
Citation: Jafari, F.; Dorafshan, S.

Comparison between Supervised and

Unsupervised Learning for

Autonomous Delamination Detection

Using Impact Echo. Remote Sens.

2022, 14, 6307. https://doi.org/

10.3390/rs14246307

Academic Editors: Fabio Remondino,

Bijan Samali, Maria Rashidi and

Masoud Mohammadi

Received: 18 October 2022

Accepted: 7 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Comparison between Supervised and Unsupervised Learning
for Autonomous Delamination Detection Using Impact Echo
Faezeh Jafari * and Sattar Dorafshan

Department of Civil Engineering, University of North Dakota, Grand Forks, ND 58202, USA
* Correspondence: faezeh.jafari@und.edu

Abstract: Impact echo (IE) is a non-destructive evaluation method commonly used to detect sub-
surface delamination in reinforced concrete bridge decks. Existing analysis methods are based on
frequency domain which can lead to inaccurate assessments of reinforced concrete bridge decks since
they do not consider features of the IE signals in the time domain. The authors propose a new method
for IE classification by combining features in the time and the frequency domains. The features used
in this study included normalized peak values, energy, power, time of peaks, and signal lengths that
were extracted from IE signals after they are preprocessed. We used a dataset containing IE data
collected from four in-service bridges, annotated using chain dragging. A support vector machine
(SVM) classifier was constructed using combined features to classify IE signals. A 1DCNN with
unfiltered IE signals and a two-dimensional CNN using wavelet scalograms (2D representations of
unfiltered IE signals) were also used to classify IE signals. The SVM model performed significantly
better than the other models, with an accuracy rate, true positive rate, and true negative rate of
97%, 92%, and 98%, respectively. The SVM model also generated more accurate defect maps for all
investigated bridges. IE data from the Federal Highway Administration’s InfoBridge website were
used to investigate the efficacy of the developed models. The investigation yielded promising results
for the proposed SVM model when used for a new set of IE data.

Keywords: reinforced concrete bridge decks; impact echo; nondestructive evaluation; conventional
neural network; delamination; support vector machine; wavelet

1. Introduction

Bridges and decks are some of the most important types of infrastructure, covering
approximately four billion square meters across the United States, which is an area the
size of Detroit, Michigan [1]; therefore, monitoring their health condition is critical for
mitigating premature failures and expensive rehabilitation and repairs [2,3]. Traditional
bridge health condition monitoring requires visual inspections and an inspector’s expertise,
time, and skills [3]. Old bridges need more visual inspections because the likelihood of
finding a defect increases over time. The non-destructive evaluation (NDE) approach is
used for visual inspections because it can be used to obtain essential information about a
bridge’s age, material, and defects without causing damage to the structure [4,5]. Impact
echo is an NDT method adopted by many bridge stakeholders, such as the Federal Highway
Administration (FHWA), to detect subsurface defects, including delamination, voids, and
debonding [4–6]. Raw IE data consist of a time-series or signal representation vibration
response of a medium due to a mechanical impact. It is common to use an IE signal
frequency response, such as peak frequency, to interpret these defects. This method
has been used to classify IE data collected through the Long-Term Bridge Performance
Program (LTBP) from several bridges across the U.S. The LTBP data can be found on the
FHWA InfoBridge website [6]. Researchers have created different condition ratings for an
inspected bridge based on the peak frequency values [7]. Ohtsu et al. (2002) stated that
obtaining the maximum frequency in the frequency domain is sometimes difficult because
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of technical problems, such as IE data application in a serviced structure [8]. Colla et al.
(2003) stated that frequency sources could influence the quality of the IE data quality and
measured frequencies in concrete structures because the wave is generated at the impact
point. Some parameters for on-site and artificial structures were compared, including
impact contact time, wave center, and maximum frequency. This study indicated that the
IE signal’s measured frequency and maximum energy should be considered to obtain an
optimized quality data interpretation [9]. Gucunski et al. (2015) used the frequency method
and RABIT system to collect IE data to detect delamination features. The results of the
frequency approach revealed a dominant peak frequency of approximately 11 kHz for the
solid or sound areas; however, shallow delamination areas had a dominant peak frequency
of approximately 1.5 kHz [10]. Zhang et al. (2016) mentioned that frequency analysis results
could not precisely detect defect size or location; therefore, machine learning techniques
and wavelet decomposition were introduced to conduct a new, comprehensive analysis for
detecting IE signal patterns [11]. Hajin et al. (2018) used the frequency–wave number (f–k)
domain to obtain frequencies associated with the deck’s thickness using an air-coupled
impact-echo device. The results indicated that using the f–k domain analysis decreased the
direct acoustic noise, which allowed researchers to detect the thickness mode frequency
more accurately [12]. Liu et al. (2019) used an impact-echo device to detect defects in
grouted lapping connections. The results indicated that the IE device could detect defects
present in grouted lap-splice connections well; however, using the frequency approach
as an estimation process could be affected by grouting depth [13]. Results from previous
research have determined that IE devices are not reliable enough to evaluate concrete
structure conditions because the frequency approach used to interpret IE signals cannot
distinguish IE signal patterns in different surface conditions [14,15]. Sengupta et al. (2021)
used IE signal characteristics to predict the condition rates (CRs) of 72 bridges to classify
them into three categories based on the frequency approach: good, fair, and poor. Raw
impact-echo data from the LTBP website were used as input data to create predictive SVM
models. The CR values were predicted with an accuracy rate of 87.5%, based on IE-signal
signatures [16]. More advanced techniques have been used recently to interpret IE signals,
including the support vector machine (SVM), artificial neural networks (ANN), and deep
learning. A mobile robot equipped with an impact-echo non-destructive evaluation (NDE)
device was used to collect data for research conducted by Li et al. (2014). The fast Fourier
transform of the impact-echo signals and SVM were employed to analyze bridge structure
data [17]. Epp et al. (2018) used a semi-automated air-coupled impact-echo method and
artificial neural network (ANN) to detect defect positions using IE signals gathered from
reinforced concrete beams. The results of this study indicated that using ANN and a
least-square distance approach led to fewer errors in the classification approach [18].

