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Abstract: Accurate crop rotation information is essential for understanding food supply, cropland
management, and resource allocation, especially in the context of China’s basic situation of “small
farmers in a big country”. However, crop rotation mapping for smallholder agriculture systems
remains challenging due to the diversity of crop types, complex cropping practices, and fragmented
cropland. This research established a sub-seasonal crop information identification framework for
crop rotation mapping based on time series Sentinel-2 imagery. The framework designed separate
identification models based on the different growth seasons of crops to reduce interclass similarity
caused by the same crops in a certain growing season. Features were selected separately according
to crops characteristics, and finally explored rotations between them to generate the crop rotation
map. This framework was evaluated in the study area of Shandong Province, China, a mix of
single-cropping and double-cropping smallholder area. The accuracy assessment showed that the
two crop maps achieved an overall accuracy of 0.93 and 0.85 with a Kappa coefficient of 0.86 and
0.80, respectively. The results showed that crop rotation practice mainly occurred in the plains of
Shandong, and the predominant crop rotation pattern was wheat and maize. In addition, Land
Surface Water Index (LSWI), Soil-Adjusted Vegetation Index (SAVI), Green Chlorophyll Vegetation
Index (GCVI), red-edge, and other spectral bands during the peak growing season enabled better
performance in crop mapping. This research demonstrated the capability of the framework to identify
crop rotation patterns and the potential of the multi-temporal Sentinel-2 for crop rotation mapping
under smallholder agriculture system.

Keywords: crop rotation mapping; a sub-seasonal framework; smallholder agriculture; feature
selection; time series; Sentinel-2; Google Earth Engine

1. Introduction

“Small farmers in a big country” is an accurate portrayal of China’s agricultural situa-
tion. According to data from the National Bureau of Statistics’ Third National Agricultural
Census [1], smallholder farmers operate 70% of the total cropland area. Crop mapping in
smallholder agriculture is essential for understanding food supply, cropland management,
and resource assignment [2,3].

The availability of Sentinel-2 data has provided better support for crop mapping, as
its unique three red-edge bands are particularly beneficial for crop mapping [3]. Sentinel-2
imagery is now being used successfully for crop mapping at various scales in different
regions, such as the county scale of the USA and Nigeria [4,5], the provincial scale of
China [6–8], the state scale of Brazil [9], as well as national scales [10], etc. Despite these
great advances on crop mapping, they are mostly concentrated on the identification of crop
types in single-cropping areas, with less research on crop rotations in double-cropping

Remote Sens. 2022, 14, 6280. https://doi.org/10.3390/rs14246280 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14246280
https://doi.org/10.3390/rs14246280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4604-4319
https://doi.org/10.3390/rs14246280
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14246280?type=check_update&version=2


Remote Sens. 2022, 14, 6280 2 of 20

areas. Crop rotation means that different crops are grown in seasonal sequence on the same
plot, resulting in a double-cropping or multi-cropping system [11]. Existing studies on crop
rotation have either examined the cropping patterns of a particular crop (e.g., rice) [12],
mapped specific rotation types within a year [13,14], or have focused on the variation in crop
types grown between adjacent years [15]. However, studies of crop rotation in smallholder
areas with complex cropping systems (mix of single-cropping and double-cropping) have
not been fully investigated.

Different from most other land cover types (i.e., forest, grass, and wetland), crops un-
dergo a full growth cycle from sowing to harvest in a relatively short period of time [15,16].
Each crop exhibits unique characteristics at different stages of growth, known as pheno-
logical information, which is the key basis for crop rotation mapping. However, crop
phenology also greatly varies spatially, as it depends on many factors, e.g., cropping prac-
tices, topography, soil quality, and climatic conditions [15]. These factors can lead to high
intraclass variability in the spectro-temporal signal and increase with the complexity of
cropping patterns [7]. Therefore, crop rotation mapping based on remote sensing remains
challenging due to the complex cropping practices, the spatial and temporal variability of
crop types, and the fragmented smallholdings [17]. Traditional methods of extracting crop
rotation information tend to define the crop rotation type directly and map each rotation
type as a class [14,18,19]. These approaches not only require extensive auxiliary data and
expert knowledge to determine specific rotation types, but also require the analysis of
images throughout the crop year. The problem of interclass similarity between different
crop rotation types when there is one season of the same crop in double-cropping pattern
may result in classification errors.

To address the above challenge, this study proposed a sub-seasonal crop information
identification framework for crop rotation mapping within a year. The framework designed
separate identification models based on the different growing seasons of crops and selected
features separately according to the crop characteristics to ensure the accuracy of crop
mapping. The crop rotation map was then mapped based on spatial and attribute analysis
of the crop maps. This framework can minimize the uncertainties caused by direct mapping
of crop rotation types. This study explored the possibility of the framework using Shandong
Province as the study area. Intercropping and crop rotation are common in the study area,
and both single-cropping and double-cropping crops are grown [20]. The main crops in the
study area were firstly classified into summer harvest and autumn harvest crops according
to their growing season. Then, different identification algorithms were designed based on
the characteristics of crops to generate two separate crop type maps. The final crop rotation
map for Shandong was generated by combining the crop information from the two crop
type maps.

2. Materials and Methods
2.1. Study Area

Shandong Province is located on the eastern coast of China and downstream of the
Yellow River (between 34◦22′–38◦15′N and 114◦19′–122◦43′E) (Figure 1). The terrain of
Shandong is predominantly plain or mountainous hilly areas with complex topography [21].
The western and northern parts belong to the North China Plain, the mountainous and
hilly areas are located in the south-central part of the country, while the eastern part is a
peninsular region bordering the sea [22,23]. Shandong is situated in the warm temperate
zone, with a suitable climate, abundant sunshine, and concentrated precipitation [24].
According to the Shandong Statistical Yearbook 2021 (Natural Resources 2020), cropland
accounts for about 48% of the province’s total land area [25]. The vast area of cropland
makes it an important grain production base in China [20]. Based on the climatic and
topographical conditions, the cropping system in Shandong can be categorized into two
types: single-cropping crops and double-cropping crops. Moreover, according to the
Shandong Statistical Yearbook and field surveys, there are two types of crops in Shandong:
summer harvest (mainly wheat) and autumn harvest (maize, rice, peanuts, cotton etc.).
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Wheat and maize are the primary grain crops, accounting for 71.7% of the province’s total
sown area of farm crops, and they are usually grown in crop rotation. In addition, peanuts
and cotton are the main cash crops in Shandong. Referring to the categorization of crops
in the National Statistical Yearbook, this research focused on the summer harvest crop of
wheat and the autumn harvest crops of maize, rice, peanuts, and cotton [25].
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Figure 1. The geographical location and topography of Shandong Province.

