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Abstract: Graph neural networks (GNNs) have been widely applied for hyperspectral image (HSI)
classification, due to their impressive representation ability. It is well-known that typical GNNs
and their variants work under the assumption of homophily, while most existing GNN-based
HSI classification methods neglect the heterophily that is widely present in the constructed graph
structure. To deal with this problem, a homophily-guided Bi-Kernel Graph Neural Network (BKGNN)
is developed for HSI classification. In the proposed BKGNN, we estimate the homophily between
node pairs according to a learnable homophily degree matrix, which is then applied to change the
propagation mechanism by adaptively selecting two different kernels to capture homophily and
heterophily information. Meanwhile, the learning process of the homophily degree matrix and
the bi-kernel feature propagation process are trained jointly to enhance each other in an end-to-
end fashion. Extensive experiments on three public data sets demonstrate the effectiveness of the
proposed method.

Keywords: graph neural networks; hyperspectral image classification; homophily degree matrix;
bi-kernel feature transformation

1. Introduction

Hyperspectral images captured by hyperspectral sensors can provide a wealth of
spectral information to uniquely identify various land-covers according to their reflective
spectra. Hence, they have been extensively employed in numerous remote sensing fields,
including clustering [1], classification [2], unmixing [3], change detection [4], and target or
anomaly detection [5–7]. Among these areas, hyperspectral image classification (HSIC) is
a common task and a crucial procedure, referring to categorizing each image pixel into a
certain meaningful class, according to the image contents [8].

To date, various approaches have been proposed for HSI classification. Early research
primarily relied on traditional pattern recognition techniques, such as the k-nearest neigh-
bor classifier [9], support vector machines (SVM) [10,11], and sparse representation [12].
However, these classifiers ignore the sensitivity to spectral fluctuation in raw HSI and
solely take into account the original spectral information of pixels in the HSI. In this case,
many works have focused on extracting additional discriminative spectral features or
investigating spatial–spectral properties of HSI for classification. For example, principal
component analysis (PCA) and linear discriminant analysis (LDA) have been applied to
reduce redundancy and extract low-dimensional spectral information from HSIs [13,14].
Furthermore, spatial information is often exploited by morphological profiles (EMPs) [15],
morphological attribute profiles (APs) [16], Gabor filters [17], and so on. Due to the en-
hanced spectral and spatial characteristics, the classification performance can be somewhat
improved [18].

However, the aforementioned methods are all based on handcrafted characteristics,
which heavily rely on professional experience and are quite empirical [19]. To mitigate the
limitations of hand-crafted feature design, deep learning techniques have been extensively
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employed in the area of HSIC, through the use of various advanced deep networks. For
instance, deep belief networks (DBNs) [20] and recurrent neural networks (RNNs) [21]
have been adopted to extract deep features. To further exploit the original spatial structure
of the HSI, convolutional neural networks (CNNs) with 2D and 3D convolutions have
been extensively used for HSIC. For example, Hong et al. [22] have applied a 2-D CNN
to capture spectral–spatial information from various modalities to improve the effective-
ness of HSI classification. Hamida et al. [23] have designed a joint spectral and spatial
information process through the use of a 3D CNN architecture. A spectral–spatial 3D–2D
CNN classification model has been introduced [24], which demonstrated the excellent
potential of hybrid networks mixing two- and three-dimensional convolution for the deep
extraction of spectral–spatial features. Furthermore, deeper models with advanced net-
works have been proposed, including capsule networks [25], recursive autoencoders [26],
and transformers [27].

Although current CNN-based methods have demonstrated significant effectiveness
in the HSIC task, the limitations of the convolutional operation itself hinder further im-
provement of their performance. First, CNNs commonly possess a large number of training
parameters and are prone to over-fitting due to a lack of training data as, unfortunately,
there is a widespread problem with small training samples in the remote sensing field.
Second, CNNs generally obfuscate the classification boundary as they use a kernel of fixed
shape around the central pixel [28]. For these reasons, precise categorization of HSIs is still
difficult. Finally, CNNs commonly apply patch-based neighborhoods of samples with fixed
sizes as input; however, this approach cannot determine the homophily between pixels
within and outside of the patch [29].

Considering the difficulties mentioned above, one possible solution is to design graph-
based semi-supervised models that exploit the latent relationships between labeled and
unlabeled data. Many GNN-based HSIC methods have recently been proposed for the
extraction of features by considering the whole HSI as graph structure data. Normally,
the success of GNN-based HSI classification algorithms relies on the propagation capa-
bility and the efficiency of the adjacency matrix. The propagation capability is usually
achieved using a classical graph neural network model, such as GCN [30], GAT [31],
EdgeConv [32], or GraphSage [33]. Typical works that apply these models in HSIC in-
clude [34–38]. Meanwhile, the adjacency matrix describes the similarity between two
nearby pixels or superpixels. Early GNN-based approaches constructed pixel-level graphs
by treating each pixel as a node in the graph [22,34], which can directly propagate infor-
mation between nearby and distant regions; however, this will result in a vast amount of
computation and limits its applicability, due to hundreds of thousands of pixels in an HSI.
Fortunately, superpixel, which can effectively characterize the spatial semantic information
of surface objects, provides a reasonable way to solve this problem [39–41]. In addition,
as the number of labels is implicitly expanded in superpixels, the problem of small samples
can be mitigated, to some extent [35]. Therefore, we focus on superpixel-based GNN
models in our research.

Although GNNs have revealed remarkable advantages in the task of HSI classification,
it has been neglected that GNN-based methods are widely believed to work well when deal-
ing with homophily graphs, and fail to generalize to heterophily graphs when dissimilar
nodes are connected [42,43]. Due to the diverse transformations in the graph construction
of hyperspectral images, how can we ensure the high homophily of the graph data? As
far as we know, previous GNN-based HSIC methods have not considered this problem.
Noting that the homophily property can be quantitatively measured by the Homophily
Ratio (HR) [44], we were inspired to determine different feature transformations through a
learnable kernel, according to the homophily calculation among different local regions in a
graph. However, in the HSI classification scenario, a high homophily level cannot easily
determine better performance. We know that homophily is only related to the number of
superpixels when the way of constructing the graph is determined. As shown on the left
of Figure 1, we can see that the homophily level increases as the number of superpixels
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increases in both data sets, while the classification performance does not always increase
with an increasing number of superpixels. As can be seen from the right of Figure 1, the
overall accuracy (OA) suffers a slight decline with a large number of superpixels for both
data sets. This is because most previous methods only use the same kernel to transform
the features of neighbors; in this way, a large number of superpixels may lose the power
to explore local spatial information of the HSI, even if the homophily level is improved.
Therefore, we cannot infinitely improve the homophily level of the graph by increasing
the number of superpixels. As a result, the heterophily information that exists in the
constructed graph cannot be neglected.