Deep learning architecture has revolutionized bridge evaluation. Models developed
with deep learning are trained on large datasets and can identify bridge defects with a
considerably higher accuracy rate than conventional methods [18]; however, they require
large, annotated datasets for model training. Dorafshan et al. (2020a and b) developed
convolutional neural networks (CNN) to classify IE data for the first time using IE data
collected from laboratory-made concrete bridge decks with artificial defects. The results of
this research indicated that the one-dimensional convolutional neural network (1DCNN)
approach had the highest accuracy rates compared to the conventional peak frequency
method [2]. The 1DCNN in references [2,3] was directly trained and tested with IE data
in the time domain; therefore, it can be concluded that there are features in IE signals
that can be leveraged for interpretation, which have been somewhat neglected in the past
since the majority of the research efforts have only focused on IE features in the frequency
domain. Developing a more comprehensive approach for interpreting IE signals in the
time and frequency domains could lead to developing more robust classification models.
A typical IE signal could have hundreds or thousands of null or zero values due to the
data acquisition system’s type and sampling rate, which can interfere with proper IE signal
feature selection, leading to inaccuracies in the developed models based on the features.
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The authors have developed a preprocessing approach to remove the null values from IE
signals to mitigate this issue, called a filtering approach. The filtering approach was used
to detect IE signal features necessary for classification on a set IE signal collected from
the laboratory-created specimens. Using the filtering approach decreased the amount of
time required for the analysis and improved the accuracy rate of the tested models [19].
Wavelet transforms also can be used to interpret IE signals, improving the results of the
frequency approach [19]. Defect detection was more accurate when IE signal features were
captured in the time and the frequency domains using wavelet transform [19–22]; however,
the wavelet transforms and frequency approach were not compared to other classification
approaches, such as deep learning, in previous studies [23–25]. The wavelet transformation
was also used to generate two-dimensional representations of the IE signals to capture both
time and frequency characteristics. A deep learning image classifier was trained and tested
on the two-dimensional data. A 1DCNN trained only on time domain characteristics was
tested for this study. The performance of the developed models was also evaluated using
the IE data of a bridge deck available on InfoBridge. Combining signal processing with
other health monitoring devices, such as UAVs, to monitor structure health has been the
subject of much current research [26–29]. Fascista et al. reviewed UAV applications and
assisted structural health monitoring to monitor bridge health conditions [26] and address
using drones for infrastructure inspection. Ichi et al. [29] presented an annotated NDE
dataset for subsurface structural defect detection in concrete bridge decks. The authors
addressed knowledge deficits related to benchmarking and developed advanced deep
learning models for concrete bridge evaluations by presenting an annotated and validated
NDE dataset. The dataset containing GPR, impact echo, and thermal images was collected
by applying UAS from five bridges; therefore, it is one of the most important datasets
related to bridge inspections. In the following, we listed the more notable previous studies.
The most notable previous research is listed in Table 1.

Table 1. Methodology and analysis of impact-echo devices in previous research.

Author Year Approaches Pros and Cons

Dorafshan et al. [2] 2020
Convolutional

neural
networks

Pros: They introduced a big IE dataset for laboratory data
with ground truth. They analyzed the IE dataset with
different deep learning approaches for the first time.

Cons: The data were limited to laboratory data.

Dorafshan et al. [3] 2021 Convolutional
neural networks

Pros: The big dataset for IE signals was created from eight
overlay decks. The IE signals collected from defects and

sound areas were analyzed with deep learning for
the first time.

Cons: The research was limited to laboratory data.

Zhang et al. [11] 2016 Machine learning
techniques and wavelet

Pros: Wavelet, as a new approach, was introduced.
Cons: The weakness of the frequency approach was discussed

in this paper. The dataset was limited to laboratory data.

