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Abstract: VIS-NIR-SWIR hyperspectroscopy is a significant technique used in remote sensing for
classification of prediction-based chemometrics and machine learning. Chemometrics, together with
biophysical and biochemical parameters, is a laborious technique; however, researchers are very
interested in this field because of the benefits in terms of optimizing crop yields. In this study, we
investigated the hypothesis that VIS-NIR-SWIR could be efficiently applied for classification and pre-
diction of leaf thickness and pigment profiling of green lettuce in terms of reflectance, transmittance,
and absorbance data according to the variety. For this purpose, we used a spectroradiometer in the
visible, near-infrared, and shortwave ranges (VIS-NIR-SWIR). The results showed many chemometric
parameters and fingerprints in the 400–2500 nm spectral curve range. Therefore, this technique,
combined with rapid data mining, machine learning algorithms, and other multivariate statistical
analyses such as PCA, MCR, LDA, SVM, KNN, and PLSR, can be used as a tool to classify plants
with the highest accuracy and precision. The fingerprints of the hyperspectral data indicated the
presence of functional groups associated with biophysical and biochemical components in green
lettuce, allowing the plants to be correctly classified with higher accuracy (99 to 100%). Biophysical
parameters such as thickness could be predicted using PLSR models, which showed R2

P and RMSEP

values greater than >0.991 and 6.21, respectively, according to the relationship between absorbance
and reflectance or transmittance spectroscopy curves. Thus, we report the methodology and confirm
the ability of VIS-NIR-SWIR hyperspectroscopy to simultaneously classify and predict data with high
accuracy and precision, at low cost and with rapid acquisition, based on a remote sensing tool, which
can enable the successful management of crops such as green lettuce and other plants using precision
agriculture systems.

Keywords: absorbance; fingerprint; leaf thickness; multivariate analysis; PLSR analysis; precision
agriculture; predictive model; reflectance; remote sensing

1. Introduction

Lettuce (Lactuca sativa L.) is a vegetable of great importance for a healthy diet due to
its nutritional composition [1,2]. Green lettuce varieties are among the most economically
important and popular vegetables consumed in Brazil and around the world. Their annual
production worldwide is estimated at 28 million tons, and many studies have applied
different techniques and tools to correctly predict the chemometric parameters (biophysical
and biochemical) of these plants (FAO, 2022).

Leaf pigments such as carotenoids and chlorophyll directly influence plant biochemi-
cal processes and therefore crop development and nutritional value, and the amount of
pigments is influenced by the plant variety and environmental conditions [3,4]. In Brazil,
green lettuce varieties, with a higher content of green pigments and carotenoids, as well
as increased leaf thickness (which influences additional light-scattering structures) and
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other sensory characteristics (i.e., crispness and succulence), are among the most popular
vegetables consumed [5,6]. Accordingly, predicting and classifying green lettuce varieties
is of great interest for indoor farms, greenhouses, and classical agricultural production, as
different varieties have different biophysical and nutritional properties, and the knowledge
of these differences can enable the production of specific varieties.

VIS-NIR-SWIR spectroscopy is a significant technique for managing green lettuce
crops using precision agriculture systems [7–9]. For example, high-throughput sensor
spectroradiometer technology can be used to monitor reflectance properties based on
hundreds of contiguous narrow bands [10–12]. Furthermore, these remote sensing tools
enable rapid and nondestructive classification and monitoring of lettuce and other vegeta-
bles [8,10,13–15]. The principle of their operation is based on interactions between leaves
and the vibrational relationship of light with molecular organic bonds, mainly –C–H, –N–H,
–COOH, –NH3, and –O–H. This results in vibrational excitation at specific wavelengths
(fingerprints) in the visible (VIS: 400–700 nm), near-infrared (NIR: 700–1100 nm), and
shortwave infrared (SWIR: 1100–2400 nm) spectral regions. For example, according to
pioneering studies [7–9,16], VIS–NIR–SWIR-based reflectance (R), transmittance (T), and
absorbance (A) spectra are associated with certain fingerprints and promote high accu-
racy and precision, reduced risk of bias and noise, and high repeatability compared with
other methods based on an integrating sphere for the classification and prediction of many
chemometric attributes in plants [7–9,16]. In addition, with these remote sensing tools,
there is no need to prepare reagents or exert extensive labor using high-cost equipment
(e.g., UHPLC, 1H-NMR, FTIR, or DRX) for the acquisition of samples/spectra to classify
plants [8,16].

An ever-expanding method is the use of data mining and machine learning to directly
classify models, which are frequently used along with plant parameters in remote sensing
tools [15,17,18]. In this sense, the portability, speed, accuracy, and sensitivity of spectro-
radiometer devices, combined with the capacity of algorithms and multivariate tools for
modeling [7,8,10,14,18–20], allow advances in the accuracy of classification, chemometric
analysis, and monitoring of plant growth and development, as well as thickness charac-
teristics in leaves. Thus, this method can be used to classify and predict many commonly
investigated biophysical plant parameters by implementing remote sensing tools [7,8,21],
including biochemical and morphological attributes, facilitated by the new era of remote
sensing [21–25]. For example, a calibration model can be used to predict the variable of
interest in unknown samples based on individual and specific spectral signatures in green
lettuce following the flowchart proposed in Figure 1.
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The main objectives of this study were (a) to evaluate the prediction of biophysical
and biochemical components of green lettuce by VIS-NIR-SWIR hyperspectral reflectance,
transmittance, and absorbance combined with machine learning models, and (b) to eval-
uate the capacity of these biophysical and biochemical attributes to classify green lettuce
varieties. For this purpose, the full spectra of the VIS-NIR-SWIR hyperspectroradiometer
(400–2400 nm) were analysed in green lettuce plants.

