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Abstract: The Niexia slope, located in Danba County, Sichuan Province, China, with steep slope
terrain and dense vegetation coverage, has a height difference of about 3002 m. A traditional manual
survey cannot be performed here, and single remote sensing technology is not comprehensive
enough to identify potential landslides on such high and steep slopes. In this paper, an integrated
approach with multi-remote sensing techniques was proposed to identify potential landslides of
the Niexia slope, which combined Interferometry Synthetic Aperture Radar (InSAR), airborne Light
Detection and Ranging (LiDAR), and optical remote sensing technologies. InSAR technology was
used to monitor the small displacements of the whole slope, and three potential landslides on
Niexia slope were identified. The maximum cumulative displacement reached up to 11.9 cm over
1 year. Subsequently, high-resolution optical remote sensing images acquired by remote sensing
satellites and a Digital Elevation Model (DEM) without vegetation influence obtained by LiDAR were
used to finely interpret the sign of landslide micro-geomorphology and to determine the potential
landslide geometry boundaries. As a result, four and nine potential landslides with landslide micro-
geomorphic features were identified, respectively. Finally, the identification results of the three
techniques were fused and analyzed to assess the potential landslides on the Niexia slope. We
compared the results from multi-remote sensing technologies, showing that the three techniques have
advantages and disadvantages in terms of monitoring objects, monitoring range, and monitoring
accuracy. The integrated use of these three technologies can identify and monitor potential landslides
more comprehensively, which could play an important role in the future.

Keywords: interferometric synthetic aperture radar (InSAR); airborne light detection and ranging
(LiDAR) technology; optical remote sensing; Niexia slope

1. Introduction

The data show that between 2004 and 2010, there were a total of 2620 fatal landslides,
resulting in a record 32,322 deaths and between January 2004 and December 2016, and a
total of 55,997 people lost their lives in 4862 different landslides [1,2]. High mountain and
valley areas cause a large number of landslides due to their complex topographic conditions.
For example, the landslide in the Pink Mountains of Canada in 2002 had a height difference
of about 3002 m and a movement distance of about 2 km [3]. The landslide in Xinmo Village
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in 2017 caused a 2 km blockage of the river and buried more than 100 people [4]. The
Anangzhai ancient landslide occurred on 17 June 2020, causing a weir, leaving 15 people
stranded and 1 person lost [5]. The Tupul landslide in Manipur, India, in June 2022,
wiped out the under-construction Tupul railway station and caused the loss of more than
54 lives [6]. These slopes are located in areas with steep slope terrain, dense vegetation
coverage, and a large height difference. Simultaneously, the disasters are sudden, highly
destructive, and strongly concealed, posing a severe threat to the safety of local residents
and causing huge losses to economic properties. Therefore, comprehensively identifying
and monitoring potential landslides on high and steep slopes is of great importance.

Remote sensing technology can overcome the problem that traditional survey methods
cannot identify potential landslides in high mountain valley areas. Niexia slope, with steep
slope terrain and dense vegetation coverage, has a height difference of about 3002 m.
In recent years, the usage of remote sensing technology for landslide identification and
monitoring has been increasing [7,8]. Among them, InSAR technology, which can conduct
displacement identification over a wide area with high accuracy and is not affected by
weather conditions, is applied by many researchers for the identification of the early stage
of potential landslides [9–20]. With a good vegetation penetration ability, the LiDAR
technology can obtain DEM with geomorphic features, which has also gradually been
applied in landslide identification and boundary determination [21–32]. In real-time, the
high-resolution optical images that are acquired by remote sensing satellites can well
reflect the geomorphological characteristics of landslides and become an important tool for
researchers to identify landslide boundaries and conduct the spatial and temporal evolution
analysis of landslides [3,33–42]. For the Jiaju landslide, which is located on the Niexia
slope, a number of scholars have also conducted related studies; for example, Yin et al.
(2010) combined GPS and InSAR techniques to monitor the vertical and horizontal slip
rates in its northern and southern regions [43]; Dong et al. (2008) identified its surface
displacement based on the improved coherent scatterer InSAR (CSI) technique [44]; and
Ao et al. (2019) combined geological data and SAR images to reconstruct 3D displacement
fields to identify their 3D displacement processes [45]. The above three studies show that
the displacement rate in the northern region was greater than that in the southern region
in the Jiaju landslide. The aforementioned literature review shows three remote sensing
techniques that have advantages and disadvantages. InSAR technology can identify small
displacements. LiDAR technology and optical remote sensing can represent the landslide
landscape. LiDAR technology can remove the influence of vegetation. However, a single
remote sensing technique is not comprehensive enough to identify potential landslides on
high and steep slopes in mountainous areas [46,47] The integration of the three techniques
to evaluate potential landslides on high and steep slopes deserves further research.