2.2. Datasets and Pre-Processing
2.2.1. Satellite Data and Pre-Processing

Sentinel-2 is an earth observation mission under the Copernicus program of the
European Space Agency and is a constellation of two identical satellites, Sentinel-2A/B [26].
It has been successfully used in many crop identification studies because of its high spatial
and temporal resolution and, in particular, the special contribution of the red-edge bands
to crop mapping [3,10].

A crop year was defined by the growth cycle of all crops in a year and usually ranges
from the planting date of the first crop to the harvest date of the last crop [27]. For example,
the crop year 2020 in Shandong is from October 2019 to October 2020. A total of 2687 scenes
of Sentinel-2 Level-2A images with less than 50% cloud cover in the 2020 crop year were
accessed from the Google Earth Engine (GEE) catalogue “COPERNICUS/S2_SR”. It was
also de-clouded using the QA60 band, which is dedicated to providing information on cloud
status, to exclude clouds and other bad-quality observations. The rest of the pixels were
reserved as high-quality observations [28], so that each pixel at each location has a number
of high-quality observations. The spatial distribution of the high-quality observation
number per individual pixel is shown in the Figure 2, with over 90% of individual pixels
having more than 40 high-quality observations. On this basis, monthly image collection
(13 in total) was composited to characterize crops phenology, and gaps were filled in with
images from the months of the adjacent years [29]. Ten bands of Sentinel-2 images were
selected in the classification process, these are B2, B3, B4, B5, B6, B7, B8, B8A, B11, and
B12. The six bands with a spatial resolution of 20 m were resampled to 10 m by the nearest
neighbor resampling method to maintain the same spatial resolution.
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Figure 2. The spatial distribution of the high-quality observation number in Shandong during the
2020 crop year.

2.2.2. Ground Reference Data

The reference dataset was constructed to train and validate the algorithms proposed
in this research. It was generated through ground surveys and the interpretation of Google
Earth images. Sample points of homogeneous plots with similar color and texture to the
ground survey points during the same period were added to the reference data collection
(Figure 3). The reference dataset contains a total of 1261 crop sample points (Table 1), of
which 70% were used for model training and the other 30% for validation. As shown in
Table 1, the distribution of samples across crop types is imbalanced, which is caused by
the uneven distribution of land cover. This research was fully informed by the information
provided by the China Agricultural Information Network [30] on the sowing/harvest time,
growth status, and the phenological periods of different crops, and the crops calendar
obtained is shown in Figure 4.

2.2.3. Ancillary Data

Other ancillary data used in this study include the Shuttle Radar Topography Mission
(SRTM), which is an international research effort that has resulted in a near-global digital
elevation model with a resolution of 30 m [31]. It was used to calculate elevations and
slopes to explore the effects of topography on crops. The SRTM data are available in GEE
from the data catalogue “USGS/SRTMGL1_003”.

2.3. Methodology

Based on time-series Sentinel-2 imagery, this research proposed a sub-seasonal crop
information identification framework for crop rotation mapping under complex cropping
patterns (Figure 5). The workflow of the study includes the following steps: (a) construction
of a high-quality monthly image collection; (b) feature selection; (c) mapping of crop types
and crop rotation; and (d) accuracy assessment. The detailed steps are described in the
following sections.
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Table 1. Properties and specific quantities of the reference sample dataset.

Category Wheat Maize Rice Cotton Peanut Others Total

Training 267 193 65 61 74 223 883
Validation 114 83 28 26 32 96 378
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2.3.1. Feature Selection

Crop rotation is a common practice in the study area [32]. The summer harvest crop
is mainly wheat, while the autumn harvest crops are more complex, with maize, rice,
cotton, and peanuts. More importantly, there are significant differences in the seeding and
harvesting date of the above crop types. To address the complex crop rotation pattern, two
separate crop identification systems were developed for extracting the summer harvest
crop and the autumn harvest crops, respectively.

Both identification systems are based on spectro-temporal features, that is, reflectance
in 10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12) of the monthly images. On this
basis, different features were added to better express the variability between different crops
(i.e., wheat and others). Other features were selected by firstly considering the vegetation
indices commonly used in previous studies and secondly by assessing the Overall Accuracy
(OA) and the F1-scores of the main crop types throughout the growing season. If the
added feature index improved the OA or made a unique contribution to the identification
of a crop type, it was retained in the system, otherwise it was removed. As shown in
Table 2, the following indices were added to the wheat identification system: Normalized
Difference Water Index (NDWI), Green Chlorophyll Vegetation Index (GCVI), Land Surface
Water Index (LSWI), Soil-Adjusted Vegetation Index (SAVI), and Normalized Differential
Phenology Index (NDPI). The Normalized Difference Vegetation Index (NDVI), normalized
difference residue index (NDRI), NDWI, GCVI, LSWI, eight texture features (mean, entropy,
contrast, correlation, variance, dissimilarity, asm, homogeneity) under the grey-level co-
occurrence matrix (GLCM) and elevation obtained from SRTM were added to the autumn
harvest crop identification system.
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Table 2. The spectral indices selected in this research and their expressions.

Indicators Expressions References

NDVI NDVI = ρNIR−ρR
ρNIR+ρR

[33]

NDWI NDWI = ρG−ρNIR
ρG+ρNIR

[34]

NDRI NDRI = ρSWIR1−ρR
ρSWIR1+ρR

[35]
GCVI GCVI = ρNIR

ρG
− 1 [36]

LSWI LSWI = ρNIR−ρSWIR2
ρNIR+ρSWIR2

[37]

SAVI SAVI = (ρNIR−ρR)
(ρNIR+ρR+0.5) × (1 + 0.5) [38]

NDPI NDPI = ρNIR−(0.74×ρR+0.26×ρSWIR1)
ρNIR+(0.74×ρR+0.26×ρSWIR1)

[39]

Note: ρG , ρR, ρNIR, ρSWIR1, and ρSWIR2 are the reflectance values of Sentinel-2 bands 3, 4, 8, 11,12.

