canopy underestimation correction, the R2 value increased from 0.775 to
0.819, the RMSE decreased from 7.748 m to 6.945 m, and the scatter plot demonstrates that
tall canopy underestimation was corrected to some extent. Overall, the highest inversion
accuracy was obtained when PRF < 2.6 and PRF > 3.8 were corrected (Figure 14d); in this
case, the R2 value was 0.845, and the RMSE was 6.422 m, with both underestimation and
overestimation corrected to some extent. In the Pongara test area, the accuracy of the
inversion corrected for low canopy overestimation at PRF < 2.4 was also improved relative
to that of the initial inversion result of the RVoG model (Figure 14e,f), with the R2 value
increasing from 0.752 to 0.770, the RMSE decreasing from 7.628 m to 7.337 m, and low
canopy overestimation corrected to some extent. Similarly, the accuracy of the inversion
corrected for tall canopy underestimation at PRF > 3.8 was improved relative to that of the
inversion result of the RVoG model (Figure 14g). The R2 increased from 0.752 to 0.761, and
the RMSE decreased from 7.628 m to 7.481 m, with tall canopy underestimation corrected
to some extent, as shown in the scatter plot. The highest inversion accuracy was recorded
when correcting for both PRF < 2.4 and PRF > 3.8 (Figure 14h), with an R2 value of 0.780 and
an RMSE of 7.184 m, with partial correction of both underestimation and overestimation
achieved. Therefore, we predicted the p-value of the whole experimental area using the
random forest model and corrected the forest canopy height of the whole study area based
on PRF, as shown in Figure 15.
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Figure 14. Scatter plots showing the validation of results with PRF as a threshold correction in the 
Lope test area (b–d) and the Pongara test area (f–h). (a,e) are the results of the RVoG model before 
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Figure 14. Scatter plots showing the validation of results with PRF as a threshold correction in the
Lope test area (b–d) and the Pongara test area (f–h). (a,e) are the results of the RVoG model before
correction for the Lope and Pongara test areas, respectively.
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Figure 15. Correction results based on PRF in the lope test area (a) and the Pongara test area (b). 
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Figure 15. Correction results based on PRF in the lope test area (a) and the Pongara test area (b).

The patterns in these results are consistent with those in the results reported in the
previous section, indicating that the use of a machine learning approach to invert the p-value
as a correction threshold is an effective method to improve the accuracy of the inversion
results of the RVoG model. The results for the Lope test area were improved significantly,
whereas the results for the Pongara test area improved but to a lesser extent, primarily
owing to the precision of the p-value; an error in the p-value predicted by the machine
learning method leads to overcorrection or undercorrection. This scenario is most obvious
in the Pongara test area, owing to the relatively large error in p-values in this test area.

4. Discussion

The RVoG model is the most effective forest height inversion model. However, it is
susceptible to the dual problems of tall canopy underestimation and low canopy overesti-
mation. L-band SAR data have strong penetration and can fully reflect the forest height
information in tropical rainforests. However, this strong penetration can lead to forest
canopy height estimation errors. Simard and Denbina [43] proposed the RMoG model to
correct forest height estimation error caused by temporal decorrelation. Other researchers
have used the RVoG-VDT model to mitigate the temporal decorrelation effect [44]. How-
ever, this approach has complex solution processes. The method proposed in this paper is
not affected by the abovementioned conditions and improves tall canopy underestimation
and low canopy overestimation significantly in the RVoG model inversion results, with
improved inversion accuracy (see Table 6).
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Table 6. Comparison of the results of different correction schemes.

Correction Scheme Test Area R2 RMSE (m) BIAS (m)

Uncorrected
Lope 0.775 7.748 1.120

Pongara 0.752 7.628 −4.188

Correction based on RH100
Lope 0.856 6.204 0.536

Pongara 0.854 5.856 −0.024

Correction based on P
Lope 0.914 4.796 0.011

Pongara 0.896 4.939 −0.834

Correction based on PRF
Lope 0.845 6.422 0.209

Pongara 0.780 7.184 −2.035

In this study, we used the RH100 LiDAR relative height variable of as a reference value
to correct for the forest canopy height estimation error; despite some error between RH100
and the real forest canopy height, this error does not affect our experimental conclusions.
LiDAR can obtain high-precision forest vertical structure parameters, especially forest
height, whereas PolInSAR is based on microwave scattering theory to estimate forest
height, which is affected by wavelength penetration and temporal decorrelation, with
increased uncertainties; therefore, additional samples are needed to illustrate the variation
pattern in the validation of the results. LiDAR is currently the most effective way to
replace manual ground-based forest canopy height measurements to validate and calibrate
PolInSAR forest canopy height estimates so that the results are closer to the LiDAR canopy
heights and closer to the true values. Accordingly, this has become a common way to
verify the results of PolInSAR forest canopy height estimation based on LiDAR canopy
height [10,11,16,35,45].