2. Material and Methods
2.1. Plant Material, Growth Conditions, and Experimental Design

Experiments were conducted at the Department of Agronomy at the State University
of Maringá, Maringá, Paraná, Brazil. Lettuce plants (Lactuca sativa L.) grown in classical
hydroponic culture in a greenhouse were analysed. The experimental design was a random
scheme with 3 varieties: Lisa, Crespa, and Americana. A total of 600 samples were used
to collect data. On the 21st day after hydroponic cultivation, the samples were analysed
(Figures 1 and 2).
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2.2. Extraction of Leaf Pigments

Quantification of carotenoids (Car) and chlorophylls (a, b, and a+b) was carried out by
crushing leaf segments (1 cm2) with 2 mL of methanol. The extracts were then centrifuged at
15,000 rpm for 6 min and transferred to a 1.5 mL tube. All readings and quantifications were
performed exactly as described in [26]. The concentrations of chlorophylls and carotenoids
(Chl a, Chl b, Chl a+b, and Car) were expressed in terms of area (mg cm−2) and mass
(mg g−1) [27].

2.3. Optical Microscopy Analysis

Cross-sections of fresh leaves (hand cut) and leaf segments (1 cm2) were fixed with
Karnovsky’s solution, dehydrated in a series of increasing concentrations of ethanol (50, 70,
80, 90, and 100% (3 times)), and infiltrated with methyl methacrylate (Leica Historesin®) [26].
Block sectioning was performed on a rotary microtome (Eikonal, São Paulo, SP, Brazil) and
dyed with toluidine blue at pH 4.5. Images were analysed exactly as described in [26] by
Fiji ImageJ v.2.9.0 software [28].
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2.4. Optical Reflectance, Transmittance, and Absorbance Properties of Leaves

Reflectance (R) and transmittance (T) were measured using 2 plant probes coupled
with spectroradiometers (FieldSpec 3, ASD Inc., Boulder, CO, USA). An ASD spectrora-
diometer light beam plant probe was coupled (and calibrated with a standard Spectralon®

dish as 100% reflectance) to another probe at the opposite leaf surface with the light off to
simultaneously measure leaf reflectance and transmittance (350–2500 nm), as described
in [7,8,16]. Light absorption (A) was estimated as A = 1 − (R + T) [8,16], and the measure-
ment and statistical analysis scheme are shown in Figure 1.

2.5. Statistical Analyses

All statistical analyses were performed using XLSTAT (Addinsoft, New York, NY,
USA), Excel 2021® (Microsoft Office Inc., Torrance, CA, USA), The Unscrambler X 10.4®

(CAMO Software, Oslo, Norway), Statistica® 12.0 software (Statsoft Inc., Tulsa, OK, USA),
SigmaPlot® 12.0 (Systat, Santa Clara, CA, USA), and the R package (R Core Team, 2020;
https://www.R-project.org; accessed on 5 October 2022) [29].

2.5.1. Descriptive and Univariate Statistical Analyses

Mean and standard error, maximum, minimum, and coefficient of variation (CV, %)
were calculated, following [30]. CV was classified exactly as described in [8]. The data
(pigments and anatomy) were submitted to one-way ANOVA for mean comparisons.
Duncan’s post hoc test was considered significant at p < 0.01 [31].

2.5.2. Analysis of Leaf Spectral Fingerprints

The hyperspectral curves, parameters derived from the hyperspectral data, data
mining, and machine learning algorithms were used for decision analysis. The effect of
the green lettuce variety (Lisa, Crespa, or Americana) on the leaf traits was analysed by
one-way analysis of variance (ANOVA). The effects of the variety on the reflectance (R),
transmittance (T), and absorbance (A) profiles were assessed using PERMANOVA exactly
as described in [8,29].

2.5.3. Principal Component Analysis (PCA)

Principal component analysis (PCA) (p < 0.05) was performed using The Unscrambler
X software, version 10.4 (CAMO Software, Oslo, Norway). To avoid underfitting and
overfitting the ideal number of PCs, we assumed the number of PCs corresponding to the
first maximum value of the overall accuracy to classify the base PCA and other statistical
methods based on data mining and machine learning as described in [32].

2.5.4. Multivariate Curve Resolution (MCR)

Multivariate curve resolution (MCR) was used as a group of techniques, also known
as blind source separation or self-modelling mixture analysis. The MCR components
were used to an unresolved extent using a minimal number of assumptions about the
biophysical (thickness and interaction of light with matter) and biochemical (pigments
and other molecules) properties of the samples [10]. In addition, variable importance in
projection (VIP) was selected after the analysis based on hyperspectral curves [8].