2.3.2. Crop Type Identification and Rotation Mapping

This research used the Random Forest (RF) algorithm to identify different types
of crops at first. RF is a robust voting decision algorithm by integrating multiple inde-
pendent decision trees, and it is widely used for land cover classification in previous
studies [14,40,41]. This algorithm is now well-integrated into the GEE platform with
the classification library of “ee.Classifier.smileRandomForest()”. The number of decision
trees was determined by constantly testing to achieve higher accuracy and classification
efficiency, with the other parameters were set to default values [12].

The vast majority of cropland in Shandong is planted with wheat in the first growing
season, so only wheat was extracted for the summer harvest crop. In the study area, wheat
is generally sown in October of the previous year and harvested in June of the current year.
Thus, monthly images covering the entire growth period of wheat (October 2019–June 2020)
were selected for wheat mapping. The 10 spectral bands with 5 indices (NDWI, GI, SAVI,
LSWI, NDPI) formed a spectro-temporal feature set with a total of 135 features. Those
features were input into the RF classifier and the number of decision trees was set to 200
after repeated experiments, resulting in an initial summer harvest crop map.

Monthly images from April to October 2020 were used to map the four crop types
in the second growing season. In addition to the temporal feature set of 10 spectral and
5 effective index features (NDVI, NDRI, NDWI, GI, LSWI) from monthly image collection,
as well as texture features and elevation were added for the four crop types mapping,
resulting in a feature set with a total of 114 variables. The features set was input into the
classification system for the autumn harvest crops and the number of decision trees was set
to 460 after repeated experiments, resulting in an initial autumn harvest crops map.

Spatial overlay analysis of the two crop maps showed that over 96% of maize and
91% of rice coincided with wheat spatially; however, less than 1% of cotton plots matched
with wheat plots. This is sufficient to indicate that maize and rice were sown after wheat,
while cotton was not. This, combined with the analysis of NDVI time series (Figure 6), the
two crop maps were integrated to five classes: wheat–maize, wheat–rice, peanut, other
crops–cotton and others to generate the crop rotation map.

It is a remarkable fact that the results of pixel-based RF classifiers will inevitably
produce the “salt and pepper”, which means that a large homogeneous area of one class
may contains a single or small number of misclassified pixels of another class [29]. This is
particularly problematic for the smaller plots of cropland under smallholder agriculture.
Therefore, the crop rotation map needs to be post-processed to remove classification noise
and enhance the reliability. A post classification smoother is available in GEE, but it has the
disadvantage that fine features such as rivers and roads are obscured in the post-processed
maps [29]. This research proposed an object-based approach to post-processing pixel-based
mapping results. Firstly, this study obtained image objects through the image segmentation
algorithm provided by GEE. The pixel-based crop rotation results were then optimized based
on the object layers using the majority voting scheme, which has been used in previous
studies [42,43]. Then, the final crop rotation map for Shandong for 2020 was generated.
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2.3.3. Accuracy Assessment

This research evaluated the accuracy of the mapping results in two ways. Firstly, the
generated spatial distribution maps of wheat and autumn harvest crops were evaluated
using the independent validation samples. Four metrics derived from the confusion matrix,
OA, User’s Accuracy (UA), Producer’s Accuracy (PA), Kappa coefficient, and F1-score
(Equation (1)), were used to comprehensively describe the classification accuracy of each
crop type [26]. In addition, the accuracy of the crop rotation map was evaluated in some
test areas using ultra-high resolution Google historical imagery, as no data on the spatial
distribution of crop rotation information were available.

F1− score = 2× PA×UA
PA + UA

(1)

3. Results
3.1. Spectro-Temporal Features for Crop Rotation Mapping

The cropping intensity can often be determined by the number of peaks in the temporal
NDVI profile [12,44]. In general, there is one peak for the single-cropping system and two
peaks for the double-cropping system. Figure 6 shows mean temporal NDVI profiles
throughout the crop year based on the autumn harvest crops samples to analyze the crop
rotation. It can be seen from Figure 6 that all crops except peanut have two distinct NDVI
peaks. It is reasonable to assume that maize, rice, and cotton belong to the double-cropping
system, while peanut is a single-cropping pattern. The NDVI curves for maize and rice are
very similar, with a total of three peaks around December, April, and August. The last two
are distinct peaks with higher NDVI values, representing the peak growing seasons of the
first and second season crops, respectively, while the first peak is closely related to the first
crop (wheat). This is because the NDVI curve of wheat generally shows a distinctive pattern
with two peaks at tillering and heading stages [7]. In addition, the first NDVI peak in April
and the NDVI values in June and July of cotton is much higher than that of other crops in
the same period. After investigation, there are two types of double-cropping cotton fields in
Shandong: seedling transplants and direct sowing fields. The seedling transplanting cotton
fields is transplanted after seedlings in greenhouses intercropping with garlic, onions, or
other small crops etc. The direct sowing cotton fields is to sow short-season cotton after
the harvest of garlic, potatoes, onions, or other crops, and must ensure that all seedlings
by June 10. Unlike other crop rotations, cotton is already growing in June, while wheat is
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maturing for harvest and the other crops in the rotation with wheat have not been sown, so
the NDVI for cotton will be much higher than the NDVI for other crops during this period.

Figure 7 shows the averaged spectral reflectance of the different crops by month. In
general, the differences in reflectance of autumn harvest crops are most significant in May,
June, and July, especially in the red-edge and near infrared (NIR) bands (B6, B7, B8, B8A).
As shown, the reflectance of peanut in April is significantly different from that of the other
crops. This is because peanut is in a newly sown or unseeded state in April. Additionally,
peanut is a single-cropping crop, which is clearly different from other rotational crops that
are in the first peak of the growing season, so it is more easily distinguished from other
crop types. In contrast, cotton has significantly higher reflectance in the red-edge and NIR
bands than other crops in May, June, and July. Both maize and peanut are significantly
different from the other crops in the red-edge and NIR bands in October. Additionally,
because peanut has distinctive features that are clearly different from other crops, maize
can be identified using the red-edge and NIR bands in October. Additionally, the red-edge
reflectance in May, June, July, and September are important features to distinguish rice
from other crops.
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Figure 7. Differences between the averaged spectral reflectance of Sentinel-2 for autumn harvest
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Figure 8 shows the temporal variation in the mean values of the different vegetation
indices of crops. As shown in this figure, the mean GCVI, NDRI, and NDVI values of cotton
in April are much higher than those of the other three crops, and the NDVI values in May,
June, and July as well as the NDWI and LSWI values in June are significantly different
from those of the other crops. The mean GCVI and NDVI values of maize in October
are slightly lower than those of the other crops, especially the LSWI values of maize and
peanut in June, July, and October are significantly different from the other crops, which
are very important for the identification of maize. In contrast, the LSWI values for peanut
are significantly lower than those of others for almost the entire growing season, which
shows the importance of LSWI for peanut identification. The NDRI values of rice are lower
than those of other crops throughout the growing season, especially in May, June, and
July. Additionally, the LSWI values in May, August, and September are also effective in
distinguishing rice from others. In general, LSWI and NDRI in May, June, July, and August
are key features to distinguish between the various crops.
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3.2. The Spatial Patterns of Crop Types and Rotation