(a) (b)

Figure 1. (a) Homophily Ratio and (b) overall accuracy (OA) with different number of superpixels
on Indian Pines (IP) and Pavia University (PU) data sets.

In this paper, we propose a bi-kernel graph neural network with adaptive propagation
mechanism (BKGNN) for HSI classification. In particular, a homophily degree matrix
learned from the attribute and topological information is applied to model the homophily
and heterophily of the graph, and is further used to adaptively change the propagation
process. To avoid smoothing distinguishable features, we use bi-kernels to propagate
information on the graph, with one for homophily node pairs and the other for heterophily
node pairs. To make the proposed approach more easy to understand, a schematic of
BKGNN is displayed in Figure 2. Compared with traditional GNN-based HSI classification
algorithms, the main contributions of this paper are as follows:

1. We introduce a novel homophily degree matrix to estimate the homophily and het-
erophily that widely exist in the constructed graph for HSI. In the process of homophily
degree matrix estimation, topological features and attribute features are learned by la-
bel propagation (LP) and Multilayer Perception (MLP) through extracting class-aware
information. Thus, we can incorporate the homophily and heterophily information
into the graph convolution framework.

2. We propose a homophily-guided bi-kernel propagation mechanism, through which
we can automatically change the feature propagation process by utilizing both ho-
mophily and heterophily information from the graph. To the best of our knowledge,
this is the first time that a homophily-guided GNN technique has been applied to the
HSI classification task.

3. Extensive experiments on three real-world data sets, i.e., Indian Pines, Pavia Univer-
sity, and Kennedy Space Center, are conducted to validate the performance of the
proposed BKGNN both qualitatively and quantitatively. The experimental results
demonstrate a significant improvement over previous methods.
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Figure 2. Overview of BKGNN. BKGNN has four main modules: Graph projection, homophily
degree matrix estimation, bi-kernel feature transformation, and graph re-projection. The first module
maps the original pixel-level HSI data to a superpixel-level graph structure, after which the homophily
degree matrix is learned from the attribute and topological information, which is further used to
conduct the bi-kernel feature transformation for capturing the similarity between nodes and the
dissimilarity between nodes. After graph re-projection, the pixel-level result is obtained.

2. Methodology

In this section, we first provide some preliminaries of our method by reviewing
some basic definitions and notation, including calculation of the homophily ratio, and an
introduction to GNN and LP. Then the proposed BKGNN is illustrated in detail. The main
notation adopted in our manuscript and relevant descriptions are provided in Table 1. All
symbols in the article are explained in detail in the corresponding place.

Table 1. Main notation and descriptions.

Notation Definition Type Size

X Original HSI data. 3D matrix H ×W × B
H, W and B Height, width, and number of bands in HSI, respectively. Scalar 1× 1

C Number of classes in HSI. Scalar 1× 1
N Number of nodes contained in the graph (equal to the number of superpixels). Scalar 1× 1

G = (V , E) Graph G with node set V and edge set E . - -
A Adjacency matrix. Matrix N × N
V Attribute matrix. Matrix N × B
D Degree matrix of A. Matrix N × N

Q, Q̂ Projection matrix and its normalized version. Matrix HW × B
H Homophily degree matrix Matrix N × N
Z Node embeddings Matrix N × F
Si The set of pixels in the ith superpixel. - -
N(·) Neighborhood of ·. - -
TV Nodes in the training set. - -
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2.1. Preliminaries
2.1.1. Graph Neural Network (GNN)

Graph neural networks, which operate on graph data, have demonstrated their ef-
fectiveness in various graph tasks. Let G = (V , E) represent the graph obtained from
the original HSI data, where V = {v1, v2, · · · , vn} is the set of vertices and E is the set of
edges, representing the connectivity between vertices in V . Generally, a GNN follows a
message-passing mechanism, which commonly consists of a message aggregation phase
and an update phase. During the message passing phase [45], the representation zv of node
vi is iteratively updated based on message mv, according to

ml+1
v = ∑

w∈N(v)
M(zl

v, zl
w, evw), (1)

zl+1
v = U(zl

v, ml+1
v ), (2)

where M is a node feature aggregation function, which is a differential permutation-
invariant operation; and U is the vertex message update function; N(v) denotes the nodes
neighboring v in G; and zl

v and zl+1
v are the representation vectors of node v at the lth and

(l + 1)th layers, respectively.
These two functions (i.e., M and U) can take a variety of forms [46]. Concretely,

the aggregation function can be a mean aggregator, a max-pooling aggregator, an attention
aggregator, or an LSTM aggregator. Meanwhile, the update function is usually achieved
by a multi-layer perceptron or a gated network. For example, the GCN model [30] uses
a message function M(zl

v, zl
w) = cvwzl

w, where cvw = (deg(v)deg(w))−1/2 Avw. The vertex
update function is U(zl

v, ml+1
v ) = ReLU(W lml+1

v ). The GNN-based HSIC approach is
essentially a semi-supervised node classification task. Let Y ∈ {0, 1}N×C denote the labels
of nodes, where C is the number of classes, while only the first m nodes (0 < m� n) have
labels Y L. The objective is to learn a predictive function to infer the missing labels YU for
the remaining n−m nodes.

2.1.2. Homophily in Graphs

As we need to improve the graph convolution operation based on the homophily of the
graph, we first need to determine how to measure the degree of homophily in graphs. We
use the homophily ratio to measure the overall homophily level in a graph, which counts
the fraction of edges connecting nodes that have the same labels. Formally, the homophily
ratio is defined as:

h =
1
|E | ∑

(vi ,vj)∈E
1
(
yi = yj

)
, (3)

where |E | denotes the number of edges in the graph, and 1 is the indicator function. In
accordance with the definition, we have h ∈ [0, 1]. A graph with high homophily ratio
is considered to be highly homophilous. Correspondingly, the node-level homophily is
defined as

hi =
1

|N(vi)| ∑
vj∈N(vi)

1
(
yi = yj

)
, (4)

where |N(vi)| is the size of the neighbor set N(vi). Compared with the homophily ratio
which is regarded as a global property in the whole graph, the node-level homophily focus
on the local regions in a graph, and there may be different levels of homophily among
different local regions in a homophily graph.