2.5.5. Linear Discriminant Analysis (LDA)

LDA was carried out to obtain models to classify each reflectance, transmittance, and
absorbance spectrum of green lettuce. Before obtaining the discriminant models, the PCA–
LDA procedure (3 components) was performed, allowing the selection of wavelengths
that would best explain the differences between varieties [33]. Linear, quadratic, and
Mahalanobis models of analysis were applied to classify green lettuce using machine
learning algorithms [14,34].

https://www.R-project.org
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2.5.6. Support Vector Machine (SVM)

SVM analysis is a supervised, kernel-based nonlinear learning method that uses
nuclear techniques to manage complex nonlinear problems with good performance [32].
The function can take many forms, thus providing the ability to handle nonlinear regression
cases, as described in [8]. The final decision function of the SVM is determined by only a
few support vectors (machine learning). The complexity of the calculation depends on the
number of support vectors [35].

2.5.7. K-Nearest Neighbour (KNN)

KNN is a supervised learning algorithm that can describe nonlinear relationships
between collected samples and hyperspectral data, and it is widely used to solve clas-
sification problems. KNN works as follows: (1) given test samples, a specific distance
evaluation method is used to determine the k samples closest to them, and (2) prediction
classification is performed based on these k samples. The KNN results strongly depend on
the choice of k-based prediction model. The data were processed by k-linear, k-sigmoid,
k-log, and k-weighted models based on the hyperspectral data [36]. KNN algorithms were
applied to test different functions for each classifier to build the prediction model and
different numbers of VIPs and PCs were used to perform the sample classification with
higher accuracy.

2.5.8. Partial Least Squares Regression (PLSR) by Analysis of Spectroscopy Data

Hyperspectral data were centred on the mean and subjected to PLSR. To obtain
prediction models of thickness based on biophysical and biochemical compounds, the
spectral data of the different parameters of 600 samples were divided into two groups:
75% (450) of the samples in the first group, with the aim of creating the model (training),
and the remaining 25% (150) in the second group, with the aim of testing (prediction)
to adjust the model, as described in [7,8]. This proportion (75:25) was selected to assure
estimates that were (1) valid, in the sense that they did not overestimate the accuracy (i.e.,
did not underestimate the approximation error), and (2) the most accurate among all valid
estimates (i.e., their overestimation of the approximation error was the smallest possible),
based on a previous analysis described in [30,31,37–40].

Calibration (Cal) and cross-validation (Cva) were used to predict the quality attributes
based on thickness (biophysical and biochemical compounds in leaves) with respect to
data mining and machine learning algorithms. In addition, the predictive ability of the
calibration model was evaluated by calculating metrics such as coefficient of determination
(R2), offset, root mean square error (RMSE), and ratio of performance to deviation (RPD),
and bias was used to assess the quality, precision, and accuracy of the model, as described
in [33,41].

3. Results
3.1. Descriptive Analysis-Based Biochemical and Biophysical Attributes of Lettuce

The coefficient of variation (CV%) of the leaf pigment base area, mass, and thickness
parameters of the 3 lettuce varieties, Lisa, Crespa, and Americana, are given in Figure 3
and Table 1. The CV values were between 3.7 and 25.8% (Table 1). For example, of the
11 parameters analysed and reported, 9 show CV values classified as low to high, with
2 low-medium (Chl a/Chl b, Car/Chl a+b), 4 medium (Chl a (mass), Chl b (mass), Chl
a+b (mass), thickness), and 5 high (Chl a (area), Chl b (area), Chl a+b (area), Car (area),
Car (mass)). In addition, significant differences (p < 0.01) for many parameters based on
pigmented area and mass were noted, except for the Car/Chl a+b ratio (p > 0.05), as shown
in Table 1.
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Figure 3. Microscopy of fresh leaf cross-section (top), historesin-fixed (middle), and phase con-
trast analysis (bottom) of representative leaves from Lisa, Crespa, Americana lettuce varieties.
Scale bar = 150 µm.

Table 1. Descriptive analysis of lettuce plants. Photosynthetic pigment content expressed by leaf area
(mg m−2), mass (mg g−1), and thickness (µm). Different letters in rows show significant differences
between Lisa, Crespa, and Americana lettuce varieties (Duncan’s test; p < 0.01) (n = 600 ± SE).

Parameter Lisa Crespa Americana Minimum Maximum CV(%)

Chl a (mg m−2) 339.2 ± 0.70 c 442.8 ± 1.38 b 630.0 ± 1.36 a 283.8 735.4 25.8
Chl b (mg m−2) 181.0 ± 0.37 c 213.5 ± 0.61 b 307.2 ± 0.61 a 153.5 353.4 23.1

Chl a+b (mg m−2) 520.2 ± 1.00 c 656.3 ± 1.98 b 937.2 ± 1.97 a 439.2 1088.8 24.9
Car (mg m−2) 121.0 ± 0.28 c 157.4 ± 0.45 b 211.5 ± 0.45 a 93.2 244.6 23.1
Chl a (mg g−1) 17.2 ± 0.06 c 27.1 ± 0.13 a 20.4 ± 0.05 b 13.7 38.9 19.9
Chl b (mg g−1) 9.2 ± 0.03 b 13.0 ± 0.06 a 9.9 ± 0.02 b 6.7 18.7 16.5