This research extracted the spatial distribution of summer harvest and autumn harvest
crops in Shandong based on Sentinel-2 time series data, and then generated a 10-m resolu-
tion crop rotation map. As shown in Figure 9, the summer harvest crop of wheat is widely
distributed in the western, northern, and eastern plains of Shandong. The autumn harvest
crop (Figure 10), on the other hand, is dominated by maize, whose spatial distribution is
roughly the same as that of wheat. Rice has three main planting areas, south-west of Jining,
south of Linyi, and north of Dongying, and all of them have good water conditions. Peanut
is most scattered and is mainly distributed in the hilly areas of south-central Shandong. In
addition, cotton is grown on a relatively small area, mainly in the northern part of Jining.
The crop rotation map (Figure 11) shows that crop rotation is mainly found in the plains,
with wheat in the first growing season and maize in the second being the main crop rotation
pattern. Large areas of wheat–maize are concentrated in the northwestern plain, the south-
western plain, and the Jiaolai plain of Shandong, especially in Heze, Jining, Liaocheng, and
Dezhou. Rice is mostly planted after the wheat harvest, forming a wheat–rice crop rotation.
As previously analyzed, peanut is a single-cropping pattern excluding rotation information.
The analysis of the time-series NDVI shows that cotton is the second-season crop in Shandong,
and the first-season crop is not wheat but other small crops which are not included in this
study, so it is mapped separately as “Others–cotton” in the crop rotation map.
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Figure 9. Spatial distribution and the close-up views of the summer harvest crop (winter-wheat) in
Shandong Province.

3.3. Accuracy Assessment of Crop Maps

The accuracy of the two crop maps was assessed using validation samples. The results
showed that the OA of the summer harvest crop map was 0.93 with a Kappa coefficient of
0.86, and the OA of the autumn harvest crop map was 0.85 with a Kappa of 0.80 (Table 3).
In the autumn harvest crop map, maize has the highest recognition accuracy, with an F1
score of 0.86, while peanut has the lowest accuracy, with an F1-score of 0.73. Peanut is
mostly grown in hilly areas, where the highly fragmented cropland produces more mixed
pixels, resulting in lower accuracy of peanut mapping [27].

Table 3. Confusion matrix of autumn harvest crops identification.

Classification Map
Reference Samples

Others Maize Rice Peanut Cotton Total UA (%) F1-Score

Others 94 0 1 4 1 100 0.94 0.88
Maize 8 75 2 2 0 87 0.86 0.86
Rice 2 5 25 0 0 32 0.78 0.83

Peanut 6 3 0 23 1 33 0.70 0.73
Cotton 3 4 0 1 29 37 0.78 0.85

Total 113 87 28 30 31 289 OA = 0.85
Kappa = 0.80PA (%) 0.83 0.86 0.89 0.77 0.94
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The visual evaluation showed that the crop rotation map obtained in this study
achieved a high level of agreement with the interpretation of Google historical imagery [45].
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4. Discussion
4.1. Potential of Time Series Images for Crop Rotation Mapping

This research explored the role of Sentinel-2 images in early crop identification by per-
forming an iterative RF classification by adding images month by month. First, the earliest
monthly images within the crops growing season were used separately for classification,
and the F1-score was used to assess the classification accuracy of each crop. Secondly, the
monthly images closest in time to the image undergoing classification were added to the
classifier one by one to perform classification and accuracy evaluation based on the same
training and testing samples, respectively.

As shown in Figure 12a, the OA of 81.3% and F1-score of 0.84 were achieved with
only one image of October during the wheat mapping process. After adding images of
November and December one by one, the OA reached 87.3% and the F1-score was 0.85,
and then it remained relatively stable until March of the following year. With the addition
of the April image of the current year, the OA exceeded 90% for the first time and the
F1-score reached 0.90. This is because the previous year, from late October to December,
is the tillering period for wheat. Unlike other vegetation covers, wheat has a unique
growth period during this time [46], which is an important reason for the high accuracy of
wheat identification. The peak growing season (jointing and heading dates) starts in
March and April of the following year [7]. With the addition of the April image, the
identification accuracy of wheat was further improved, ending up with an OA of 94.6%
with an F1-score of 0.92.
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Figure 12b shows the change in F1-scores for the four types of autumn harvest crops
as well as the OA and Kappa of mapping with the increasing number of multi-temporal
images. It can be seen that the OA increased with the increasing number of temporal
images until August, and then the growth remains small and steady. After the addition of
the July image, the OA exceeded 80% with a Kappa coefficient of 0.74. Correspondingly,
the F1-score for rice stabilized after this time point when it exceeded 0.8. This indicates
that the spatial distribution of rice can be identified using the information of all time-series
images before July. For maize, the F1-score peaked after the addition of the September
image (F1 = 0.88), while it decreased by 0.02 after the addition of the October image, as was
the case for rice. This means that for both maize and rice, the additional October image
may have introduced redundant information, which negatively affected the classification
system [47]. The F1-scores for peanut and cotton reached their maximum after the addition
of the October image. This demonstrates that image data covering the entire growth period
is valid for the identification of both crops without producing redundant information,
which is closely related to their complex cropping structure and spatial distribution.

Additionally, considering the positive impact of optimal feature selection in some re-
lated researches, this study compared the classification results of this hierarchical approach
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without further feature selection with that of “the backward feature elimination strategy”
proposed by Hu et al. [48]. The comparison shows that only in the wheat identification
system can the 12 features with a low ranking of importance be removed to ensure nearly
the same overall accuracy, whereas in the autumn harvest crop recognition system, further
feature selection did not have a positive effect on crop identification. This indicates that
feature redundancy is not large enough in either classification model. Therefore, there is
not a necessity for separate optimal feature selection in this study.