It is difficult to estimate the homophily level directly from node labels, as there are
only a scarce number of nodes with labels in a semi-supervised task. We introduce a
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matrix H ∈ Rn×n with its ijth element defined as the possibility that the corresponding two
points (i.e., vi and vj) belong to the same category. Note that Hij = 1 if vi and vj have the
same label, and Hij = 0 if vi and vj have no edge connection. The matrix H is called the
homophily degree matrix in our algorithm, which will be discussed in detail in Section 2.4.

2.1.3. Label Propagation (LP) Algorithm

In the process of calculating the homophily degree matrix, we use LP to estimate the
homophily degree between node pairs from the topological space. Let Y0 represent the
initial label matrix Y . The rows of Y0 corresponding the labeled nodes are one-hot indicator
vectors, and the unlabeled nodes are zero vectors. Label propagation is often applied to
infer pseudo-labels for unlabeled nodes based on Y0. Assuming that neighboring nodes
are more likely to have the same label, LP propagates labels along the edges iteratively. It is
feasible to specify the formulation of the LP algorithm in iteration l as follows:

Y (l) = D−1 AY (l−1), (5)

where A ∈ RN×N denotes the adjacency matrix, whose elements aij denote the non-
negative pairwise similarity between vi and vj; D is the diagonal matrix of A, with entries
dii = ∑j aij; and Y (l) is the pseudo-label matrix in iteration l. As the adjacency matrix A is a
sparse matrix with non-zero elements on nearest neighbors, the true label information will
propagate from each labeled example to its neighbors in each iteration.

2.2. Overall Framework

As shown in Figure 2, the proposed BKGNN consists of four main modules: graph pro-
jection, homophily degree matrix estimation, bi-kernel feature transformation, and graph
re-projection. The first module maps the original pixel-level HSI data X ∈ RH×W×B to
a superpixel-level graph structure G = (V , E), where V denotes the group of obtained
superpixels, which can be represented by an attribute matrix V ∈ RN×B, while E can be
represented by a spatial adjacency matrix A ∈ RN×N . We apply a multi-layer perceptron
(MLP) and the label propagation (LP) technique to extract the homophily information from
the attribute space and topological space, respectively, and define the whole homophily
degree matrix H ∈ RN×N based on these two types of information. After that, the bi-kernel
feature transformation trains Ws and Wd to capture the similarity between nodes and the
dissimilarity between nodes. The homophily degree matrix obtained from the former
module is utilized to combine these two processes of message passing, producing the
superpixel-level node embedding. Furthermore, self-messages are added into the proce-
dure of computing the node embedding, in order to reduce over-smoothing. The enhanced
superpixel features are then projected to pixel features by the last module, which is used to
perform pixel-wise classification. In the proposed BKGNN, the cross-entropy loss function
is utilized to minimize the differences between the predicted labels and the ground-truth of
training samples. The details of these modules are described in the following.

2.3. Graph Projection and Re-Projection

To reduce the computational complexity while maintaining the local structure of the
HSI, GNN-based HSI classification models frequently operate on superpixel-based nodes,
rather than pixel-based nodes. Therefore, we establish the relationship between pixel-level
HSI data and the superpixel-level graph structure. For this purpose, we pre-process the
entire image into a number of spatially linked superpixels using the simple linear iterative
clustering (SLIC) method. Considering each superpixel as a graph node, each superpixel’s
average spectral signature serves as the node feature, and edge connections are established
between neighboring nodes. Consequently, the superpixel-level graph structure G = (V , E)
can be obtained.
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Specifically, the graph projection assigns the original HSI data I to a set of nodes V and
determines the corresponding feature matrix V through matrix multiplication, as follows:

V = Q̂TFlatten(X), (6)

where Q̂ is the normalized Q by column (i.e., Q̂i,j = Qi,j/ ∑m Qm,j), and Flatten(·) repre-
sents flattening the HSI data by the spatial dimension. The association matrix Q ∈ RHW×N

is introduced by SLIC, which is defined as

Qi,j =

{
1, i f xi ∈ Sj,

0, otherwise,
(7)

where Si is the ith superpixel that consists of several homogeneous pixels.
As for the edge set E , two superpixels that share a common boundary are considered

to have an edge connection. Thus, the adjacency matrix A related to E can be defined as

Ai,j =

{
1, i f if Si and Sj are adjacent

0, otherwise,
(8)

where Si and Sj denote the ith and jth superpixels, respectively.
We use graph re-projection to convert the generated features back to the original

coordinate space for pixel-wise classification. The transformed node features Ṽ ∈ RN×C

and the assignment matrix Q are used as inputs for the graph re-projection process, which
outputs the appropriate 3D feature map. This operation is defined as

X̃ = Reshape(QṼ), (9)

where Reshape(·) denotes restoring the spatial dimension of the flattened data.

2.4. Homophily Degree Matrix Calculation

Conventional GNN models have fundamental homophily assumptions and, as such,
are not suited for heterophily graphs [42]. As shown in Figure 1, even if we can reduce the
degree of heterogeneity of the graph to some extent by setting an appropriate superpixel
size, the heterogeneity of the graph cannot be ignored. To solve this problem, we introduce
a homophily degree matrix H ∈ RN×N , with its (i, j)th element defining the extent to
which the ith and jth nodes belong to the same class. However, it is difficult to calculate the
homophily degree directly from node labels, as only a small number of labels are known in
the context of the semi-supervised task. In order to fill this gap, we estimate the soft labels
for unlabeled nodes from the attribute space and topological space.