Chl a+b (mg g−1) 26.4 ± 0.08 c 40.1 ± 0.19 a 30.3 ± 0.07 b 20.4 57.7 18.7
Car (mg g−1) 6.1 ± 0.02 c 9.6 ± 0.04 a 6.8 ± 0.02 b 4.9 13.5 20.7
Chl a/Chl b 1.9 ± 0.01 b 2.1 ± 0.01 a 2.1 ± 0.01 a 1.6 2.2 4.7
Car/Chl a+b 0.2 ± 0.01 a 0.2 ± 0.01 a 0.2 ± 0.01 a 0.2 0.3 2.6

Thickness (µm) 261.1 ± 0.03 c 303.7 ± 0.29 b 368.7 ± 0.07 a 258.7 375.7 14.3

Biophysical (anatomical) analysis revealed different characteristics between Lisa and
Americana varieties, such as increased heterogeneity, anisodiametric cells, and lacuna
in tissues from homogeneous, isodiametric, and compact parenchyma tissues in leaves
(Figure 3). Anatomical characteristics, such as the distribution and format of cells in the
mesophyll and leaf thickness (palisade and spongy) of parenchyma cells, showed responses
to higher concentrations of chlorophylls (pigment vs. thickness-based area and mass)
in green lettuce (Figure 3). The data show that leaf thickness increased 41.2 and 44.5%
compared to thickness and Chl a+b in Lisa and Americana (Table 1, Figure 3).

3.2. Hyperspectral Analysis of Leaves

Leaf hyperspectral reflectance (R), transmittance (T), and absorbance (A) data for the
three varieties of lettuce used for cultivation (600 samples; average of hyperspectroscopy
data) are shown in Figure 4. PERMANOVA discriminated significance among wavelengths



Remote Sens. 2022, 14, 6330 7 of 18

from the spectra (F: 4.83, 3.62, 4.28; p < 0.001) (Figure 4A–C). There were significant and
slight variations in R, T, and A hyperspectral parameters, particularly in the visible (VIS)
region (400–700 nm), owing to leaf pigments such as carotenoids and chlorophyll, and
in the near-infrared (NIR) region (700–1100 nm), due to structural differences in the leaf
mesophyll. The majority of functional groups (molecular vibrational) distinguished in the
shortwave infrared (SWIR) region (1150–2400 nm) showed differences between varieties.
Lisa and Crespa showed increased reflectance and transmittance in the green, NIR, and
SWIR spectral regions, while the values were lower for the absorbance spectra of increased
thickness and pigment in leaf tissue (Figure 4).
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Figure 4. Average foliar hyperspectral factor profiles of fully expanded leaves of Lisa, Crespa, and
Americana varieties of green lettuce. (A) Reflectance, (B) transmittance, and (C) absorbance of adaxial
light source. F- and p-values from permutation analysis of variance (PERMANOVA) of full range
(400–2400 nm) hyperspectral reflectance, transmittance, and absorbance of lettuce leaves reported in
top-right or bottom-right corner of panel (n = 600).

The near-infrared region (700–1300 nm) showed reflectance of up to 47% of incident
light and absorbance, with a maximum of 15% at 710 nm, progressively decreasing to
1058 nm and reaching values close to zero (Figure 4). At approximately 1300–2500 nm, the
shortwave infrared region (1300–2500 nm), absorbance increased and reflectance decreased
(Figure 4A,B), particularly for the Americana variety (Figure 4C).

3.3. Principal Component Analysis (PCA)

The first, second, and third principal components (PCs) represent 99.8, 100, and 100%
of reflectance, transmittance, and absorbance, respectively, of the total variance that can be
explained (Figure 5).

PCA at 400–2400 nm indicated the formation of distinct clusters between varieties
through the analysis of reflectance, transmittance, and absorbance data (Figure 6). PC1 to
PC3 score plots show a dense clustering formation with clear boundaries between the three
lettuce varieties, with large dispersion along with the first three PCs. Wavelengths also
contribute to pigments, structural components, and water based on vibrational bands.

The reflectance of the β-coefficients showed that the main variance occurred for
the green (535–580 nm) and NIR-SWIR (1300–1800 nm) bands, but with contributions
from almost all wavelengths in the composition by green and red bands (535–580 and
660–680 nm) in PC1, SWIR (1900–2400 nm) in PC2, and green (535–580 nm) and NIR
(710–1400 nm) in PC3 (Table 2, Figure 6A,B).
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Table 2. Most responsive variable importance for projection (VIP) values by wavelength selected
according to the first three regression coefficients for principal component (PC) and multivariate
curve resolution (MCR) components by spectroscopy from reflectance, transmittance, and absorbance
of leaves.

Spectroscopy Multivariate Selection Most Responsive VIP by Wavelength (nm)

Reflectance

PC1 12 485, 552, 680, 710, 1079, 1185, 1392, 1440, 1546, 1683, 1923, 2199
PC2 7 552, 710, 1368, 1450, 1831, 2030, 2228
PC3 11 470, 555, 680, 705, 920, 968, 1070, 1180, 1929

MCR1 11 552, 709, 975, 1104, 1183, 1376, 1440, 1588, 1739, 1831, 2230
MCR2 8 550, 745, 1078, 1364, 1447, 1595, 1935, 2200
MCR3 9 494, 565, 661, 770, 964, 1085, 1174, 1226, 1664

Transmittance

PC1 12 550, 679, 704, 942, 1170, 1399, 1433, 1523, 1671, 1852, 1926, 2227
PC2 6 548, 676, 704, 1375, 1835, 2020
PC3 9 970, 1059, 1071, 1423, 1667, 1879, 1920, 2072, 2193