4.2. Reliability of the Research Framework

In this study, a framework for crop information identification was established to
a generate crop rotation map based on the extraction of summer harvest crops and au-
tumn harvest crops respectively. The successful implementation of this framework can be
attributed to the preparation of high-quality remote sensing images collection, the com-
bination of optimal features, applicability of the framework to complex cropping pattern,
reliable algorithm, and the GEE platform’s ability to map large spatial areas.

Firstly, Sentinel-2 not only has frequent revisit cycle and high spatial resolution, but
also rich spectral information, with the three red-edge bands playing an important role
in the identification of crops [12]. The 10-m resolution Sentinel-2 monthly time series
images obtained by image pre-processing largely capture the key phenological periods for
fragmented cropland and various crop types.

Secondly, the feature selection process was performed by progressively adding features
to check the overall classification accuracy and F1-scores for crop identification over the
entire growing season. The contribution of all features to the classification model was
output after the classification was completed. As shown in Figure 13a, the top five features
during wheat mapping were LSWI, NDWI, NDPI, NIR, and GI. It can be seen that features
which are extremely sensitive to vegetation, water, and soil moisture (e.g., LSWI, NDWI)
played more positive effects [49]. From Figure 13b, it was found that Elevation, NDWI,
LSWI, NDVI, and NDRI played a crucial role in the mapping of the autumn harvest crops,
especially the topographic factor Elevation. In northern China, cropland is more influenced
by topographic factors, which may be related to the distribution of irrigation facilities, as
precipitation in these areas is not as sufficient as in the south to meet the water need of
double-cropping crops. Topographical features are certainly the crucial variables for the
mapping of peanut, which is mostly grown in hilly areas.

Third, the framework for separate mapping of crops by growing season in this re-
search was concerned with the serious problems that might be faced in directly identifying
crops with information on crop rotation: (a) The cropping structure in Shandong is very
complex, which makes it difficult to define the classes of training samples with crop rotation
information, and the quantity and quality cannot be guaranteed; (b) mapping crops with
crop rotation information is more likely to be faced with the problem of large intraclass
variability and interclass similarity, e.g., where there is one season of the same crop in a
double-cropping area, the interclass variability will be smaller for different crop rotation
classes. In contrast, the framework proposed in this study addressed these problems well
(Figure 14). The summer harvest and autumn harvest crops in the research were deter-
mined from the agricultural statistical information in the Provincial Statistical Yearbooks,
which is authoritative. Then, based on the crop information provided by the China Agri-
cultural Information Network, the sample dataset was produced by studying the unique
phenological periods and other characteristics of various crops. Then, crops from different
growing seasons were mapped separately to initially explore the rotation between the two
seasons. Based on this, the temporal NDVI profiles and spatial distribution were analyzed
to finally determine the rotation of major crops. Two separate crop extraction systems
further reduced interclass similarity in the crop identification process and improved the
accuracy of crop mapping. The crop rotation map produced in this research better identi-
fied fragmented crop plots under smallholder farming patterns, and the scattered villages,
major roads, and rivers were well excluded, as shown in Figure 14.
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Crop rotation types were defined on the basis of the crop rotation maps generated
in this research and then mapped using the traditional method (direct mapping of crop
rotation types). The mapping results of the traditional method were compared with the
results of this research (Figure 15). The comparison shows that the crop rotation maps of
this research are significantly better than those of the traditional method. As shown in these
figures, the traditional method did not accurately identify crops under complex cropping
patterns, producing serious under-classification, especially in cotton rotation and peanut
growing areas. In the case of cotton rotation areas, where the first-season crop is complex
and not the major crops, analysis of images throughout the crop year leads to much greater
intraclass variability than analysis of images within the growing season of cotton, resulting
in inaccurate mapping of cotton.

Remote Sens. 2022, 14, 6280 17 of 21 
 

 

 
Figure 15. Comparison of the crop rotation maps generated in this research (a1–a3) with those gen-
erated by the traditional method (b1–b3), 1 to 3 showing wheat–maize, peanut, and cotton growing 
areas, respectively. 

4.3. Uncertainties 
Shandong has a very large area of cropland, but the spatial distribution of cropland 

is very fragmented in some areas due to the topography [21,22]. Crop type identification 
in such areas faces serious mixed-pixels problems, even at 10 m resolution [50]. Further-
more, the variability of crop phenology and cropping systems over large areas will restrict 
the classification accuracy [4]. Different spatial locations, climatic conditions, manage-
ment practices, etc. can even lead to high variability in the spectra and phenology of the 
same crops [51,52]. In addition, the predominance of smallholder systems has led to a high 
degree of complexity and flexibility in crop cultivation patterns [53]. Family-based farm-
ing practices might lead to significant differences between the crops grown in one area 
and those grown in neighboring areas [52,54], and it is generally oriented by economic 
returns, with intercropping and other complex cropping patterns very common [12,54]. 
In the case of cotton, four cropping patterns exist: pure or intercropped cotton in single-
cropping areas; seedling transplants or direct sowing cotton in double-cropping areas. 
This complex cropping pattern of a single crop increases the difficulty and uncertainty of 
crop rotation mapping. 

Despite the successful implementation of crop rotation mapping in Shandong under 
a complex cropping system, there are still significant research possibilities due to the spec-
ificity of the crops mentioned above. Firstly, Shandong has a variety of crops, and only 
five main crops of wheat, maize, rice, peanut, and cotton were extracted for this research. 
For some crop types (soybean, tubers, millet, and other vegetables), they were not men-
tioned in this research because of the small acreage and the difficulty of producing high 
quality samples, and also to avoid imbalance with other major crops [55]. Future research 
could be carried out specifically on minor crops to further improve the accuracy of crop 
information identification. Secondly, in addition to crop type identification for single-
cropping areas and crop rotation mapping for double-cropping areas, the cropping infor-
mation extraction also includes intercropping mapping, etc. However, the presence of 
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Figure 15. Comparison of the crop rotation maps generated in this research (a1–a3) with those
generated by the traditional method (b1–b3), 1 to 3 showing wheat–maize, peanut, and cotton
growing areas, respectively.

Finally, the robustness of the RF algorithm and the ability of GEE to handle large
amounts of image data are also key factors in the successful implementation of this frame-
work. The RF allows for both efficient supervised classification and also avoids overfitting
when dealing with high-dimensional data. It has been widely used in land cover classifica-
tion and has been proven to be effective. The processing and computing of several thousand
scenes of imagery in this study is facilitated by the GEE cloud computing platform and the
open availability of satellite data, which provide great convenience for the extraction of
crop planting information.