This paper proposes an integrated approach with multi-remote sensing techniques
to identify potential landslides of the giant Niexia slope. InSAR technology was used to
monitor small displacements of the slope, and the optical remote sensing image and LiDAR
technique were based on micro-geomorphology for the fine interpretation of potential
landslide boundaries. LiDAR technology removes the influence of vegetation. The com-
bined use of the three techniques can more comprehensively identify and monitor potential
landslides on high and steep slopes.

2. Study Area and Datasets
2.1. Study Area

The study area is located in Danba County, in the southwestern part of Sichuan
Province, China (Figure 1a). Danba County is a typical alpine valley landscape adjacent
to Jinchuan County, Daofu County, and other counties. As shown in Figure 1, the blue
dashed box is the coverage area of SAR images (Figure 1b). The study area, about 14 km
from Danba County, is mainly the Niexia slope located in the upper part of the Dajinchuan
River, with dense vegetation cover inside the area and erosion of the slope toe by the
Dajinchuan River (Figure 1c). The lowest elevation of the Niexia slope is 1897 m, and the
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highest elevation reaches 4593 m (Figure 1d). This region belongs to the Tibetan plateau-
type monsoon climate, the annual precipitation is 600 mm, and the sunshine is sufficient.
The complex geographical environment and climatic conditions make the study area a
geohazard-prone area [48].

Figure 1. (a) Danba County basic location; (b) SAR image coverage and basic location of the study
area; (c) optical image covering the study area; (d) topographic and elevation information of the
study area.

2.2. Datasets

Sentinel-1, an earth observation satellite launched by the European Space Agency
(ESA) in 2014, is carrying C-band with a revisit cycle of 12 days. Twenty-nine Sentinel-1
ascending images from 26 February 2020 to 8 February 2021 were acquired covering the
study area. The main parameters are shown in Table 1. The DEM used is the Shuttle Radar
Topography Mission (SRTM) data with 30 m spatial resolution, which is mainly measured
jointly by the National Aeronautics and Space Administration (NASA) and the National
Imagery and Mapping Agency (NIMA) [49].

Table 1. Satellite data main parameters.

Parameter Description

Orbit direction Ascending
Temporal coverage 26 February 2020–8 February 2021
Wavelength 5.6 cm
Polarization VV
Azimuth/Range pixel spacing 13.99 m/2.33 m
Number of images 29
Incidence/Azimuth angle 39.27/90 degree

LiDAR technology with a good vegetation penetration ability can obtain DEM with
real micro-landscape features. The LiDAR point cloud data used in this study were acquired
in 2018 with a resolution of 0.5 m. First, the ground point data are generated by filtering the
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obtained point cloud data, and then the DEM is obtained by spatial interpolation. Finally,
the obtained DEM data are imported into SAGA software for processing to obtain the Sky
View Factor (SVF) [50], as it is more effective in showing the historical displacement area
and identifying slope top scars and tension cracks compared with hillshade maps [51].

The optical remote sensing image used for the study was acquired by the Planet Scope
Scene satellite on 22 December 2021 with a resolution of 3 m (Planet Scope Scene satellite is
free for optical images with a resolution of 3 m and below). This time has less vegetation
cover and no cloud cover, which facilitates the visual interpretation based on landslide
micro-geomorphology.