Hajin et al. [12] 2018 Frequency-wave
number (f–k) domain

Pros: The data from the air-coupled impact-echo device were
obtained and analyzed in this paper. This study’s

contributions in this area make this study unique due to
limited research on air-coupled impact-echo data.

Cons: The number of IE signals was limited to laboratory data.

Liu et al. [13] 2019 Frequency approach

Pros: The weakness of the frequency approaches was
mentioned in this study.

Cons: The data were limited to defects present in grouted
lap-splice connections and did not include all types of defects.

Jafari et al. [16] 2021 Probability and Naive
Bayes classifiers

Pros: Signal processing approaches based on feature selection
were presented for the first time.

Cons: The dataset was limited to laboratory data.

Ichi et al [29]. 2022 Frequency approach
Pros and Cons: The authors proposed multiple datasets, such
as GPR, impact echo, and thermal images; however, they did

not analyze the data.
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The results from the previous studies on laboratory concrete decks indicate that
analyzing IE signals based on time domain features can improve previous classification
methods [26]. Numerical and experimental methods are used to classify IE data; however,
their performance was not tested against a validated ground truth. Filtered IE signal
features in the time domain, with and without subsurface defects, were extracted to develop
a novel classification model using an SVM in this study. The features were selected from an
annotated and validated IE dataset: SDNET 2021 [29]. The wavelet transformation was also
used to generate two-dimensional representations of the IE signals to capture both time and
frequency characteristics. A deep learning image classifier was trained and tested on the
two-dimensional data. A 1DCNN trained only on time domain characteristics was trained
and tested for this study. The performance of the developed models was also evaluated
using the IE data from a bridge deck available on InfoBridge. The main contributions of
this paper are:

• Development of classification models based on realistic IE data;
• Feature extraction using both the time and frequency characteristics of IE data;
• Benchmarking different types of IE classification models;
• Evaluation of the sensor-agnostic properties of the developed IE classification models

using InfoBridge data.

2. Materials and Methods
2.1. Impact Echo

The impact-echo (IE) device is a non-destructive instrument that consists of four
components: a mechanical spherical impactor to produce waves, a displacement transducer
near the impact dot, a sensor located near the IE device to save the wave response, and
a monitor that displays waves in two formats [2,3]. Impact echo is used to determine a
defect’s depth or structure’s thickness. Frequency analyses were used to evaluate structure
conditions by categorizing IE data into two main datasets: defect and sound. Equation (1)
was used to calculate the deck’s thickness (t) and defect depth [23].

t =
β× {p

2fh
(1)

where ({p), (fh), (t), and (β) represent the velocity of the waves in concrete thickness,
associated frequency, deck thickness, and correction factor, respectively [2,3]. The (fh)
values were compared in two datasets, defect and sound, to classify the IE data. The
IE signals were collected from a defect area when the signals’ frequency response had a
single distinguished peak higher or lower than the thickness frequency, low-frequency
responses of the flexural mode, or two distinct peaks [2]; however, IE signals collected
from sound areas exhibited a detectable peak in the frequency response near the thickness
frequency [2,3].

2.2. Ground Truth

Five bridge decks were studied to identify the location of subsurface delamination
and sizes using a chain-dragging device. The first 75 mm of each bridge’s deck was
removed before using the chain-dragging device, and then the delaminated areas were
identified. Chain dragging was used to further identify possible deeper delamination areas,
which were classified as deeper delamination in SDNET 2021. Deeper delamination and
delamination were classified as defect areas (class 2). The areas without delamination were
classified as sound areas (class 1). The GPS coordinates, areas of delamination (removal
area), and sound areas were also identified in the ground truth map (Figure 1). This ground
truth map was used before starting repairs, indicating the locations of the sound surface
(no delamination) and delamination [29].
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Figure 1. Impact echo collection grid for one of the investigated bridges.

2.3. Impact-Echo Dataset and Classification

IE signals were collected from four service bridges in Grand Forks, North Dakota.
Three or four regions (A, B, C, and D) on each of the five bridges were chosen to collect
IE data [29]. Each area was divided using a gridline, from A to K and 1 to 11, with IE
performed at each grid point. The spacing between points was set at 0.030 meters by 0.030
meters. Figure 1 depicts bridge regions, gridlines, and cross-sections of the FOREST RIVER
southbound (FRSB) bridge in North Dakota. The decks were inspected using the chain-
dragging method and then repaired by hacking the regions susceptible to delamination.
A map of delimitation (ground truth) was produced for each bridge deck (Figure 1). The
IE data collected from the inspected areas were annotated in accordance with the type of
delamination observed in the ground truth map from the SDNET dataset 2021. Access to
validated ground truth can enhance an AI model’s performance.