4.3. Uncertainties

Shandong has a very large area of cropland, but the spatial distribution of cropland
is very fragmented in some areas due to the topography [21,22]. Crop type identification
in such areas faces serious mixed-pixels problems, even at 10 m resolution [50]. Further-
more, the variability of crop phenology and cropping systems over large areas will restrict
the classification accuracy [4]. Different spatial locations, climatic conditions, manage-
ment practices, etc. can even lead to high variability in the spectra and phenology of the
same crops [51,52]. In addition, the predominance of smallholder systems has led to a
high degree of complexity and flexibility in crop cultivation patterns [53]. Family-based
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farming practices might lead to significant differences between the crops grown in one area
and those grown in neighboring areas [52,54], and it is generally oriented by economic
returns, with intercropping and other complex cropping patterns very common [12,54].
In the case of cotton, four cropping patterns exist: pure or intercropped cotton in single-
cropping areas; seedling transplants or direct sowing cotton in double-cropping areas. This
complex cropping pattern of a single crop increases the difficulty and uncertainty of crop
rotation mapping.

Despite the successful implementation of crop rotation mapping in Shandong un-
der a complex cropping system, there are still significant research possibilities due to
the specificity of the crops mentioned above. Firstly, Shandong has a variety of crops,
and only five main crops of wheat, maize, rice, peanut, and cotton were extracted for
this research. For some crop types (soybean, tubers, millet, and other vegetables), they
were not mentioned in this research because of the small acreage and the difficulty of
producing high quality samples, and also to avoid imbalance with other major crops [55].
Future research could be carried out specifically on minor crops to further improve the
accuracy of crop information identification. Secondly, in addition to crop type identifica-
tion for single-cropping areas and crop rotation mapping for double-cropping areas, the
cropping information extraction also includes intercropping mapping, etc. However, the
presence of smaller cropland plots, irregular planting dates, the diversity of intercropping
crops, as well as inter-crop similarities and intra-crop heterogeneity make intercropping
monitoring more difficult [4,56]. Intercropping has not been studied in this research for
now, but it is certainly a separate unit to be studied in the future. In addition, crop phenol-
ogy varies widely across regions and agrometeorological conditions. For large-scale crop
rotation mapping, subdivision into climatic or phenological zones can be tried to further
reduce uncertainty.

5. Conclusions

This research established a sub-seasonal crop information identification framework
for crop rotation mapping based on time series Sentinel-2 imagery of Shandong Province
where both single-cropping and double-cropping crops exist. Firstly, Sentinel-2 data from
the 2020 crop year were filtered and pre-processed to generate a monthly image dataset.
Secondly, two different spectro-temporal feature combinations were generated to map the
summer harvest crop and the autumn harvest crops, respectively. Thirdly, the classification
results obtained by the pixel-based RF algorithm were optimized with the objects produced
by image segmentation. Finally, a crop rotation map of Shandong was generated based on
the independent generation of two crop maps.

The crop maps were evaluated using the validation samples. The summer harvest
crop map had an OA of 0.93 with a Kappa coefficient of 0.86, while the autumn harvest
crop map had an OA of 0.85 with a Kappa coefficient of 0.80. The mapping results show
that crop rotation practice mainly occurs in the plains of western and central-eastern
Shandong; the predominant crop rotation pattern is wheat and maize; rice is generally
grown after the wheat harvest; peanut is mostly grown in a single-cropping region and is
widespread and scattered; and cotton is grown on a relatively small area as a second season
crop in rotation with other crops. In addition, LSWI, SAVI, etc. during the peak growing
‘season achieved better performance in wheat identification, and elevation, NDVI, LSWI,
GCVI, red-edge, and other spectral bands exhibited superiority in maize, rice, peanut, and
cotton identification.

This research demonstrates the capability of the framework to identify crop rotation
patterns and the potential of the multi-temporal Sentinel-2 for crops mapping under
complex cropping systems. The framework is well transportable and can be applied to
other years or to different cropping systems. The 10-m crop rotation map produced by
this study could provide valuable information for cropland management, crop rotation
monitoring, and agricultural policy development.



Remote Sens. 2022, 14, 6280 18 of 20

Author Contributions: Conceptualization, H.X. and B.C.; Methodology, H.X. and B.C.; Software,
B.C.; Validation, B.C. and M.L.; Investigation, M.L.; Data curation, B.C.; Writing—original draft, H.X.
and B.C.; Writing—review & editing, H.X. and M.L.; Visualization, B.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was jointly funded by the Shandong Provincial Natural Science Founda-
tion (No. ZR2022YQ36), Open Fund of State Laboratory of Information Engineering in Surveying,
Mapping, and Remote Sensing, Wuhan University (No. 20S01).

Data Availability Statement: The cropland maps generated in this research can be accessible from
the corresponding author upon request.

Acknowledgments: We would like to thank the editor and the anonymous reviewer, whose construc-
tive comments will help to improve the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. The National Bureau of Statistics. Available online: http://www.stats.gov.cn/tjsj/tjgb/nypcgb/qgnypcgb/ (accessed on 28

November 2022).
2. Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; et al. Comparison

of different cropland classification methods under diversified agroecological conditions in the Zambezi River Basin. Remote Sens.
2020, 12, 2096. [CrossRef]

3. Gumma, M.K.; Tummala, K.; Dixit, S.; Collivignarelli, F.; Holecz, F.; Kolli, R.N.; Whitbread, A.M. Crop type identification and
spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto Int. 2020, 37, 7. [CrossRef]

4. Ibrahim, E.S.; Rufin, P.; Nill, L.; Kamali, B.; Nendel, C.; Hostert, P. Mapping crop types and cropping systems in nigeria with
sentinel-2 imagery. Remote Sens. 2021, 13, 3523. [CrossRef]

5. Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system
of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210,
35–47. [CrossRef]

6. Hu, Q.; Sulla-Menashe, D.; Xu, B.; Yin, H.; Tang, H.; Yang, P.; Wu, W. A phenology-based spectral and temporal feature selection
method for crop mapping from satellite time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 218–229. [CrossRef]

7. Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping winter wheat in north China using
sentinel 2A/B data: A method based on phenology-timeweighted dynamic time warping. Remote Sens. 2020, 12, 1274. [CrossRef]

8. You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine.
ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [CrossRef]

9. Ajadi, O.A.; Barr, J.; Liang, S.Z.; Ferreira, R.; Kumpatla, S.P.; Patel, R.; Swatantran, A. Large-scale crop type and crop area mapping
across Brazil using synthetic aperture radar and optical imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102294. [CrossRef]