3. Methodology

In this paper, an integrated multi-remote sensing technologies approach was proposed
to identify the potential landslides on the giant Niexia slope. The technical flowchart of the
approach is presented in Figure 2, the main steps are as follows:

Figure 2. The technical flowchart of the integrated multi-remote sensing technologies approach.

The Stacking-InSAR method was used to perform the time series InSAR analysis.
Multiple SAR images were acquired by SAR satellites, and interferograms were generated
by preprocessing based on multiple SAR images and external DEM, the threshold on per-
pendicular is 180 m and the temporal baseline is 30 days. Filtering and phase unwrapping
were performed to improve the signal to noise ratio of the interferograms and to calculate
unwrapped phase signal. By the above processing, unwrapped interferograms were ob-
tained [52–57]. The cumulative displacement were achieved by stacking [58] processing in
the GAMMA software.
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Second, for optical remote sensing technology, the optical remote sensing images were
acquired by the Planet Scope Scene satellite. This technology was used to interpret potential
landslides boundary based on landslide micro-geomorphology [3,59].

Third, for LiDAR technology, the point cloud data were acquired by LiDAR flight,
then processed to obtain a high-resolution DEM with micro-geomorphic features. This
technology was used to finely interpret the sign of landslide micro-geomorphology and to
determine the potential landslide geometry boundaries [21,25,60]. LiDAR technology can
remove the influence of vegetation.

Finally, we combined the recognition results of the three techniques for analysis.
Through multi-source remote sensing analysis (InSAR technology, optical remote sensing,
LiDAR technology), we found that each of the three remote sensing techniques has its own
advantages and disadvantages for monitoring objects, monitoring range, and monitoring
accuracy, and these are applicable to different situations (InSAR technology for the ongoing
displacement area; optical remote sensing for the ongoing displacement area and the
historical displacement area; LiDAR technology for the historical displacement area).

4. Results

Figure 3 shows the time series displacement results of the study area in the past year
obtained by the Stacking-InSAR technique. This technique can make the displacement
interferograms more continuous in time and space [61,62], and has better performance
in low-coherence areas [63]. We identified three potential landslides with significant
displacement on the Niexia slope by Stacking-InSAR technique. Among them, Zone I,
located on the lower left side of the slope is about 900 km2, with the height difference
being about 618 m. Zone II is the potential landslide with the largest displacement range,
located in the middle and upper part of the slope, with an area of about 7700 km2, and the
height difference is about 1666 m. The potential landslide Zone III is the most significant
displacement of the potential landslide, located on the lower right side of the slope, with an
area of about 1100 km2, and the height difference is about 507 m. In addition, P1, P2, and
P3 were selected for time series displacement analysis on the three potential landslides of
Zones I, II, and III, respectively (Figure 3b). The cumulative displacement at points P1, P2,
and P3 are 5.8 cm, 8.3 cm, and 11.9 cm, respectively. The displacement characteristics are
presented as follows: from 26 February 2020 to 1 May 2020, the displacement of landslides
was slow, and it started to increase from 1 May 2020 to 1 October 2020; the displacement
gradually levelled off from 1 October 2020 to 8 February 2021, and cumulative displacement
reached the maximum on 8 February 2021.

High-resolution optical remote sensing images can clearly represent landslide micro-
geomorphology, such as landslide fractures. As for some areas that have experienced
historical displacement damage, we can perform potential landslide boundary interpre-
tation based on the landslide back wall, shear cracks on both sides, landslide sidewalls,
landslide terraces, and closed depressions [3,59]. In this study, Planet Scope Scene optical
remote sensing image with a resolution of 3 m covering the study area dated 22 December
2021 is used, and the potential landslide boundary is decoded for the study area based
on the above landslide micro-geomorphic features. The recognition results are shown in
Figure 4, a total of four landslides with distinct landslide geomorphic features were identi-
fied, and some of these landslides’ micro-geomorphology are shown in detail. The detailed
view of all zones shows that landslide shear cracks can obviously be seen. Moreover, there
is an obvious landslide back wall and landslide sidewalls left after the collapse of historical
landslides in zone a2 and a3. Besides, there is a clear difference between the soil quality in
the a2 zone and the surrounding soil quality.
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Figure 3. Time series InSAR displacement distribution of the Niexia slope: (a) cumulative displace-
ment obtained by the Stacking-InSAR technique; (b) time series displacement of P1, P2, and P3.