To utilize the attribute space of the graph, we apply a graph-agnostic multi-layer
perceptron (MLP) to generate soft labels from the original node attributes. The lth layer of
the MLP is defined as:

Z(l) = σ(Z(l−1)W (l)), (10)

where W (l) is the learnable weight matrix, and σ(·) is an activation function. Denoting by
Z the output of MLP for several iterations, the soft assignment matrix B ∈ RN×C can be
obtained, using a softmax operation, as follows:

B = softmax(Z). (11)
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Let Θm denote all the parameters of the MLP. Then, the optimal Θ∗m can be obtained
by minimizing the loss function:

Θ∗m = argmin
Θ
Lmlp = argmin

Θm
∑

vi∈TV
J(bi, yi), (12)

where bi is the predicted soft label of node vi, yi is the ground-truth label of vi, TV denotes
the nodes in the training set, and J(·) is the cross-entropy.

In terms of the topological space, we further apply the label propagation (LP) technique
to estimate the soft labels. We generalize classic LP with a learnable weight matrix T ∈
RN×N . Similar to Equation (5), the resulting generalized LP in the lth iteration is defined as:

Y (l) = D̂−1(A� T)Y (l−1), (13)

where D̂ is the diagonal matrix for matrix A� T . Similar to MLP optimization, the optimal
weight matrix T is learned by

T∗ = argmin
T
Llp = argmin

T
∑

vi∈TV
J(ylp

i , yi). (14)

Finally, the homophily degree matrix H is estimated from the attribute space and
topological space with learnable parameters, as follows:

H = αS + βT , (15)

where α and β are hyper-parameters, and S is defined as BBT . Note that the obtained H is
a dense matrix, as S calculates the homophily degree between any node pair. We filter the
homophily degree that is not involved in the propagation process.

2.5. Bi-Kernel Feature Transformation

In this subsection, we first present the motivation for bi-kernel feature transformation,
in terms of generalization ability. Specifically, we chose the complexity measure of Con-
sistency of Representations (champion of the NIPS 2020 Competition on generalization
measure) to estimate the generalization ability, defined as

Γ =
1
|C|

|C|

∑
i=1

max
i 6=j

Oi +Oj

Mi,j
, (16)

where C is the set of classes, Ci, Cj ∈ C are two different classes,Oi =
(
Evk∼Ci

(∣∣zk − µCi

∣∣p)) 1
p

is the intra-class variance of class Ci, andMij = ‖µCi − µCj‖p is the inter-class variance
between Ci and Cj. A higher value of Γ indicates lower generalization ability. For simplicity,
we ignore non-linear activation in the GNN and only consider the binary classification
problem. Let Pi denote, for a center node belonging to the ith class, the probability of its
neighbors belonging to the same category. Then, the Consistency of Representations has an
important property, as follows [47]:

Γ ≥ c
|(P0 + P1 − 1)|

∥∥W
(
µC0 − µC1

)∥∥ , (17)

where c ∈ R+ is a constant. If |P0 + P1 − 1| → 0, the lower bound of Γ → ∞ and, hence,
the model will lose its generalization ability. This indicates that, if there are a similar
number of homophily neighbors and heterophily neighbors for graph nodes, then GNN
will smooth the outputs from different classes and lose discrimination ability.

In reality, the heterophily information is widely distributed in the constructed graph
structure for HSI, and we cannot extract homophily and heterophily information using
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only one kernel of GNN; this is because using only a single kernel in the GNN will result
in smoothing of the distinguishable features of different labels. To tackle this problem,
we apply two kernels in our model; in particular, we use one kernel for homophily node
pairs and another for heterophily pairs. Thus, the lower bound of Γ will be changed
to c
‖(P1Ws+(P0−1)Wd)(µC0−µC1)+(P0−P1)(Ws−Wd)µC0‖

, where Ws is the kernel for homophily

nodes and Wd is the kernel for heterophily nodes. It can be seen that Ws and Wd can
adjust the relation between P1 and P0 − 1, thus avoiding the |P1 + P0 − 1| term. Meanwhile,
extra distinguishability is provided, even if the original features lack discrimination (i.e.,
‖µC0 − µC1‖ → 0). Inspired by the work [47], we apply a bi-kernel feature transformation to
tackle this problem. Specifically, we use one kernel for homophily node pairs and the other
for heterophily pairs. During the propagation process, we adaptively adjust the weights
between the kernels, according to the homophily degree matrix. The formal form of the
feature propagation process in iteration l is given by

Z(l) = σ
(

Z(l−1)We + D−1 A� HZ(l−1)Ws + D−1 A� (1− H)Z(l−1)Wd

)
, (18)

where We, Ws, and Wd are learnable parameters for exploiting information from the ego-
representation, homophily node pairs, and heterophily node pairs, respectively; Z0 = V
denotes the original node attributes; and σ is the activation function.

2.6. Optimization Objective

The cross-entropy loss function is a frequently used optimization objective for the
HSI classification problem, in order to minimize the discrepancy between the predicted
labels and the actual labels of the training samples. After graph re-projection, we map
the superpixel-level graph features into pixel-level feature space. The final output of our
network is defined as

Ŷ = softmax(Reprojection(Z)). (19)

Then, the cross-entropy loss function can be written as

Lce = − ∑
s∈Ylabeled

C

∑
f=1

Ys f lnŶs f , (20)

where the label matrix is represented by Y , the number of object classes is C, and the
probability that the sth pixel belongs to the f th class is indicated by Ŷs f .

Noting that the homophily degree matrix is learned from MLP and LP, we combine
the estimates of the homophily degree matrix in an end-to-end fashion. Let Θg denote all
the parameters of the bi-kernel feature transformation. The final optimization objective can
be given by

Θ∗g, Θ∗m, T∗ = argmin
Θg ,Θm ,T

Lce + λLmlp + γLlp, (21)

where λ and γ are regularization parameters. It is also worth noting that the homophily
degree matrix is learned from attribute and topological information by minimizing both
Lmlp and LLP, which is further used to conduct bi-kernel feature transformation by mini-
mizing Lce. In turn, the feature transformation process can help to learn a better homophily
degree matrix. Therefore, these two processes are trained jointly to enhance each other. The
implementation details of BKGNN are summarized in Algorithm 1.
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Algorithm 1: BKGNN.
Input: Original HSI data X; training labels Y ; number of superpixels N; number of
iterations T; learning rate η; hyper-parameters α, β, λ, and γ.
1: Superpixel segmentation via SLIC.
2: Calculate the attribute matrix V and the adjacency matrix A according to Equations (6)
and (8), respectively.
for t = 1 to T do

3: Perform MLP and LP according to Equations (10) and (13).
4: Calculate the homophily degree matrix H according to Equation (15).
5: Update the outputs after two layers of bi-kernel feature transformation according to
Equation (16).
6: Graph reprojection according to Equation (9).
7: Calculate the overall error over all labeled instances according to Equation (21),
and update the weight matrices using Adam gradient decent.

end for
8: Conduct label prediction based on the trained network.
Output: Predicted label for each pixel.