10. Johnson, D.M.; Mueller, R. Pre- and within-season crop type classification trained with archival land cover information. Remote
Sens. Environ. 2021, 264, 112576. [CrossRef]

11. Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China.
Agronomy 2022, 12, 436. [CrossRef]

12. He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining rice distribution and cropping intensity in a mixed
single- and double-cropping region in South China using all available Sentinel 1/2 images. Int. J. Appl. Earth Obs. Geoinf. 2021,
101, 102351. [CrossRef]

13. Yang, Y.; Huang, Q.; Wu, W.; Luo, J.; Gao, L.; Dong, W.; Wu, T.; Hu, X. Geo-parcel based crop identification by integrating high
spatial-temporal resolution imagery from multi-source satellite data. Remote Sens. 2017, 9, 1298. [CrossRef]

14. Li, R.; Xu, M.; Chen, Z.; Gao, B.; Cai, J.; Shen, F.; He, X.; Zhuang, Y.; Chen, D. Phenology-based classification of crop species and
rotation types using fused MODIS and Landsat data: The comparison of a random-forest-based model and a decision-rule-based
model. Soil Tillage Res. 2021, 206, 104838. [CrossRef]

15. Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop se-
quences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269,
112831. [CrossRef]

16. Xing, H.; Chen, J.; Wu, H.; Zhang, J.; Li, S.; Liu, B. A service relation model for web-based land cover change detection. ISPRS J.
Photogramm. Remote Sens. 2017, 132, 20–32. [CrossRef]

17. Hu, Y.; Zeng, H.; Tian, F.; Zhang, M.; Wu, B.; Gilliams, S.; Li, S.; Li, Y.; Lu, Y.; Yang, H. An Interannual Transfer Learning Approach
for Crop Classification in the Hetao Irrigation District, China. Remote Sens. 2022, 14, 1208. [CrossRef]

18. Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R.
Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [CrossRef]

http://www.stats.gov.cn/tjsj/tjgb/nypcgb/qgnypcgb/
http://doi.org/10.3390/rs12132096
http://doi.org/10.1080/10106049.2020.1805029
http://doi.org/10.3390/rs13173523
http://doi.org/10.1016/j.rse.2018.02.045
http://doi.org/10.1016/j.jag.2019.04.014
http://doi.org/10.3390/rs12081274
http://doi.org/10.1016/j.isprsjprs.2020.01.001
http://doi.org/10.1016/j.jag.2020.102294
http://doi.org/10.1016/j.rse.2021.112576
http://doi.org/10.3390/agronomy12020436
http://doi.org/10.1016/j.jag.2021.102351
http://doi.org/10.3390/rs9121298
http://doi.org/10.1016/j.still.2020.104838
http://doi.org/10.1016/j.rse.2021.112831
http://doi.org/10.1016/j.isprsjprs.2017.08.007
http://doi.org/10.3390/rs14051208
http://doi.org/10.3390/rs10010099


Remote Sens. 2022, 14, 6280 19 of 20

19. Tang, J.; Zeng, J.; Zhang, Q.; Zhang, R.; Leng, S.; Zeng, Y.; Shui, W.; Xu, Z.; Wang, Q. Self-adapting extraction of cropland
phenological transitions of rotation agroecosystems using dynamically fused NDVI images. Int. J. Biometeorol. 2020, 64, 1273–1283.
[CrossRef]

20. Sun, X.; Yu, C.; Wang, J.; Wang, M. The intensity analysis of production living ecological land in Shandong Province, China.
Sustainability 2020, 12, 8326. [CrossRef]

21. Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal patterns and modifiable areal unit
problems of the landscape ecological risk in coastal areas: A case study of the Shandong Peninsula, China. J. Clean. Prod. 2021,
310, 127522. [CrossRef]

22. Wang, X.; Wang, C.; Jiang, W.; Pan, Y.; Li, F.; Tian, H. The occurrence and partition of total petroleum hydrocarbons in sediment,
seawater, and biota of the eastern sea area of Shandong Peninsula, China. Environ. Sci. Pollut. Res. 2022, 29, 82186–82198.
[CrossRef] [PubMed]

23. Zhu, L.; Xing, H.; Hou, D. Analysis of carbon emissions from land cover change during 2000 to 2020 in Shandong Province, China.
Sci. Rep. 2022, 12, 8021. [CrossRef]

24. Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series
and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [CrossRef]

25. The Shandong Statistical Yearbook. Available online: http://tjj.shandong.gov.cn/tjnj/nj2021/zk/indexch.htm (accessed on 28
November 2022).

26. Fan, J.; Zhang, X.; Zhao, C.; Qin, Z.; De Vroey, M.; Defourny, P. Evaluation of crop type classification with different high resolution
satellite data sources. Remote Sens. 2021, 13, 911. [CrossRef]

27. Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm.
Remote Sens. 2016, 119, 151–164. [CrossRef]

28. Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time
series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [CrossRef]

29. Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of
Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google
Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [CrossRef]

30. The China Agricultural Information Network. Available online: http://www.agri.cn/kj/nszd/ (accessed on 28 November 2022).
31. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle

radar topography mission. Rev. Geophys. 2007, 45. [CrossRef]
32. Qiu, B.; Hu, X.; Chen, C.; Tang, Z.; Yang, P.; Zhu, X.; Yan, C.; Jian, Z. Maps of cropping patterns in China during 2015–2021. Sci.

Data 2022, 9, 479. [CrossRef]
33. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8,

127–150. [CrossRef]
34. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
35. Gelder, B.K.; Kaleita, A.L.; Cruse, R.M. Estimating mean field residue cover on midwestern soils using satellite imagery. Agron. J.