Table 2 lists the names of the bridges, the year the bridge was built, length, width,
overlay thickness, and traffic direction. The bridge dimensions establish that the IE signals
were collected from a large surface area, demonstrating that the IE signals in this study
were generalized and diverse compared to previous research [24]. A balanced dataset can
be crucial for developing robust machine learning and artificial neural networks [30–35].
We used four training models based on IE signals in two classes. Table 2 also lists the IE
data from each bridge used for dataset training and testing. SDNET2021 contains 1573 IE
signals from four bridges in total. Under sampling is an approach used to create a balanced
dataset by maintaining all of the data in the smaller class and reducing the size of the data
in the larger class [30–35]. A balanced training set was created using an under-sampling
strategy in this study. A total of 842 IE signals, 421 collected from defect and 421 collected
from sound areas, were selected randomly to create training datasets. The remaining IE
signals were used to test all trained models. Table 2 also lists the number of IE signals in
each class for the test and train sets. We calculated the percentage of sound and defect areas
for all bridges based on the chain-dragging results, summarized in Table 2. We divided the
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data to ensure that we had enough IE signals in the test set to evaluate all AI models. “D”
and “S” represent the defect and sound groups in Table 2.

Table 2. Bridge list and IE classification for the AI models.

Bridge
Name

Year
Built

Dimensions Traffic
Direction

Chain Drag
Classification

Area (%)

Training
Dataset

(IE Signal Numbers)

Testing
Dataset

(IE Signal Numbers)

Length Width Deck
Thickness ——- (D) (S) (D) (S) (D) (S)

FRNB 1971 210 37.1 0.2159 Northbound 9.13 90.86 84 40 18 221
FRSB 1971 210 37.1 0.2201 Southbound 43.00 57.00 78 55 22 208
PRNB 1973 464.9 37.1 0.2159 Northbound 23.33 76.66 135 141 43 44
PRSB 1973 395 48.9 0.2201 Southbound 45.75 53.50 114 186 42 133
All —— ——– 30.30 69.09 421 421 125 606

2.4. Analytical Approaches
2.4.1. Feature Selection and Filtering Approach

The authors produced a set of filtered IE signals based on the distinguishable peaks
of the raw IE signals [26]. Figure 2 depicts the filtering process on a typical IE signal. A
frequency analysis was used to interpret the IE signals; however, the absolute and local
peak signal values in the time domain could also be employed to classify the data [28].
The mathematical algorithm used to detect distinguishable IE signal peaks is illustrated in
Figure 2a. The first and last points, less than 0.1 of the absolute maximum points, would
lead to removing the left and right signal sections. (star point, Figure 2b). On average, the
summation from removing normalized points is approximately zero, which does not impact
data classification. The authors of [28] provided more details on the filtering approach.
A threshold of 0.1 was defined as the index of trivial point removal. Feature extraction
methods may consider the lengths and locations of these points as important features for
classification, which would yield inaccurate classification.
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We used the filtering approach to remove trivial points from a random set of IE signals
to validate this claim. The filtered signals were compared to the raw IE signals, revealing
that the frequency responses of the filtered and raw IE signals were approximately the
same. The filtered signals were then segmented into five equal parts (Figure 2c). The
time interval of the IE signals (start time (ST) and end time (ET)), normalized peak values
obtained by dividing the local peak to the maximum peak, and filtered IE signal lengths
for each part were chosen as the main features of the IE signals (Figure 2). These features
contributed substantially to IE classification in the authors’ previous work [28]. The goal of
using feature extraction is to obtain the most compacted and informative set of features
(detectable patterns) to improve the classifier’s efficiency [28]. This efficiency included
decreasing computational complexity or increasing accuracy rate. Classifying IE signals
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with 200,000 points in a dataset with 2000 signals requires more processing time than
classifying IE signals using only 25 features per IE signal. The points with values near zero
cannot help the classification approach separate IE signals collected from sound and defect
areas; therefore, these trivial points were removed from the signals using this filtering
approach before AI model processing began. The absolute values for all points were
extracted for each signal after applying the filtering approach to all IE signals. The most
important IE signal features, such as maximum peak point, average, FFT, power, and
energy, were extracted for all filtered IE signals. Figure 3 depicts the absolute point values
for the filtered IE signals.
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P1, P2, P3, P4, and P5 are the peak values for the IE signals in each segment (Figure 3).
T1 and T2 are the start and end times of the impact-echo signals, respectively. The impact-
echo signals contained distinguishable peak points because they were cut at different times;
therefore, the signal length, end times, and start times were not constant. Power and energy,
two important IE signal features (continuous-time complex signal x(t)), were extracted
from all IE signals using Equations (2) and (3) [2,3].