2.7. Computational Complexity

In this subsection, we discuss the computational complexity of our method. Sup-
pose the embedding of each node is an F-dimensional feature vector, and ‖A‖0 denotes
the number of non-zero entries of the adjacency matrix A. For layer-wise MLP and LP,
the computational complexity is O(NF2) and O(‖A‖0C), respectively. As for the module of
bi-kernel feature transformation, the time cost is O(NF2 + ‖A‖0F) for feature propagation,
and O(HWNF) for graph re-projection. Therefore, the overall time complexity of BKGNN
is O((NF2 + ‖A‖0C + ‖A‖0F + HWNF)T), where T represents the number of iterations.
Note that, as the number of superpixels N is much smaller that the number of pixels in
HSI (i.e., HW), the time cost of our method can be greatly reduced through the use of
superpixel segmentation.

3. Experiments
3.1. Data Set Description

Three widely used HSI data sets were adopted to evaluate the performance of our
proposed algorithm. The details of each data set are provided in the following.

3.1.1. Indian Pines (IP)

This data set was gathered by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor at a test site in northwest Indiana. It consists of 224 spectral reflectance
bands in the wavelength range of 400–2500 nm. A total of 200 bands were reserved, after re-
moving 24 invalid and corrupted bands. The image has a spatial size of 145× 145 pixels
and includes 16 mutually exclusive vegetation classes. The spatial resolution is 20 m per
pixel. A false color composite, as well as detailed category descriptions and ground-truth
map, are shown in Figure 3.

3.1.2. Pavia University (PU)

This data set was acquired by the Reflection Optical System Imaging Spectrometer
(ROSIS) sensor during a flight campaign over the University of Pavia campus in northern
Italy. Pavia University is a 610× 340 pixels image with 103 spectral bands in the wavelength
range of 430–860 nm. The geometric resolution is 1.3 m. This data set includes nine urban
land-cover categories. A false color composite, as well as detailed category descriptions
and ground truth map are shown in Figure 4.
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(a) (b) (c)

Figure 3. IP data set: (a) False color image; (b) Ground truth map; and (c) Color bar.

(a) (b) (c)

Figure 4. PU data set: (a) False color image; (b) Ground truth map; and (c) Color bar.

3.1.3. Kennedy Space Center

This data set was also acquired by AVIRIS in 1996, and has a wavelength range
of 400–2500 nm. The image has size of 512× 614 pixels, and 176 bands remained after
removing some low signal-to-noise ratio bands. The KSC data set includes 5202 labeled
samples, with 13 upland and wetland categories. The spatial resolution is 18 m per pixel.
The false color composite, with detailed category descriptions and ground truth map are
shown in Figure 5.

3.2. Experimental Settings
3.2.1. Implementation Details

In order to quantify the performance of different HSIC methods, four widely used
metrics were calculated, including overall accuracy (OA), Per-Class Accuracy (PA), average
accuracy (AA), and Kappa coefficient. Specifically, OA is computed as the fraction of
samples that are differentiated correctly, PA is the accuracy for each class, AA is calculated
as the average of all per-class accuracies, and kappa coefficient is a robustness measurement
considering the degree of agreement.
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(a) (b) (c)

Figure 5. KSC data set: (a) False color image; (b) Ground truth map; and (c) Color bar.

Regarding training details, all data sets were trained with 30 labeled pixels in each
class, or 15 labeled pixels if there were less than 30 samples in the corresponding class.
Network optimization was carried out using the Nesterov Adam algorithm. In addition,
the learning rate and the number of training epochs were set to 0.001 and 1000, respectively.
The number of superpixels N was set to 500 for the IP data set, and 1000 for the other
two data sets. As for the hardware environment, our experiments were implemented in
PyTorch and run on a Windows 10 machine equipped with a 3.80 GHz i7-10700K CPU,
32 GB of main memory, and an RTX 3090 GPU.

3.2.2. Compared Methods

For comparison, a number of state-of-the-art baseline methods were selected, including
two conventional methods (SVM-RBF [48] and MBCTU [49]), three CNN-based methods
(1D CNN [50], 2D CNN [51], and 3D CNN [52]), and three GNN-based methods (NL-
GCN [53], GSAGE [19], and DARMA [18]). The parameter settings for these competitors
are given in the following.

1. SVM-RBF: The value of γ (the spread of the RBF kernel) and C (controlling the
magnitude of penalization) is searched in the range of γ = 2−3, 2−3, · · · , 24 and
C = 2−2, 2−1, · · · , 24.

2. MBCTU: MBCTU is actually a random forest classifier that performs color-texture
feature extraction based on the selected spectral bands. The bands are selected
according to their feature importance computed by another random forest classifier.

3. 1D CNN: This architecture is constructed by one convolutional layer with 20 kernels,
one max pooling layer, a ReLU activation layer, and two full connection layers.

4. 2D CNN: A semi-supervised classification model, consisting of one convolutional
layer with a 3× 3 filter, one max pooling layer, and followed by three decoding layers.
Each decoding layer is made up of one full connection layer and one normaliza-
tion layer.

5. 3D CNN: The 3D CNN model contains two convolution layers and a fully con-
nected layer. Each convolutional layer is followed by ReLU activation layer and their
kernel sizes are 3× 3× 7 and 3× 3× 3.

6. NLGCN: This network applies two graph convolutional layers by incorporating a
graph learning procedure.

7. GSAGE: Graph convolution is achieved by graph sampling and aggregation, and the
second-order nearest neighbor of the target node is taken into account.