MCR1 9 552, 703, 968, 1168, 1382, 1446, 1553, 1842, 2250
MCR2 11 550, 663, 706, 995, 1166, 1397, 1512, 1680, 1861, 1933, 2142
MCR3 9 551, 755, 923, 1056, 1172, 1277, 1423, 1670, 2215

Absorbance

PC1 12 550, 674, 710, 969, 1174 1394, 1437, 1543, 1679, 1841, 1926, 2210
PC2 7 457, 550, 676, 705, 1373, 1450, 2020
PC3 12 435, 498, 550, 674, 718, 1160, 1257, 1367, 1461, 1832, 2003, 2230

MCR1 7 445, 555, 678, 704, 1375, 1833, 2265
MCR2 9 555, 708, 972, 1174, 1395, 1520, 1852, 1920, 2186
MCR3 6 445, 550, 680, 1442, 1927, 2220

A similar pattern was observed in transmittance β-coefficient spectra; the sample vari-
ety groups formed a cluster with few dispersions in the first three PCs (Table 2, Figure 6C,D)
and a dense cluster with clear boundaries between green lettuce samples. The loading plot
showed that the main variance occurred for VIS and SWIR (500–600 and 1900–2200 nm) in
PC1, higher loading in green and red bands (540–595 and 654–690 nm) in PC2, and higher
correspondence to NIR (702–1500 nm) (Figure 6C,D). In addition, the inverse of NIR-SWIR
was observed between reflectance and transmittance β-coefficients, even if similar VIP
wavenumbers were observed (Table 2, Figure 6A–D).

The absorbance spectrum range (400–2400 nm) is displayed in Figure 6E,F. The cluster-
ing formation between the Lisa, Crespa, and Americana varieties remained the same as
before, showing good dispersion with a clear boundary separation. β-coefficients showed
the full contribution of each wavelength to classification and distinct cluster formation in
PC1, PC2, and PC3 by VIS-NIR-SWIR bands.

3.4. Multivariate Curve Resolution (MCR)

Multivariate curve resolution (400–2400 nm) indicated the formation of distinct MCR
components between green lettuce varieties. The first three MCR components (MCR1,
MCR2, MCR3) were identified through the analysis of reflectance, transmittance, and
absorbance data (Figure 7). MCR1-3 did not show any overlap and explained over 98%
of the total data variance obtained for reflectance, transmittance, and absorbance at all
wavelengths analysed (Figure 7).

The MCR curves are not inversely proportional to the reflectance and transmit-
tance curves in the VIS bands (400–700 nm). For example, the regions formed by violet
(401–439 nm) and blue (440–485 nm) bands had higher and more significant contribu-
tions (p < 0.01) by classification between green lettuce varieties and showed many VIP
wavelengths to distinguish these varieties (Figures 2 and 7).
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(A) reflectance, (B) transmittance, and (C) absorbance (400–2400 nm) of lettuce plants (n = 600).

The MCR components also showed the highest values in reflectance and transmittance
of up to 355% of the incident light in the near-infrared region (700–1300 nm) and many
VIP wavelengths in relation to the absorbance spectra data (Figure 7A,C). Furthermore, the
absorbance hyperspectral data showed decreases up to 750 nm, reaching values close to
zero for MCR1-3 (Table 2, Figure 7C). On the other hand, in the SWIR region (1500–1600 nm
range, peak 1555 nm; 1900–2300 nm, peak 2110 nm), increased reflectance and transmittance
(Figure 7A,B) and increased absorbance are noted (Figure 7C). MCR analysis produced
three spectral signatures that enabled classification of each spectral band. Thus, we pro-
vide additional evidence that the data mining and machine learning results are based on
increased component values in VIS and SWIR data (Table 2, Figure 7).

3.5. Regression Coefficient (RC) and Variable Importance in Projection (VIP)

The RC and VIP values for the projection chemometrics of the PCA, LDA, and PLSR
models are shown in Table 2. Valleys and peaks of the regions where VIP and RC values
appear demonstrate a great influence, showing that machine learning and algorithms for
classification and construction of the prediction model were, in general, well dispersed
among all VIS-NIR-SWIR bands.

The VIP and RC values used for the machine learning algorithm models differed
from 6–12 wavelengths (valleys and peaks), and there were higher RCs in regions near 410
(violet), 445 (blue), 555 (green), 672 (red), 699–750 (red edge), 1330 (NIR), 1450 (SWIR), 1945
(SWIR), and 2215 (SWIR) nm (Table 2, Figures 6 and 7). Although the classification used
VIP and RC values, they demonstrated high accuracy in classifying and distinguishing
the varieties and contributed to the performance based on data mining (Table 2). In this
sense, LDA, SVM, KNN, and RPD were good examples, displaying excellent prediction
performance together with VIP values selected by wavelengths (Table 2).