Figure 4. Micro-geomorphology identification of sub landslides from optical remote sensing based
on: (a1) shear cracks (a2); landslide back wall; (a3) landslide sidewalls.
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The vegetation coverage in high mountain and valley areas is dense, and LiDAR
technology can obtain DEM that reflects realistic geomorphic features because of its good
vegetation penetration ability. Potential landslide boundary interpretation can be per-
formed for landslide micro-geomorphology such as landslide walls, trailing edge cracks,
landslide terraces, loose accumulations, and landslide shear cracks left on the surface after
historical displacement damage [25,29,60]. The recognition result is shown in Figure 5, and
the landslide micro-geomorphic features are clearly visible on the DEM after the removal
of vegetation; landslide sidewalls as shown in a1, shear cracks as shown in a2, and trailing
edge cracks as shown in a3. From the detailed view shown in the a3 area, it is obvious that
the loose accumulation left in the lower half of the trailing edge cracks can be seen; based
on these landslide micro-geomorphologies, nine landslides are identified overall through
visual interpretation.

Figure 5. Micro-geomorphic identification of sub-landslides based on SVF: (a1) Landslide sidewalls,
(a2) shear cracks, (a3) trailing edge cracks.

5. Discussion
5.1. Comparative Analysis of Multi-Source Remote Sensing Results

Overlaying the recognition results of the above three techniques on SVF (Figure 6), the
black dashed line is the active landslide boundary identified by InSAR technology, the light
brown surface is the landslide boundary interpreted by LiDAR technology, and the red
line segment is the landslide boundary interpreted by optical image. As can be seen from
Figure 6, InSAR technology identified three landslides, while LiDAR technology identified
nine landslides, and optical imaging identified four landslides; the three technologies
together identified three same landslides. By combining the results, it is inferred that the
main reason for this discrepancy is caused by the different advantages and disadvantages
of InSAR, LiDAR, and optical remote sensing technologies in landslide identification,
interpretation standards, and the situations in which they are applied. Among them, the
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InSAR technology is mainly used for landslide identification and boundary determination
by the displacement magnitude of the landslide body. However, optical remote sensing
images and DEM with real micro-geomorphic features obtained by LiDAR technology are
based on landslide micro-geomorphology for potential landslide boundary interpretation.
Therefore, for some landslides in areas with dense vegetation cover and some ancient
landslides where the original geomorphology has changed due to natural and man-made
factors, it is difficult to interpret the boundaries of potential landslides with an optical image,
while LiDAR technology can reduce the influence of these factors to a great extent due to
its good vegetation penetration ability, so the number and boundaries of the interpretation
results of the two technologies may also be different.

Figure 6. Comparison of identification boundaries from three technologies: (a,b) were selected for
detailed comparison.

In addition, the details of the three technologies at the landslide boundary interpreta-
tion are shown with two of the typical areas as examples. As shown in Figure 7, in the same
area, the InSAR technology recognition result graph is not reflected in the geomorphic fea-
tures of the landslide, but more in the reflection of the landslide displacement area and the
magnitude of the displacement. Landslide geomorphic features such as landslide trailing
edge cracks, secondary sliding, and landslide sidewalls can be clearly seen on the SVF from
Figure 7(a3,b3), which the optical image cannot represent. As can be seen in Figure 7(a3,b3),
the SVF has clear geomorphic features, such as landslide sidewalls, landslide trailing edge
cracks, and secondary sliding formed by historical landslide displacement damage, while
the optical image is not as intuitive and clear in the representation of these features as the
SVF. Therefore, LiDAR technology undoubtedly has more advantages in the interpretation
of potential landslide boundaries, and the interpreted boundaries are more detailed.
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Figure 7. Detailed comparison of the three results from the multi-remote sensing technologies:
(a1,b1) is the result of InSAR, (a2,b2) is the result of optical image sensing, (a3,b3) is the result
of LiDAR.