Ex =
∫ +∞

−∞
|x(t)| × dt (2)

Px = lim
N→∞

1
2N + 1

N=+n

∑
n=−N

|x(n)|2 (3)

2.4.2. Support Vector Machine

The support vector machine (SVM) uses a variety of supervised learning approaches,
such as classification, regression, and outlier recognition, to classify IE signals [25]. The
primary goal of using an SVM is to determine the best hyperplanes that result in separating
the positive (+1) from the negative (+0) values in the training set with the largest possible
margin; therefore, a set of input variables (xi, xi + 1, . . . , xn) are associated with its labels
(Y(i) ∈+1 (defect) or 0 (sound)). The dataset is usually divided into two parts: training and
testing. The training set is used to build predictive models, while the test data are used
to check the model’s performance. The dataset was extracted from the IE dataset X (IE
signals), and the class label was obtained from two sets ((0) and (1)). Five features, ET, ST,
truncated signal length, signal energy, and IE signal power, were the input layers used
for classification [35]. Figure 4 depicts the proposed input and the expected output of the
proposed classification model.
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2.4.3. 1D Convolutional Neural Networks 1DCNN (1DCNN)

Figure 5 illustrates the architecture of a one-dimensional conventional network suc-
cessfully developed and implemented to detect delamination in laboratory-created concrete
bridge deck specimens [3]. The CBR layers in this figure consisted of three convolution
layers, batch normalization, and a rectified linear unit (ReLU). Two max pooling (MP) layers
were used in this net to connect the CBR layers. FRD, which is a combination of three fully
connected layers, ReLU, drop out, [3] and a SoftMax layer, was also implemented before
the output layers to summarize the probability of each class. This figure also indicates
the number and kernel size of each layer. The input layer was a one-dimensional matrix
(1 × 2,000,000). The value of the IE signals with labels, defect or sound, was moved to
the next layers. Batch normalization and the rectified linear unit (ReLU) were also used
in the 1DCNN net, which could help increase the training process speed and normalize
the active map. The maximum epochs, batch size, and optimization function were 40, 50,
and the Adam algorithm, respectively. The detail’s net was the same as in the previous
research [2,3].

2.4.4. Conventional Neural Network

AlexNet is a well-known deep CNN trained on ImageNet, which won the ImageNet
competition in 2012 in terms of accuracy rate and speed [3]. A deep learning-based
CNN is essentially a classifier where the features used for classification are obtained
through training and backpropagation. The adapted CNN model can be trained in different
ways. We used CNN with 25 layers (FL), CNN (TL), and CNN (CL) (Figure 6). The
maximum epochs, batch size, and optimization function were 10, 50, and the Adam
algorithm, respectively. The detail’s net was the same as in the previous research [2,3].
A trained CNN was used to classify a different dataset with deep domain adaption and
a classifier (CL). Only the last fully connected layer was required for updating the CL
model to match this layer to the target labels, both sound and defect. The model should be
retrained as a pretrained network for transfer learning (TL) and have the layers, classifiers,
and weights changed in agreement with a new dataset in the transfer learning model, or
TL model. All IE signals were transferred to an image using a wavelet. Figure 7 illustrates
the spectrum generated by a continuous wavelet (CW) on the IE signals to create the
image dataset. The wavelet transform is based on the shape of a series of sinus and cosine
functions in the Fourier transform. A scalogram was generated for each IE signal using
a set of Morlet wavelet functions. The Y scale and widths were selected empirically and
in accordance with earlier research [36,37]. The logarithm scales and [1–31] were chosen
for the Y scale and width bands, respectively. Finally, the scalogram’s outcomes revealed
the location of the peak points for all IE signals collected from the defect and sound areas.
Dash lines in the wavelet scalogram can be used as visually noticeable features that can be
leveraged for IE classification.
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sound labels, and (d) scalogram for IE signals with sound labels.

2.4.5. Model Evaluation

The authors used the true positive rate (TPR), true negative rate (TNR), and accuracy
rate (ACC) to evaluate classifier performances. IE signals collected from defect areas were
classified as true positive (TP) if correctly labeled as defected. The defect IE signals were
classified as false negative (FN) if they were mislabeled as sound. Sound IE signals were
classified as true negative (TN) if they were labeled correctly as sound and classified as
false positive (FP) if the model mislabeled sound as defect. The performance metrics were
evaluated using Equations (4)–(6) [2,3,38]:

TPR =
TP

TP + FN
(4)

TNR =
TN

TN + FP
(5)

ACC =
TP + TN

TP + FN + TN + FP
(6)

2.4.6. Workstation

We used a desktop computer to create all deep learning models. This system has a 64-
bit operating system, 24 GB memory, Intel® CoreTM i7 CPU, and 15.8 GPU. MATLAB 2021
and python were used to generate models and feature selection algorithms, respectively.
We changed the hyperparameters empirically to optimize the predicted processes.

3. Results
3.1. Training

The accuracy rates of CNN with 25 layers (FL), CNN (TL), CNN (CL), and SVM-based
feature selection were 85%, 95%, 93%, and 99%, respectively. The 1DCNN model required
172,800 s to finish the training process; however, CNN (TL) and CNN (CL) required 779 and
785 s to finish both training processes and create image scalograms, respectively. The SVM
completed the training process and feature selection in 328 s with an accuracy rate higher
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than 99%, demonstrating that it was faster than 1DCNN and 2D CNN because this model
was only trained on the predetermined features in the IE signals. The 1DCNN model must
be trained on all IE signal points, which were significantly slower than other methods.