3.6. Model Evaluation of Chemometric Parameters

Machine learning algorithms were applied to sample group classification using hy-
perspectral raw data and PCA data of full spectra (400–2400 nm). A general accuracy
of 99% in the 400–2400 nm range was obtained by the LDA-PLS method using the first
three PCs, carrying 99.9% of data variance. The confusion matrix shows >99.9% accuracy
for LDA-linear, contributing to lower misclassification between training and test data. In
addition, reflectance, transmittance, and absorbance showed higher accuracy in correctly
classifying green lettuce, while other machine learning algorithms did not classify with
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similar precision. Linear SVM was obtained by using three PCs, carrying 99.5 and 99%
reflectance and absorbance accuracy, to classify lettuce varieties (Figure 8).
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Figure 8. Overall accuracy of machine learning algorithms (linear discriminant analysis (LDA),
support vector machine (SVM), k-nearest neighbour (KNN)) based on hyperspectral (400–2400 nm)
analysis. First three PCA datasets were selected from training and testing to create a confusion matrix
for machine learning algorithm with higher overall accuracy. (A) Reflectance, (B) transmittance,
(C) absorbance. Blue box indicates higher accuracy/precision (accept), and red box indicates lowest
accuracy/precision (error). Total of 450 training samples and 150 test samples (n = 600).

LDA-PLS based on validation data was performed with the second dataset (27% of
the spectral curve reflectance, transmittance, and absorbance data), and the discrimination
oscillated between 94.8 and 100%. The highest successful classification was observed for
Americana vs. Lisa, with 100% accuracy (Figure 8A,C).
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The SVM-based linear machine can be considered the most promising algorithm,
since it reached >99% accuracy with the smallest number of PCs using a smaller data
matrix than the VIS-NIR-SWIR bands (Figure 8). Overall accuracy was obtained for SVM-
linear and k-linear (KNN-linear) data for reflectance, transmittance, and absorbance. In
addition, the reflectance (Figure 8A) and transmittance (Figure 8B) showed better results
between training and test values in comparison to the absorbance data. However, higher
classification accuracy was obtained with the SVM algorithms. Conversely, with the KNN
algorithm, if k is small, the prediction will be more sensitive to nearby examples, which will
lead to noise and prediction errors. The lowest k was determined using the fivefold cross-
validation method (training vs. test sample data). Based on Figure 8, when k-models were
set to three PCs, a low result was produced, and the accuracy, sensitivity, and specificity
were 35 and 28% for SVM cubic of reflectance and transmittance, respectively, but up to
58% for absorbance (Figure 8). Similarly, the KNN-based (k-log) algorithm showed lower
accuracy in discriminating green lettuces based on machine learning algorithms.

3.7. Estimation of Thickness-Based Data Mining and Machine Learning by PLSR Method

PLSR results for reflectance and light-absorption spectral curves (400–2400 nm) for
thickness were considered excellent, calculated by the RMSE values, R2, and RPD (Table 3).
In general, the models presented good capability for pigment content and thickness pre-
diction, despite the high spectral interference of one variety with another under diverse
anatomical effects on spectral curves. For example, internal validation using the leave-in-
out method (evaluated with the RMSEC) and compared with the root mean square error
of cross-validation (RMSECV) presented extremely low values (excellent results) associ-
ated with R2

x. The predicted absorbance (RMSEC = 3.86, RMSEP = 6.21), transmittance
(RMSEC = 4.43, RMSEP = 7.75), and reflectance (RMSEC = 4.95, RMSEP = 5.60) are shown
in Table 3. In the model validation estimated using the root mean square error of prediction
(RMSEP) obtained by external analysis, the data confirm the quality by fitting RMSEC
(Table 3), i.e., the data present excellent predictive ability as obtained by hyperspectral
sensors, using both reflectance and absorbance curves (Table 3).

Table 3. PLSR model for thickness in calibration, cross-validation, and predicted reflectance, trans-
mittance, and absorbance measurements. Model goodness-of-fit (R2), offset, root mean square error
(RMSE), ratio of performance to deviation (RPD), and bias parameters from hyperspectroscopy of
green lettuce leaves. Bold indicates statistically significant regression (R2).

PLSR Models Measurements
PLSR Parameters

R2 Offset RMSE RPD Bias

Calibration
Reflectance 0.988 3.88 4.95 9.13 -

Transmittance 0.990 3.12 4.43 10.04 -
Absorbance 0.996 2.35 3.86 15.81 -

Cross-
Validation

Reflectance 0.980 5.46 5.94 7.07 -
Transmittance 0.987 3.63 5.07 8.77 -

Absorbance 0.993 2.19 4.06 11.95 -

Predicted
Reflectance 0.986 3.55 5.60 8.45 0.206

Transmittance 0.973 4.62 7.75 6.09 0.126
Absorbance 0.991 2.98 6.21 10.54 0.102

In calculating the capacity of the PLSR models, the calculated RPD and R2
P values

were classified as excellent except for the underlined RPDs (Table 3). The R2
P values were

considered excellent (0.991) for absorbance; the reflectance and transmittance models had
excellent prediction capability but were somewhat low (0.986 and 0.973, respectively).
Given the RPDP parameter, the models were considered excellent (>6.09) in similar analysis
to R2

P (Table 3).
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4. Discussion
4.1. Descriptive Analysis

The lowest variability in green lettuce plants demonstrated efficient estimation and
classification of parameters such as thickness based on the VIS-NIR-SWIR bands (Figure 3).
The trained and tested algorithms demonstrated higher accuracy. Statistical-based learning
methods of analysis of the lettuce by spectroscopy combined with data mining and machine
learning demonstrated the great value of deep learning methods for the screening of green
lettuce [36,42]. Higher chlorophyll content and leaf thickness maximize the likelihood that
algorithms will classify correctly based on larger differences in biophysical and biochemical
parameters, thus they are considered as having higher prediction and classification accuracy
(based on high linear SVM, KNN, and RPD values) (Table 2).