8. DARMA: A superpixel-level GNN model which is composed of three convolutional
blocks. Each block consists of an ARMA graph convolutional layer, a ReLU activation
layer, and a normalization layer.
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3.3. Experimental Results

Tables 2–4 provide information about per-class accuracies, OAs, AAs, and kappa
coefficients obtained by various classification methods on the three data sets. All of the
reported results were based on an average of 10 training sessions, in order to avoid bias
caused by random sampling, and the top results are bolded. As is shown in the results, the
two traditional methods (SVM-RBF and MBCTU) obtained similar classification results
on IP and PU data sets. Due to the powerful learning ability of DL techniques, the 1D
CNN, 2D CNN, and 3D CNN models outperformed the traditional classifiers. Unlike 1D
CNN and 2D CNN, the 3D CNN was able to extract both spatial and spectral information
at the same time, thus achieving higher classification accuracies. The Superpixel-level
GNN approaches (DARMA and BKGNN), outperformed the classical machine learning,
deep learning, and pixel-level GNN models. One probable explanation is that superpixel-
level GNN methods exploit the latent relationship between different areas by constructing
graph structures in HSI to boost classification performance, and meanwhile preserving the
local spectral–spatial information through superpixel segmentation. Moreover, our method
exceeded DARMA by a substantial margin on the first two data sets. This observation
revealed that, compared to previous superpixel-level GNN methods, the proposed model can
achieve better performance by performing adaptive feature propagation under the guidance
of the homophily degree matrix. This analysis indicates the superiority of BKGNN.

Table 2. Accuracy comparison for the IP data set. Bold numbers indicate the best performance.

Class
No.

Conventional Classifiers CNN-Based Methods GNN-Based Methods

SVM-RBF MBCTU 1D CNN 2D CNN 3D CNN NLGCN GSAGE DARMA BKGNN

1 87.50 ± 5.10 95.83 ± 2.95 96.25 ± 4.15 97.50 ± 4.15 99.38 ± 1.87 98.75 ± 2.50 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
2 55.74 ± 3.99 47.76 ± 0.65 63.21 ± 6.78 58.06 ± 9.13 66.82 ± 7.58 74.93 ± 8.22 76.02 ± 6.53 80.07 ± 6.15 88.54 ± 2.34
3 58.66 ± 4.32 68.17 ± 4.25 69.05 ± 7.37 49.59 ± 6.16 58.53 ± 5.04 78.56 ± 3.59 70.30 ± 9.86 94.07 ± 3.32 94.68 ± 3.18
4 70.53 ± 8.15 98.87 ± 0.91 86.04 ± 6.76 83.14 ± 5.02 84.69 ± 4.50 92.08 ± 3.73 97.49 ± 1.61 99.61 ± 0.36 100.00 ± 0.00
5 84.32 ± 4.67 71.52 ± 7.19 73.95 ± 16.58 77.15 ± 6.78 87.24 ± 3.67 93.11 ± 2.17 91.30 ± 9.10 95.01 ± 2.12 96.25 ± 2.60
6 90.61 ± 2.13 86.68 ± 0.53 91.27 ± 3.62 95.61 ± 2.48 91.87 ± 3.19 96.96 ± 2.33 97.71 ± 2.60 96.51 ± 0.71 98.83 ± 1.21
7 90.74 ± 6.92 100.00 ± 0.00 86.92 ± 7.73 96.15 ± 7.09 98.46 ± 3.08 97.69 ± 4.93 98.46 ± 4.62 96.92 ± 3.77 100.00 ± 0.00
8 89.58 ± 3.01 86.53 ± 5.55 94.58 ± 1.78 98.57 ± 0.80 97.05 ± 1.35 99.67 ± 0.30 97.90 ± 4.63 99.51 ± 0.78 100.00 ± 0.00
9 96.66 ± 4.71 93.33 ± 9.43 98.00 ± 6.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 82.00 ± 32.80 100.00 ± 0.00 100.00 ± 0.00
10 70.24 ± 2.86 86.13 ± 6.07 70.91 ± 7.68 75.34 ± 5.23 72.46 ± 8.02 87.58 ± 3.42 86.28 ± 8.77 89.07 ± 2.97 93.48 ± 3.00
11 50.59 ± 3.72 60.89 ± 9.64 63.65 ± 7.91 63.56 ± 7.25 66.19 ± 5.15 71.95 ± 4.10 67.46 ± 6.25 86.95 ± 4.36 92.17 ± 3.74
12 62.87 ± 6.52 52.46 ± 13.08 70.55 ± 8.75 67.41 ± 9.45 72.02 ± 6.59 89.17 ± 2.64 86.77 ± 7.55 89.66 ± 4.41 96.45 ± 1.00
13 96.57 ± 0.93 99.43 ± 0.25 96.63 ± 1.90 99.89 ± 0.34 99.20 ± 0.78 99.49 ± 0.40 99.83 ± 0.26 99.89 ± 0.23 100.00 ± 0.00
14 82.37 ± 3.97 86.23 ± 1.03 83.28 ± 11.13 90.95 ± 5.56 90.87 ± 3.51 91.07 ± 2.82 95.51 ± 3.10 97.51 ± 2.67 98.17 ± 1.99
15 64.04 ± 2.98 74.44 ± 4.25 58.62 ± 12.50 61.74 ± 6.22 67.42 ± 9.75 88.01 ± 5.95 93.12 ± 3.12 98.43 ± 1.61 99.72 ± 0.36
16 89.41 ± 8.33 99.47 ± 0.75 94.29 ± 4.03 99.68 ± 0.95 98.41 ± 2.56 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

OA 66.93 ± 1.50 70.62 ± 2.94 72.64 ± 2.41 72.31 ± 1.07 75.27 ± 1.11 83.62 ± 1.72 82.48 ± 2.22 90.91 ± 2.42 94.66 ± 0.91
AA 77.53 ± 1.46 81.75 ± 2.17 81.07 ± 1.18 82.15 ± 1.38 84.41 ± 1.14 91.19 ± 0.97 90.01 ± 2.56 95.20 ± 1.35 97.39 ± 0.31

Kappa 62.81 ± 1.66 66.83 ± 3.28 69.04 ± 2.64 68.76 ± 1.12 71.98 ± 1.26 81.44 ± 1.93 80.16 ± 2.48 89.62 ± 2.76 93.90 ± 1.03

Table 3. Accuracy comparison for the PU data set. Bold numbers indicate the best performance.

Class
No.