3.2. Model Complexity:

Several factors, such as model size, data size, and model framework, can directly affect
a model’s complexity, which we discuss here [39]:

- Model framework: Choosing the model framework can affect model complexity, as
stated in previous studies. Overall, deep learning algorithms are far more complex
than machine learning models; therefore, choosing the SVM based on IE signal features
leads to decreased model complexity compared to 1DCNN and 2DCNN [40].

- Model size: Artificial intelligence model size directly affects model complexity. The
number of layers, layer diversity, and number of filters directly affect the model’s
complexity. The type of layers, and kernel size were more complex in 1DCNN and
2DCNN than in simple SVM approaches with simple RBF layers (Figures 4 and 5).
Using RBF kernels leads to a faster, simpler, and more scalable model [40], which is
why we selected it for this paper. The SVM, AlexNet, and 1DCNN used 0, 25, and
7 layers. The diversity of the AlexNet layers was higher than the 1DCNN and SVM
without layers (Figures 4 and 5). In addition, we used a higher number of layers and
kernel filter size for AlexNet than 1DCNN; therefore, the model complexity decreased
when using the SVM based on feature selection and 1DCNN compared to 2DCNN in
terms of model size.

- Data complexity: 1DCNN worked directly on IE signals; however, the IE signals
were converted to 2D images for AlexNet using the wavelet as transformations. RGB
images with a size of 227 × 227 × 3 were selected as the input size for AlexNet. As
mentioned in the training section, the preprocessing algorithms were also used to
select IE signals for preparing SVM inputs; however, the IE signals were used for
1DCNN without a preprocessing approach, indicating that we should not spend time
preparing inputs for 1DCNN models. The total time for training the SVM model and
extracting features was lower compared to the training process in 1DCNN. In addition,
2DCNN, in the case of wavelet transformation, used less time than 1DCNN in similar
conditions. In contrast, 2DCNN used more total time than the SVM-based feature
selection approach; however, the input size of the models was decreased in the SVM
based on feature selection compared to 1DCNN and 2DCNN. The input size was 2.95
GB, 153 MB, and 60 KB for 1DCNN, AlexNet, and SVM, respectively. We selected only
25 features per signal as an input instead of selecting IE signals with 200,000 points
(1DCNN) or 2D images; therefore, the input size of the IE dataset was also reduced,
which can decrease the model complexity. The SVM-based feature selection had less
model complexity compared to other approaches.

3.3. Testing

The results of testing the 1DCNN, CNN (TL), CNN (CL), and SVM were used to
predict the IE signal labels, illustrated in Figure 8a through 8d, respectively. The results
indicated that the proposed SVM based on feature selection had the maximum TPR, TNR,
and accuracy rates and provided the most consistency in classification among different
bridges. The CNN (TL) performed better than 1DCNN. The CNN models were trained
based on time and frequency features extracted from a scalogram; therefore, they benefited
from the wavelet transform for predictions. The CNN (CL) did not perform well and had
the highest false negative (defect) detections, which was expected since the CNN (CL)
demonstrated poor performance in previous studies [2,3] compared to the 1DCNN and
CNN (TL).
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Figure 8. Performance metrics results for: (a) 1DCNN, (b) CNN (TL), (c) CNN (CL), and (d) SVM-
based feature selection.

The model outcomes indicate that the performance metrics had the highest values
based on SVM feature selection. The TNR, TPR, and ACC values for this model were
98%, 92%, and 97% for all bridges, respectively. The TPR, TNR, and ACC values for the
CNN (TL) were 91%, 82%, and 87%, respectively. The 1DCNN model performed poorly
compared to the two other models (SVM-based feature selection and CNN (TL)), indicating
that the network was not properly trained because of the trivial points in the IE signals.
The IE signals contained 200,000 points; however, the filtering approach indicated that only
1000 IE signal points had considerable value peaks. The value of the remaining points
was close to zero; therefore, the points were considered trivial. The model performance
was improved by eliminating these points through feature selection or scalogram creation.
Table 3 lists all performance metrics’ average, minimum, maximum, and covariance values.
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Table 3. Performance metrics results.

Models
TNR TPR ACC

Min Mean Max Cov Min Mean Max Cov Min Mean Max Cov

1DCNN 0.57 0.65 0.78 0.11 0.31 0.57 0.62 0.06 0.45 0.62 0.70 0.08
CNN(TL) 0.70 0.82 0.96 0.05 0.84 0.91 1.00 0.08 0.72 0.87 0.96 0.2
CNN
(CL) 0.88 0.90 0.92 0.01 0.21 0.35 0.54 0.53 0.36 0.78 0.59 0.33

SVM 0.93 0.98 1 0.03 0.84 0.92 1 0.05 0.93 0.97 1 0.02

The results of the performance metrics indicate that the SVM-based feature selection
model was the most effective for detecting defect areas on all bridges. The results of
previous studies revealed that classifying IE signals in bridges with overlays may be more
difficult than classifying IE signals in bridges without overlays [3–37]. Previous research
has established that changing the aggregate, moisture, and air voids could influence the
frequency approach results for IE classification [40,41].