All methods reported here (Figure 1) allow the estimation and classification of physio-
logical and remote sensing parameters and the monitoring of plant attributes. In general,
remote sensing associated with data mining techniques should play a significant part in
the development of fast, accurate, simple, and efficient prediction of crop phenotyping
of lettuce plants in response to growth and development under environmental condi-
tions [17,18,43]. Based on the main objective of this research, the use of VIS-NIR-SWIR
spectroscopy associated with machine and deep learning methods may be able to correctly
provide classification and prediction in green hydroponic indoor farming (Figures 1 and 2).

4.2. Analysis of Hyperspectral Curves

The clustering between VIS-NIR-SWIR bands is marked on the all-hyperspectral curve.
VIS showed variations arising from the absorbance of pigments, such as chloroplastic
pigments (Chls and Cars). In this sense, machine learning algorithms can be applied
to classify alterations of these biochemical and biophysical compounds more efficiently
in leaves.

Furthermore, the NIR region showed higher reflectance values and larger differences
in anatomical and physiological traits in plants [44,45]. Thus, the distinct green varieties are
related to radiation scattering within the thickness of mesophyll cells [7,10,14,23]. Particu-
larly in green lettuce plants, which are quite plastic regarding the structure and thickness of
their mesophyll as well as biochemical properties, compounds, and accumulated calorific
energy of their leaves, there are different reflectance spectra, mainly in the NIR region.
Thus, it is an important band for classification, and data mining and machine learning
algorithms can be used to quantify and monitor the status of the dynamics of the data, since
they have improved computational processing and less misclassification [46]. In this sense,
agriculture 4.0 combined with remote sensing represents an important type of monitoring
in crop sciences.

The SWIR spectrum should contribute to obtaining fingerprints, especially at 1400
and 1950 nm, which are significant in the classification of water bonds and compounds
associated with plant cell compounds, such as lignin, cellulose, structural carbohydrates,
and other molecules [11,43,47]. Many of these compounds are linked to a higher energetic
status and construction cost of the tissues in leaves, especially in green lettuce. In this
sense, remote sensing tools and chemometric parameters are related to characteristics of
the distinct biophysical and biochemical chemometric phenotypes of lettuce plants [48,49].

4.3. Machine Learning-Based PCA Classification

Many algorithms can be applied to machine learning for sample group classification
using hyperspectral raw data and PCA data. In this study, the overall accuracy was slightly
improved by using PCA data; for the full spectrum, larger differences in the accuracy of
algorithms were observed for both datasets. The first three PCAs improved the compu-
tational processing because they contained a reduced dataset. Overall accuracy of 99%
for linear SVM was obtained by using three PCs with ≈97% data variance. Similarly,
LDA-linear obtained 99.9% of data variance but with higher accuracy in reflectance, trans-
mittance, and absorbance spectroscopy. Following [32], data mining and machine learning
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can be enhanced to classify with higher precision in log, cubic, or quadratic SVM or KNN,
and these can be considered the most promising algorithms since they showed precision
with the smallest number of principal components. However, that is not what we observed
in this machine learning experiment and algorithm test based on green lettuce groups
(Figures 3–6).

Combined PCAs have been used in research to extract the most useful hyperspec-
tral information, which may be a better method to classify and discriminate the most
responsive wavelengths. This method has shown good results in situations with fewer
impurities [14,50]. However, there will be many impurities that affect the results of com-
pounds in leaves by using hyperspectral analysis, producing undesirable effects. Choosing
appropriate bands from all available bands to obtain useful information requires expert
knowledge and rich practical experience, and it is not easy to achieve automated and
rapid detection. SVM and KNN are often used for quantitative analysis of spectra, but
SVM easily learns too many features when processing hyperspectral data, which leads to
overfitting [21,32,36]. KNN is computationally expensive, and when the sample size is
small, the classification accuracy is not very high. The use of decision algorithms along
with data enhancement technology, deep learning, and hyperspectral data can yield good
results in predicting the classification of pigments by concentration and thickness, which is
a good alternative that exceeds the standard [32,36,51]. Combined with data enhancement,
SVM and KNN achieve excellent performance on classification [10].

4.4. Partial Least Squares Regression (PLSR) of Predicted Chemometrics

The R2
CV, R2

P, RPDCV, RPDP and RMSECV, and RMSEP values regarding the full
VIS-NIR-SWIR bands were applied according to the evaluated parameters (Tables 2 and 3).
For example, the approach used (Figure 1) produced very good results [7,8]. Furthermore,
multivariate statistical analysis achieved similar predictive results by VIP, RC, STEPwise,
and other methods or processes with decreased noise and better efficiency [14,52,53].

The results of the cross-validation statistical phase were slightly higher than those of
the prediction phase, as expected, since the number of samples used to obtain the model
was smaller in the calibration phase [23]. Similarly, when using NIR-SWIR bands to predict
lettuce chemometrics, an intensification in RMSE in the estimate of each stage was found
in [10,23].