Conventional Classifiers CNN-Based Methods GNN-Based Methods

SVM-RBF MBCTU 1D CNN 2D CNN 3D CNN NLGCN GSAGE DARMA BKGNN

1 65.14 ± 5.45 75.89 ± 4.64 69.58 ± 4.00 66.94 ± 8.50 75.56 ± 11.85 88.30 ± 2.60 90.54 ± 3.01 94.03 ± 1.35 96.76 ± 0.72
2 59.19 ± 4.45 55.52 ± 14.56 65.41 ± 13.70 61.68 ± 4.49 74.15 ± 11.41 75.17 ± 7.54 81.87 ± 6.95 90.75 ± 5.53 98.62 ± 1.21
3 27.69 ± 2.46 66.30 ± 7.35 68.27 ± 23.92 62.24 ± 15.61 81.08 ± 8.34 89.70 ± 1.82 88.09 ± 8.48 95.90 ± 5.09 99.40 ± 0.77
4 95.25 ± 2.14 92.23 ± 1.75 93.84 ± 4.32 91.80 ± 2.05 91.14 ± 3.96 94.18 ± 1.78 94.74 ± 2.60 88.49 ± 3.01 96.86 ± 1.13
5 99.18 ± 0.14 100.00 ± 0.00 99.41 ± 0.20 99.38 ± 0.41 98.82 ± 0.59 99.69 ± 0.22 100.00 ± 0.00 97.83 ± 0.84 99.68 ± 0.42
6 70.42 ± 9.49 70.01 ± 20.63 59.33 ± 17.98 82.68 ± 5.23 67.06 ± 18.27 80.53 ± 6.42 89.98 ± 5.62 94.94 ± 4.72 99.82 ± 0.17
7 90.10 ± 1.45 95.82 ± 1.53 91.74 ± 1.47 85.19 ± 7.88 90.48 ± 2.92 96.15 ± 0.62 96.95 ± 2.60 99.91 ± 0.06 100.00 ± 0.00
8 87.03 ± 2.81 77.99 ± 11.50 71.60 ± 17.12 72.50 ± 12.96 92.27 ± 4.77 92.83 ± 2.73 86.19 ± 9.48 95.35 ± 1.68 98.96 ± 0.51
9 99.92 ± 0.05 98.80 ± 0.27 99.95 ± 0.05 99.13 ± 0.51 98.52 ± 0.77 99.97 ± 0.05 99.96 ± 0.05 96.53 ± 1.93 97.71 ± 2.05

OA 67.93 ± 0.55 69.01 ± 4.20 70.65 ± 4.82 70.77 ± 2.50 78.43 ± 3.11 83.36 ± 3.22 87.17 ± 3.16 92.86 ± 2.62 98.47 ± 0.58
AA 77.11 ± 0.16 81.40 ± 1.17 79.90 ± 1.47 80.17 ± 1.74 85.45 ± 1.67 90.72 ± 1.01 92.03 ± 1.06 94.86 ± 1.37 98.65 ± 0.27

Kappa 60.27 ± 0.25 61.86 ± 3.97 63.18 ± 4.94 63.96 ± 2.74 72.59 ± 3.28 78.80 ± 3.83 83.58 ± 3.81 90.69 ± 3.31 97.98 ± 0.76
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Table 4. Accuracy comparison for the KSC data set. Bold numbers indicate the best performance.

Class
No.

Conventional Classifiers CNN-Based Methods GNN-Based Methods

SVM-RBF MBCTU 1D CNN 2D CNN 3D CNN NLGCN GSAGE DARMA BKGNN

1 89.78 ± 1.89 97.84 ± 0.10 79.78 ± 17.29 79.49 ± 5.55 93.57 ± 6.16 97.13 ± 1.26 96.79 ± 2.00 99.64 ± 0.24 99.97 ± 0.05
2 84.66 ± 0.58 92.49 ± 2.26 83.90 ± 4.08 80.85 ± 11.14 74.65 ± 7.86 90.94 ± 2.46 91.92 ± 2.12 97.28 ± 3.15 100.00 ± 0.00
3 56.78 ± 22.21 94.87 ± 2.14 50.44 ± 34.24 69.03 ± 17.86 85.40 ± 12.67 94.65 ± 5.32 97.92 ± 5.66 97.26 ± 2.30 99.82 ± 0.22
4 26.42 ± 19.23 14.14 ± 4.63 32.93 ± 23.16 46.08 ± 14.75 22.52 ± 13.80 59.46 ± 9.54 54.23 ± 23.74 99.01 ± 1.41 98.65 ± 1.61
5 38.42 ± 2.00 44.43 ± 5.66 38.93 ± 13.56 66.26 ± 13.75 84.73 ± 5.67 85.65 ± 8.61 84.89 ± 18.63 87.79 ± 0.84 96.34 ± 2.95
6 41.37 ± 2.47 77.69 ± 1.29 38.89 ± 11.66 80.65 ± 15.11 79.90 ± 9.24 75.58 ± 8.85 87.04 ± 6.59 97.59 ± 4.11 100.00 ± 0.00
7 89.33 ± 2.17 95.47 ± 4.27 84.67 ± 16.44 95.33 ± 8.56 98.00 ± 1.54 95.20 ± 6.09 98.27 ± 3.16 100.00 ± 0.00 99.47 ± 1.07
8 44.80 ± 8.03 65.34 ± 4.14 83.44 ± 6.95 67.88 ± 5.05 69.58 ± 4.17 93.17 ± 2.93 97.33 ± 2.50 100.00 ± 0.00 100.00 ± 0.00
9 75.98 ± 6.67 83.43 ± 1.13 71.94 ± 16.71 84.02 ± 5.77 81.63 ± 8.74 96.88 ± 4.49 97.14 ± 2.66 100.00 ± 0.00 100.00 ± 0.00

10 65.95 ± 1.81 93.64 ± 2.67 78.66 ± 8.99 96.47 ± 2.61 94.92 ± 3.76 97.99 ± 1.61 96.39 ± 5.79 99.79 ± 0.11 99.89 ± 0.13
11 89.88 ± 1.15 100.00 ± 0.00 93.42 ± 1.39 99.54 ± 0.52 99.74 ± 1.65 98.92 ± 0.94 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
12 83.72 ± 2.10 89.81 ± 0.84 80.13 ± 4.95 94.28 ± 4.87 82.47 ± 1.81 92.79 ± 3.21 95.03 ± 3.28 99.37 ± 1.27 99.20 ± 1.50
13 99.85 ± 0.14 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.03 100.00 ± 0.00 99.79 ± 0.46 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