We detected defect areas by collecting IE signals from various bridges in this study.
The results indicate that the proposed SVM model was a successful classifier for IE signals
collected from different bridge decks with overlays, which is a more challenging task than
IE classification in laboratory-made specimens [2,3] primarily because the aggregate, defect
types, overlay thickness, and construction years (age) were constant in most laboratory
scale investigations but were not constant in the bridges investigated in this study. The
accuracy rate, TPR, and TNR increased by 12%, 10%, and 5%, respectively, using SVM-based
feature selection and corrected labeling in a balanced dataset compared to the 1DCNN. The
SVM-based feature selection model’s robustness was confirmed by the low coefficient of
variation (COV) values ranging from 0.02 to 0.05 (Table 3). We have attempted to compare
the proposed SVM-based feature selection with other common models to understand the
model’s performance. The accuracy rate of 0.95 was very high on average, indicating that
even the model with material diversity and a small number of IE signals in the training
set can identify defect points with a high accuracy rate compared to other approaches.
Previous studies have suggested using wavelet without a deep learning approach [41];
however, we compared deep learning and wavelet to other AI models in this study, which
had not yet been discussed in previous studies. The results revealed that wavelet-based
scalograms could be used as a proper classifier to detect delaminations with acceptable
accuracy. The model’s accuracy was increased by 15%, indicating that the IE signals using
the wavelet transform and corrected labeling in a balanced training dataset could help
increase the accuracy rate. In general, all artificial intelligent models developed in this
study were improved in accuracy as the training dataset’s size was increased.

3.4. Defect Maps

Defects maps were generated for two regions of the Park River South Band bridge
to better visualize the results of the IE models investigated in this study. The region with
Origin B was selected since it was predominantly defected concrete, as depicted in Figure 9,
and the region with Origin A was chosen since it represented a mostly sound concrete, as
illustrated in Figure 10. These two origins are also displayed in Figure 1. Ground truth,
frequency approach, 1DCNN, CNN (TL), CNN (CL), and SVM were used to generate the
defect maps in region B, as illustrated in Figure 9a–f, respectively. Similarly, the results are
depicted in the same order for region A in Figure 10a through 10f. The defect maps were
generated based on output models.
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The linear color contour of the MATLAB code depicts the presence of defects at a
coordinate system relative to each IE signal. The contours for the ground truth and SVM are
composed of two colors: red for defect and blue for sound (Figures 9a and 10a). IE signals
as predicted as defects are labeled 1; however, IE signals predicted as sound areas are
labeled (0). The linear contour of the SVM heat map represents the probability of defects for
all coordinates on the map (Figures 9f and 10f). The contours represent the normalized peak
frequency values in the defect maps generated using the normalized peak frequency, or the
peak frequency value for each coordinate divided by the maximum peak frequency values
on the defect map (Figures 9b and 10b). The IE signals with normalized peak frequency
values between 0.75 to 1 were classified as sound areas according to previous studies [2,3];
however, the probability of having defected area increased if the IE signals had normalized
peak frequency values beyond [0.75–1].The contours of the maps generated using the CNN
(TL), CNN (CL), and 1DCNN represent the probability of a defect presence extracted from
the softmax layer in each model (Figure 9c–e, and Figure 10c–e). The results indicated that
inspectors using the frequency approach could not detect all defective areas, particularly
at the bridge borders. A careful inspection of the produced maps also revealed that the
SVM-based feature selection could detect defect points with higher accuracy than the other
approaches. The CNN (TL) detected the defected areas with higher accuracy than the two
other approaches.

Figure 10 illustrates that the frequency approach incorrectly detected defect regions
when classifying IE signals from the boundaries, while deep learning and SVM models
produced more accurate defect maps. Comparing the defect maps in both origins indicated
that the proposed SVM model was more successful in classifying the IE data. The results of
the SVM analysis revealed that filtered IE signal features could be used to detect up to 97%
of the defect points. The SVM-based feature selection and CNN (TL) had the potential to
aid with identifying defect areas more precisely than other investigated models based on
the defect map results and performance metrics. There was indeed some miss-detection of
the defect areas in the 1DCNN, 2DCNN, and frequency approaches in some coordinates
(Figures 9 and 10). The accuracy rate for the 1DCNN and 2DCNN was lower than the
SVM-based feature selection; however, the results are still reasonable compared to previous
studies [2,3], which indicates that we do not need to retrain the 1DCNN and 2DCNN.
The accuracy rate for the 2DCNN and SVM-based feature selection was higher than 80%,
establishing that the models can predict defect and sound areas better than models from
previous studies [2,3].