2009, 101, 635–643. [CrossRef]
36. Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green

leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [CrossRef]
37. Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Liu, M. Characterization of forest types in Northeastern China, using multi-temporal

SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 2002, 82, 335–348. [CrossRef]
38. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
39. Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of

vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [CrossRef]
40. Tran, K.H.; Zhang, H.K.; McMaine, J.T.; Zhang, X.; Luo, D. 10 m crop type mapping using Sentinel-2 reflectance and 30 m cropland

data layer product. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102692. [CrossRef]
41. Xing, H.; Hou, D.; Wang, S.; Yu, M.; Meng, F. O-LCMapping: A Google Earth Engine-based web toolkit for supporting online

land cover classification. Earth Sci. Informatics 2021, 14, 529–541. [CrossRef]
42. Liu, M.; Fu, B.; Fan, D.; Zuo, P.; Xie, S.; He, H.; Liu, L.; Huang, L.; Gao, E.; Zhao, M. Study on transfer learning ability for

classifying marsh vegetation with multi-sensor images using DeepLabV3+ and HRNet deep learning algorithms. Int. J. Appl.
Earth Obs. Geoinf. 2021, 103, 102531. [CrossRef]

43. Massey, R.; Sankey, T.T.; Yadav, K.; Congalton, R.G.; Tilton, J.C. Integrating cloud-based workflows in continental-scale cropland
extent classification. Remote Sens. Environ. 2018, 219, 162–179. [CrossRef]

44. Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and
Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [CrossRef]

45. Qiu, B.; Huang, Y.; Chen, C.; Tang, Z.; Zou, F. Mapping spatiotemporal dynamics of maize in China from 2005 to 2017 through
designing leaf moisture based indicator from Normalized Multi-band Drought Index. Comput. Electron. Agric. 2018, 153,
82–93. [CrossRef]

http://doi.org/10.1007/s00484-020-01904-1
http://doi.org/10.3390/su12208326
http://doi.org/10.1016/j.jclepro.2021.127522
http://doi.org/10.1007/s11356-022-21376-7
http://www.ncbi.nlm.nih.gov/pubmed/35748986
http://doi.org/10.1038/s41598-022-12080-0
http://doi.org/10.1080/01431161.2018.1490976
http://tjj.shandong.gov.cn/tjnj/nj2021/zk/indexch.htm
http://doi.org/10.3390/rs13050911
http://doi.org/10.1016/j.isprsjprs.2016.05.014
http://doi.org/10.1016/j.rse.2021.112285
http://doi.org/10.1016/j.jag.2018.11.014
http://www.agri.cn/kj/nszd/
http://doi.org/10.1029/2005RG000183
http://doi.org/10.1038/s41597-022-01589-8
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1080/01431169608948714
http://doi.org/10.2134/agronj2007.0249
http://doi.org/10.1029/2002GL016450
http://doi.org/10.1016/S0034-4257(02)00051-2
http://doi.org/10.1016/0034-4257(88)90106-X
http://doi.org/10.1016/j.rse.2017.04.031
http://doi.org/10.1016/j.jag.2022.102692
http://doi.org/10.1007/s12145-020-00562-6
http://doi.org/10.1016/j.jag.2021.102531
http://doi.org/10.1016/j.rse.2018.10.013
http://doi.org/10.1016/j.rse.2019.111624
http://doi.org/10.1016/j.compag.2018.07.039


Remote Sens. 2022, 14, 6280 20 of 20

46. Xing, H.; Zhu, L.; Chen, B.; Zhang, L.; Hou, D.; Fang, W. A novel change detection method using remotely sensed image time
series value and shape based dynamic time warping. Geocarto Int. 2021, 1–18. [CrossRef]

47. Xia, T.; He, Z.; Cai, Z.; Wang, C.; Wang, W.; Wang, J.; Hu, Q.; Song, Q. Exploring the potential of Chinese GF-6 images for crop
mapping in regions with complex agricultural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102702. [CrossRef]

48. Hu, Q.; Yin, H.; Friedl, M.A.; You, L.; Li, Z.; Tang, H.; Wu, W. Integrating coarse-resolution images and agricultural statistics to
generate sub-pixel crop type maps and reconciled area estimates. Remote Sens. Environ. 2021, 258, 112365. [CrossRef]

49. Guo, Y.; Xia, H.; Pan, L.; Zhao, X.; Li, R. Mapping the Northern Limit of Double Cropping Using a Phenology-Based Algorithm
and Google Earth Engine. Remote Sens. 2022, 14, 1004. [CrossRef]

50. Xing, H.; Zhu, L.; Hou, D.; Zhang, T. Integrating change magnitude maps of spectrally enhanced multi-features for land cover
change detection. Int. J. Remote Sens. 2021, 42, 4284–4308. [CrossRef]

51. Xing, H.; Zhu, L.; Feng, Y.; Wang, W.; Hou, D.; Meng, F.; Ni, Y. An Adaptive Change Threshold Selection Method Based on Land
Cover Posterior Probability and Spatial Neighborhood Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14,
11608–11621. [CrossRef]

52. Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at
national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [CrossRef]

53. Rao, P.; Zhou, W.; Bhattarai, N.; Srivastava, A.K.; Singh, B.; Poonia, S.; Lobell, D.B.; Jain, M. Using sentinel-1, sentinel-2, and
planet imagery to map crop type of smallholder farms. Remote Sens. 2021, 13, 1870. [CrossRef]

54. Ren, T.; Xu, H.; Cai, X.; Yu, S.; Qi, J. Smallholder Crop Type Mapping and Rotation Monitoring in Mountainous Areas with
Sentinel-1/2 Imagery. Remote Sens. 2022, 14, 566. [CrossRef]

55. Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.T. How much does multi-temporal Sentinel-2 data improve crop type
classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [CrossRef]

56. Gella, G.W.; Bijker, W.; Belgiu, M. Mapping crop types in complex farming areas using SAR imagery with dynamic time warping.
ISPRS J. Photogramm. Remote Sens. 2021, 175, 171–183. [CrossRef]

http://doi.org/10.1080/10106049.2021.2022013
http://doi.org/10.1016/j.jag.2022.102702
http://doi.org/10.1016/j.rse.2021.112365
http://doi.org/10.3390/rs14041004
http://doi.org/10.1080/01431161.2021.1892860
http://doi.org/10.1109/JSTARS.2021.3124491
http://doi.org/10.1016/j.rse.2019.04.016
http://doi.org/10.3390/rs13101870
http://doi.org/10.3390/rs14030566
http://doi.org/10.1016/j.jag.2018.06.007
http://doi.org/10.1016/j.isprsjprs.2021.03.004

	Introduction 
	Materials and Methods 
	Study Area 
	Datasets and Pre-Processing 
	Satellite Data and Pre-Processing 
	Ground Reference Data 
	Ancillary Data 

	Methodology 
	Feature Selection 
	Crop Type Identification and Rotation Mapping 
	Accuracy Assessment 


	Results 
	Spectro-Temporal Features for Crop Rotation Mapping 
	The Spatial Patterns of Crop Types and Rotation 
	Accuracy Assessment of Crop Maps 

	Discussion 
	Potential of Time Series Images for Crop Rotation Mapping 
	Reliability of the Research Framework 
	Uncertainties 

	Conclusions 
	References