OA 75.98 ± 0.31 86.58 ± 0.34 78.03 ± 4.33 84.18 ± 1.93 85.87 ± 1.64 93.70 ± 0.73 94.70 ± 1.31 99.14 ± 0.41 99.73 ± 0.14
AA 68.23 ± 0.15 80.70 ± 0.55 70.55 ± 4.21 79.86 ± 2.97 82.24 ± 2.80 90.63 ± 1.11 92.07 ± 1.60 98.29 ± 0.58 99.49 ± 0.26

Kappa 73.14 ± 0.34 84.99 ± 0.38 75.53 ± 4.74 82.38 ± 2.15 84.22 ± 1.94 92.95 ± 0.81 94.08 ± 1.47 99.04 ± 0.45 99.70 ± 0.16

Moreover, the classification maps for the comparative methods are displayed in
Figures 6–8. In general, SVM-RBF and 1D CNN suffered from serious salt and pepper noise
in the classification maps, while 2D CNN and 3D CNN alleviated this problem by automat-
ically extracting spatial features. Compared with traditional classifiers and CNN-based
approaches, the GNN models were able to preserve more edge details, mainly due to their
ability to learn the relationships between various land-cover classes and model their spatial
topologies on graphs. Compared with other methods, the visual maps of the proposed
BKGNN were significantly more similar to the ground truth. This further demonstrates
that the proposed model can significantly improved the discriminative ability of features to
satisfy the classification performance.

(a) Ground Truth (b) SVM-RBF (c) MBCTU (d) 1D CNN (e) 2D CNN

(f) 3D CNN (g) NLGCN (h) GSAGE (i) DARMA (j) BKGNN

Figure 6. Ground truth and classification maps obtained by different methods on the Indian Pines
data set.
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(a) Ground Truth (b) SVM-RBF (c) MBCTU (d) 1D CNN (e) 2D CNN

(f) 3D CNN (g) NLGCN (h) GSAGE (i) DARMA (j) BKGNN

Figure 7. Ground truth and classification maps obtained by different methods on the Pavia University
data set.

(a) Ground Truth (b) SVM-RBF (c) MBCTU (d) 1D CNN (e) 2D CNN

Figure 8. Cont.
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(f) 3D CNN (g) NLGCN (h) GSAGE (i) DARMA (j) BKGNN

Figure 8. Ground truth and classification maps obtained by different methods on the Kennedy Space
Center data set.

4. Discussion

In this section, we analyze the influence of the number of superpixels on the effec-
tiveness and efficiency of the proposed method, and further conduct hyper-parameter
sensitivity experiments.

4.1. Analysis of the Number of Superpixels

In our proposed method, the number of superpixels N plays an important part in
constructing the homophily degree matrix. We varied N from 200 to 5000, and the clas-
sification results and time costs are reported in Table 5. OM means “out of memory”. It
can be seen that the OAs first grew and gradually decreased as N increased. Note that,
with small N (e.g., 200), the classification accuracy was greatly reduced. This is because
the superpixels might incorporate pixels with many different labels when performing
superpixel segmentation. Similarly, the performance decreased with a large N, proving the
importance of selecting a suitable number of superpixel for our algorithm. The number of
superpixels has a significant impact on the time consumption, and a large N may even lead
to out-of-memory errors. Empirically, we chose N = 500 for the IP data set, and N = 1000
for the other two data sets.

Table 5. Classification performance (OA) and time cost (s) with varying N on three data sets.

Datasets 200 500 1000 2000 3000 4000 5000

IP
OA 89.65 94.66 94.59 92.70 91.94 91.55 90.25

time 18.7 21.2 24.8 70.4 76.71 339.1 342.8

PU
OA 90.25 97.66 98.47 95.78 97.69 96.10 94.68

time 45.0 50.8 66.2 104.1 185.4 301.1 OM

KSC
OA 95.57 98.74 99.73 99.60 98.18 98.37 98.47

time 69.9 74.7 89.5 125.9 216.5 285.5 OM

4.2. Analysis of Weights α and β

As the performance of our method highly depends on the quality of the homophily
degree matrix (i.e., H), we investigated the performance gains obtained by adjusting
the two parameters α and β, which represent the weights estimated from the attribute
space and topology, respectively. We show the classification performance change trend
in Figure 9, obtained by varying α and β from 0 to 1. As can be seen from the figure,
the performance was relatively poor when α = 0 and β = 0, which reveals that it is
necessary to estimate the homophily degree matrix by combining node attributes and
network topology. Furthermore, our method performed best when α = 1 and β = 0.2,
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demonstrating that the attribute information is more important than topology information
on these two data sets.

(k) IP (l) PU

Figure 9. Analysis results for varying weights α and β.

4.3. Analysis of Trade-Off Parameters λ and γ

We validate our approach’s sensitivity to λ and γ which trade-off between MLP and
LP loss. The value ranges of λ and γ are {0.01, 0.1, 1, 10, 100}. It can be seen from Figure 10a
that the proposed method with parameters λ and γ in the range of 1 to 100 achieved
suboptimal classification performance on the Indian Pines data set. It is interesting to
observe from Figure 10b that the performance is fairly stable on the Pavia University data
set. This phenomenon illustrates that the proposed BKGNN can achieve satisfactory results
on a wide range of trade-off parameters, demonstrating the practicability of the algorithm.

(a) IP (b) PU

Figure 10. Analysis results of trade-off parameters λ and γ.

5. Conclusions

In this paper, by analyzing the homophily levels in HSI, we find that the heterophily
information that exists in the constructed graph cannot be neglected. Therefore, we pro-
pose a novel bi-kernel GNN model, which learns two kernels to model homophily and
heterophily, respectively, and the kernel is adaptively selected according to a learnable
homophily degree matrix. In order to better model the homophily and heterophily in graph
structure, the homophily degree matrix is calculated by exploiting the topological features
and attribute features through LP and MLP, respectively. The estimation of the homophily
degree matrix and the process of bi-kernel feature transformation are jointly trained with
supervised loss, thus they can be enhanced by each other. The experimental results on
three real-world data sets demonstrated the effectiveness of our method.
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