4. Discussion

The IE data from Route 1 NB over the Dyke Branch Rd bridge with structure number
(1912N083) were used to test the developed models. The slab heights, widths, and thick-
nesses were 73 m, 20 m, and 0.2 m, respectively. A total of 4700 IE signals were collected
from this bridge in two traffic lanes. The classification of the IE signals in InfoBridge is
based on the common frequency approach. We used IE data collected from Route 1 NB over
the Dyke Branch Rd bridge as a test set to determine if the results of the AI classification
models were close to the frequency approach. We used a test dataset containing 2350 IE
points to create a defect map for the lower lane depicted in Figure 11. A frequency approach
method was used to classify IE data into four groups based on peak frequency value: good,
fair, poor, and serious. The IE signals in the frequency domain, which had a detectable
peak within the thickness resonance of 8 to 12 kHz, were classified as ‘good’. The thickness
resonances of the detectable peak points for IE signals collected from fair, poor, and serious
groups beyond this range were classified as defect areas. Figure 12a displays the defect map
of this bridge after the IE data were classified based on their peak frequency values. The fair,
poor, and serious groups were classified as defects, and IE signals in the ’good’ class were
classified as sound to generate a binary defect map in accordance with the classification
mentioned above. The defect area locations are denoted with red, while sound regions are
depicted as blue in Figure 11.
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The IE data for the EB Rocky Brook bridge were different than the IE data in SDNET
2021 (1 × 200,000); however, all developed models, except for the 1DCNN, could be used
directly on the new IE dataset. A defective map of the 1DCNN was not generated in this
section. Figure 12a–d display the Rocky Brook bridge defect map generated by the CNN
(CL), CNN (TL), and SVM. The defect map reveals that the CNN (CL) classified defect
areas as sound areas. The TNR of the CNN (CL) in the SDNET data also indicates that
this model could not detect defect areas completely in the SDNET dataset (Figure 8c). The
CNN (TL) was more conservative than other approaches, with more defect detection in the
prediction process. The SVM-based feature selection had a higher accuracy rate with the
least amount of false detection in both testing datasets, indicating this method’s potential
for sensor-agonistic IE classification.

The results yielded less impressive performance metrics in all models when no IE data
from the testing dataset were used to train the models. Changing the impact-echo device,
materials, overlay thickness, aggregates, inspectors, and classifications have potential
impacts on the performance metrics in all AI models. The results indicate that the SVM-
based feature selection had a higher accuracy rate with the least amount of false detection
in the new dataset. Previous research has indicated that AI models with more data in
the training set can detect defect areas in bridges with greater accuracy [2,3]. The current
study’s findings using the SDNET2020 and InfoBridge data indicated that more data with
ground truth in the training set are required from different bridges, impact-echo devices,
and subsurface defect types to create the generalized models. Having a generalized dataset
allows us to create more accurate AI models. Using chain dragging to classify IE signals can
give IE device users a better understanding of IE signals, defected areas, and the physics of
the data. It is recommended to use chain dragging to identify the location of subsurface
delamination by applying a chain-dragging device before using an IE device on the bridge’s
surface to create a large IE dataset.

5. Conclusions

We have developed four artificial intelligence (AI) models and compared their per-
formance for labeling impact-echo data corresponding to subsurface delamination in real
reinforced concrete bridge decks. The IE dataset was validated using a non-destructive
evaluation dataset, which in turn was validated using a dataset from destructive evalua-
tions. A one-dimensional conventional neural network (1DCNN) and CNN (convolutional
neural network) were applied to one-dimensional IE signals and their wavelet scalograms,
respectively. A prefiltering process was also applied to IE data in the time domain. A
set of features was extracted from the processed IE data, which was then used to create a
support vector machine (SVM) model. The performance of these models was tested using
the annotated IE dataset. Model performance was compared when classifying new IE data
collected using a different device available on the FHWA’s InfoBridge website. The most
notable findings of this study were:

• The proposed SVM model classified all defect and sound areas with the lowest num-
ber of false positives and false negatives compared to other approaches. The SVM
model achieved TPR, TNR, and accuracy rates of 93%, 97%, and 1, respectively. The
results suggested the feasibility of using feature selection-fusion SVM for IE signal
classification; however, feature-selection SVM should be used for different datasets
because this model became more accurate as its training datasets increased in size.

• The SVM model and its features are recommended for field adaptation due to its
noticeably faster training time. The proposed model only required 328 s to predict
labels, including the training time, while the 1DCNN required 172,800 s to finish the
training process. The CNN (TL) and CNN (CL) required 779 and 785 s to complete the
training process, respectively. Additionally, the SVM-based feature selection has less
model complexity compared to other models.

• We recommend using feature selection with other deep learning models while in-
creasing the training set size. The CNN (TL) based on IE wavelet scalograms could
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also be used and compared to the SVM-based feature selection. This model correctly
predicted 70% of the defect areas and 84% of the sound areas on average in the SDNET
dataset.

• The CNN with wavelet and SVM-based feature selection could be used as a predictive
model to obtain defect maps for IE signals from the InfoBridge website because these
predictive models are not limited to the size of the IE signals, thus demonstrating the
advantage of using these models over the 1DCNN. The results indicate that using AI
models can help the IE user classify data more accurately. The SVM-based feature
selection results were closer to the InfoBridge defect map.
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