4.5. Data Mining and Machine Learning-Based Modelling by Hyperspectroscopy Data

There was a clear advantage of using the whole-spectrum-based approaches (PLSR,
LDA, and SVR) over VIS to correctly classify and predict leaf properties (e.g., minimum
differences in mesophyll; Table 2, Figures 3–8). For example, thickness, for which excellent
predictions were shown, was obtained by reflectance, transmittance, and hyperspectral
absorbance (Table 3). Some studies have reported that when monitoring and classifying
pigments, vegetation indices (VIs) or VIS could predict satisfactorily, and models developed
by KNN, LDA, PLSR, and SVR performed even better. For example, in research on the other
leaf properties in which VIS predicted only fairly or poorly, PLSR and SVR still yielded
moderately satisfactory predictions, possibly based on full spectral data to the detriment
of the spectral range [17,54]. According to [55], remote sensing-based hyperspectral data,
such as narrow-band VIS, are computationally simple [55]. However, by selecting only
a few (usually two) bands from hundreds or thousands of hyperspectral bands, a large
amount of useful information is discarded [7,16]. In addition, some authors have reported
that vegetation indices (VIs) could provide better classification than VIS bands [10,14].

Plant leaves are a complex mixture of many chemical compounds (such as water,
pigments, N-containing proteins, structural carbohydrates, etc.), which all contribute to
the overall shape of leaf spectra [10,19,56]. Thus, the biophysical state of the leaf (such as
thickness and surface roughness) not only affects its reflectance spectra [55], but also its
transmittance and absorbance spectra (Table 3). Using PLSR and linear SVR, which employ
the entire spectra, makes the models more flexible in accentuating the spectral features that



Remote Sens. 2022, 14, 6330 15 of 18

are correlated with the target property while suppressing the bands whose variation is
sensitive to other confounding factors. An example matrix vector is shown in Figure 8. With
the rapid advancement of computing, PLSR and SVR modelling can be performed very
efficiently, following the suggestion of [55]. Moreover, other machine learning approaches,
such as ridge/lasso regression, artificial neural networks, and random forest, can also be
considered, giving researchers a wide range of choices for their data [10,55]. In addition, to
enable the use of PLS-DA on resolved MCR fingerprints, a strategy of MCR resampling
is needed so that a sufficient number of spectral signatures for each population to be
compared is available [20,57,58]. Some of these approaches might work particularly well
under certain conditions. We therefore suggest that whole-spectrum-based modelling
should be used for the phenotyping of plant leaf physiological and biochemical traits using
VIS-NIR-SWIR, as there are practically no computational barriers, as compared with earlier
studies [8,19,45,55].

4.6. Regression Coefficient (RC) and Variable Importance in Projection (VIP)

VIP and RC are important to avoid mistaken correlations, as reported in [17]. Some
researchers have explored the potential of remote sensing as a technique for classifying
lettuce plants at indoor farms, mainly considering that the VIS-NIR or just the NIR-SWIR
region [23,43,52] can estimate low-accuracy outputs or biased parameters. For example,
high RC values in the SWIR region highlight the importance of predicting attributes (on
average, 68% of VIP values), according to the premise in our research. It was reported
in [59] that differences in leaf biochemical and biophysical structure are associated with
SWIR spectroscopy curves. According to [10,23], reflectance data in the SWIR bands offer
important information for the potential classification of lettuce plants. It is important
to note that VIS-NIR-SWIR does not measure leaf physiological or chemical properties
directly. High-resolution sensors based on VIS-NIR-SWIR spectroscopy can generate
enough accurate data to allow for classification between substances that absorb in the same
spectral region through RC and VIP analysis. It is noteworthy that absorbed light data
are, in a way, “unbiased” from the effects induced by the epidermis and anatomical and
ultrastructural aspects, as well as leaf thickness, in relation to reflectance or transmittance
data [7,16,60]. Thus, VIS-NIR-SWIR spectroscopy-based reflectance, transmittance, and
absorbance, together with artificial intelligence algorithms, could be a promising method
for the classification of other lettuce varieties as well as for use in other remote sensing
applications to monitor and manage crops as well as food quality and safety.

5. Conclusions

This study explored the hypothesis that, by using hyperspectroscopy, it would be pos-
sible to classify varieties with higher accuracy with VIS-NIR-SWIR spectroscopy together
with machine learning and data-mining algorithms. Here, green lettuce varieties were
found to have unique spectral signatures, as well as typical inflections of -COOH and -NH
stretching from aromatic rings linked to many compounds.

Algorithms were shown to have higher accuracy and discrimination of >99.9, 100. and
100% for base reflectance, transmittance, and absorbance hyperspectral data. In addition, it
was possible to adjust the PLSR model in the prediction (test) phase with R2

P values of 0.973,
0.986, and 0.991 and RPDP values between 6.08 and 10.54 for reflectance, transmittance,
and absorbance for many variables predicted by using the full spectrum (400–2400 nm)
with the hyperspectral technique. Therefore, this study offers a promising alternative, as
the technique provides advantages such as being rapid and not requiring previous sample
preparation (chemical reagents), as well as providing a new way to classify lettuce and
possibly other crops. In addition, high repeatability of VIS-NIR-SWIR was found compared
with other methods based on an integrating sphere. Thus, this study reports a good
technique for classification and prediction of thickness parameters based on data mining
and machine learning that shows efficiency using VIS-NIR-SWIR hyperspectroscopy, which
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can improve the management of crops as well as food quality and safety using precision
agriculture systems.
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