5.2. Comparison of Three Remote Sensing Techniques

From the analysis above, we can see that the three technologies, InSAR, LiDAR, and op-
tical remote sensing, have their own advantages and disadvantages, and they are different
in terms of monitoring objects. InSAR technology can monitor small displacements, which
has the advantages of high monitoring accuracy, wide monitoring range, independence
of weather, and time series analysis ability. However, InSAR technology cannot identify
landslides with no signs of displacement and cannot reflect landslide micro-geomorphology.
Optical remote sensing images mainly monitor the ongoing displacement area and his-
torical displacement area and have the advantages of a wide monitoring range, reflecting
the micro-geomorphology of landslides, and allowing analysis of the spatial and temporal
evolution of landslides, but they are easily affected by vegetation, human engineering,
and cloudy weather. The main monitoring object of LiDAR technology is the historical
displacement area. It has the advantages of not being affected by vegetation and reflecting
landslide micro-geomorphology. However, the acquisition cost of this technology is high,
and it is difficult to perform large-scale landslide identification (Table 2).

Table 2. Advantages and disadvantages of the three remote sensing techniques and monitoring objects.

Methodology Monitoring Objects Advantages Disadvantages

InSAR The ongoing
displacement area

All-day, all-weather, wide
coverage, high accuracy, monitor
small displacement, can identify
landslides based on the level of
displacement, and conduct time
series analysis

Cannot identify
landslides with no signs
of displacement, cannot
reflect landslide
micro-geomorphology

Optical Image

The ongoing
displacement area,
the historical
displacement area

Wide coverage, landslide
identification based on landslide
micro-geomorphology, spatial and
temporal evolution analysis

Easily affected by
vegetation, human
engineering, and
cloudy weather

LiDAR The historical
displacement area

Removing the influence of
vegetation and obtaining DEM
with realistic geomorphic features

High cost and difficult to
identify landslides on a
large scale

The three techniques have advantages and disadvantages in terms of monitoring
objects, monitoring range, and monitoring accuracy. The integration of the three techniques
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is certainly more comprehensive for potential landslide identification on high and steep
slopes with dense vegetation cover.

6. Conclusions

The Niexia slope is located in the alpine valley area. It is difficult for a single remote
sensing technology to identify this potential landslide with dense vegetation cover and
on steep slopes. In this study, InSAR technology, LiDAR technology, and optical remote
sensing images have been used to identify the landslides of the Niexia slope. Based on the
different measuring objects, InSAR technology identified three potential landslides, optical
remote sensing image identified four potential landslides, and LiDAR technology identified
nine potential landslides. Finally, the identification results of the three technologies were
combined and analyzed. The results show that the combination of three remote sensing
techniques can further improve the comprehensiveness of potential landslide identification
on the Niexia slope.

InSAR technology has the advantages of all-weather and all-day, ability to identify
the area that is being deformed, and up to millimeter-level accuracy. However, it cannot
effectively identify landslides without obvious signs of displacement. Optical remote
sensing images have the advantages of wide coverage, reflecting the landslide micro-
geomorphology, and analyzing the spatial and temporal evolution of landslides. However,
for areas with dense vegetation cover and seriously affected by cloud weather and human
activities, the quality of optical images will be seriously affected. Because LiDAR technology
has the ability of good vegetation penetration, it can effectively obtain DEM that can reflect
the realistic geomorphic features. However, the acquisition of LiDAR data requires a lot of
time and money, so it is difficult to apply to large-scale landslide identification. The three
technologies have their own advantages and disadvantages. The combination of these
three technologies to identify potential landslides on high and steep slopes will be more
comprehensive. This study provides an important case for future landslide identification.
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