In the reference height-based correction results, there is clear overcorrection and under-
correction. The reasons for this are twofold. First, the height thresholds are determined by
iteration’ these thresholds are only empirical, and their values differ considerably between
the two test areas, with height correction thresholds of 30 m and 46 m in the Lope test area
and 34 m and 54 m in the Pongara test area. The scatter plots also reveal that not all samples
overestimate in low vegetation areas and not all samples underestimate in tall vegetation
areas. This variability may be related to factors such as the depression of the forest, the
ground-to-volume magnitude ratio, and the imaging geometry parameters. We corrected
the RVoG model inversion results using a fixed threshold, which can reduce the overall
error. However, this approach also inevitably caused overcorrection and undercorrection
in some samples. From a theoretical perspective, tall canopy underestimation is mainly
caused by penetration. Furthermore, under practical conditions, the error magnitude is not
exactly equal to the penetration depth, owing to the contribution of other factors. For low
vegetation, when the overestimation caused by temporal decorrelation is much larger or
smaller than the penetration depth, error correction using the penetration depth results in
overcorrection or undercorrection.

The results achieved using p-value correction are better than those obtained using
the reference height, and the thresholds determined by this method are more stable. The
correction thresholds were 2.6 and 3.8 for the p-value in the Lope test area, and 2.4 and 3.8 in
the Pongara test area, illustrating improved consistency between the two test areas. This
result is consistent with our simulation experiments. However, it is still impossible to avoid
overcorrection and undercorrection using the p-value as the correction threshold for the rea-
sons described above. Penetration is the main error source in infinitely deep volumes, and
the penetration depth in this case is closer to the inverse error of the RVoG model. Using P
as the correction threshold is consistent with the infinitely deep volume condition; thus, the
tall canopy underestimation correction results are improved. In contrast, when the p-value
is small, although low canopy overestimation still occurs, using the penetration depth as
a correction can only reduce the overestimation error to some extent; in this scenario, the
error does not exactly match the size of the penetration depth. The results of our simulation
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experiments show that the overestimation error increased with the gradual increase in the
temporal decorrelation effect. Under actual forest conditions, the temporal decorrelation
also varies as a result of differences in forest structure and baseline combinations. When the
overestimation caused by temporal decorrelation is considerably larger than the penetration
depth value, the error can be reduced by subtracting the penetration depth. However, when
the overestimation of temporal decorrelation is smaller than the penetration depth, the error
cannot be reduced by the penetration depth, and overcorrection and undercorrection occur.
This difference is also related to the number of baselines, and the temporal decorrelation
is inconsistent under different baseline combinations. In the future, research cases can
be tested to prove whether p-values achieve satisfactory generalization performance as
correction thresholds.

We used a machine learning approach in the last experimental scheme to predict global
p-values from local LiDAR canopy height data combined with polarized interferometric
feature variables. This approach was then used to correct the RVoG model canopy height
using the penetration depth, thus achieving global-scale forest canopy height discrimination
and correction of underestimation and overestimation. However, there are errors in the
p-values predicted by machine learning, resulting in overcorrection or undercorrection of
the results; thus, other p-value determination methods could be explored in future studies.

Another factor that affected the correction results was the baseline selection method.
Related studies [43] have identified that when relying purely on the distribution law of com-
plex coherence to select baselines, the final baseline combinations do not necessarily match
the actual forest conditions. Moreover, the temporal decorrelation between baseline com-
binations is inconsistent and notably more significant in low vegetation areas, generating
sources of error. Thus, Denbina et al. [43] improved underestimation and overestimation
by optimizing baseline selection through machine learning methods; our proposed method
achieves the same purpose with increased accuracy, and the underlying theory is equally
applicable to single baselines, which can be further explored in future research.

5. Conclusions

Temporal decorrelation and penetration are two important factors that lead to under-
estimation and overestimation in forest canopy height inversion using the RVoG model.
In this study, we used the penetration depth to correct the forest canopy height inversion
results of the RVoG model. We conclude that (1) the true forest height can be used to
constrain the underestimation and overestimation range of the RVoG model inversion
results, and the underestimation and overestimation of the RVoG model inversion result
can be corrected using the penetration depth. This approach can effectively correct the
underestimation error in tall forests caused by penetration and reduce the overestimation
error caused by temporal decorrelation in low forests. (2) The p-value of the infinite-depth
volume criterion is more accurate in determining the underestimation and overestimation
of the RVoG model inversion results compared to the true forest height-based correction
method. Our results show that p > 3 indicates underestimation in the RVoG model inversion
results, and p < 3 indicates overestimation. Using the p-value as a threshold to correct
the inversion results of the RVoG model results in improved estimation accuracy. (3) The
global-scale p-value can be predicted using machine learning methods combined with po-
larized interference features. In addition, it is effective to use p-values predicted by machine
learning methods as a threshold to correct the error of the inversion results of the RVoG
model, with improved accuracy achieved after correction. As the RVoG model is the most
widely used forest height inversion model, it is necessary to improve the accuracy of forest
height inversion by improving the model error in a targeted way. GEDI and ICESat-2 have
acquired a large amount of laser point data. With the application of ALOS-2 and SAOCOM
satellite data, as well as the recently realized TanDEM-L and BIOMASS satellites and the
NISAR program, the approach presented in this paper will have important implications for
accurate estimation of forest height in future research.
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