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Abstract: Change detection is an important task in remote sensing image processing and analysis.
However, due to position errors and wind interference, bi-temporal low-altitude remote sensing
images collected by SUAVs often suffer from different viewing angles. The existing methods need
to use an independent registration network for registration before change detection, which greatly
reduces the integrity and speed of the task. In this work, we propose an end-to-end network
architecture RegCD-Net to address change detection problems in the bi-temporal SUAVs’ low-
altitude remote sensing images. We utilize global and local correlations to generate an optical flow
pyramid and realize image registration through layer-by-layer optical flow fields. Then we use
a nested connection to combine the rich semantic information in deep layers of the network and
the precise location information in the shallow layers and perform deep supervision through the
combined attention module to finally achieve change detection in bi-temporal images. We apply this
network to the task of change detection in the garbage-scattered areas of nature reserves and establish
a related dataset. Experimental results show that our RegCD-Net outperforms several state-of-the-art
CD methods with more precise change edge representation, relatively few parameters, fast speed,
and better integration without additional registration networks.

Keywords: image registration with optical flow; end-to-end change detection; multi-SUAV low-
altitude remote sensing

1. Introduction

Change detection (CD) is one of the major tasks in remote sensing (RS), which rep-
resents semantic changes in bi-temporal images by comparing satellite remote sensing
images of the same region at different times and assigning binary labels to each pixel in the
area. The technology of change detection using remote sensing images has been widely
used in various fields and plays a crucial role in urban area expansion research [1,2], land
use change analysis [3,4], forest vegetation cover monitoring [5–7] and natural disaster
damage assessment [8,9]. In recent years, with the rapid development of small unmanned
aerial vehicles (SUAVs) and the maturity of UAV low-altitude remote sensing technology,
more and more researchers have focused on these. SUAV low-altitude remote sensing is
convenient, in real-time and highly maneuverable. Many change detection studies use
bi-temporal SUAV low-altitude remote sensing images to conduct experiments. However,
due to the influence of wind changes and positioning system errors when the UAV is
flying, there is a viewing angle change during imaging, which makes affine transformation
between the bi-temporal images captured by SUAVs in the same area. The current studies
often use additional registration methods to register bi-temporal images before performing
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change detection, which not only adds additional research content but also makes the effect
of registration directly affect the quality of change detection results.

Traditional registration methods apply feature descriptors to image pairs and use the
nearest neighbor criterion to globally match keypoints to obtain pixel-to-pixel correspon-
dences. However, these methods cannot accurately extract the correspondence between
pairs of bi-temporal remote sensing images. This is because, in these image pairs, not only
the change of the viewing point, but also the color change due to season, and the semantic
change due to the ground object change are included. The traditional method cannot extract
keypoints for matching by means of semantic information between bi-temporal remote
sensing image pairs containing these changes. Owing to the amazing performance of con-
volutional neural networks (CNN) in extracting abstract semantic information in images,
in recent years, many studies have used CNN to extract semantic features of bi-temporal
remote sensing images, and perform registration by comparing pixels in feature space [10].
On the basis of CNN, recent optical flow methods exploit local correlation layers to estimate
correspondences between image semantics, achieving great success in predicting semantic
pixel-level accurate displacements. Nevertheless, the optical flow method evaluates the
similarity of the local area around the pixel coordinates of the image. It is only suitable
for small displacements, cannot capture large changes in viewing point and distance and
performs poorly in SUAVs’ low-altitude remote sensing image registration tasks.

Under the premise that the image pairs have been registered, for more and more
complex semantic changes, the traditional pixel-based and object-based change detection
methods are ineffective, and more and more researches focus on change detection using
CNN. The network U-Net, which is designed for image segmentation, unexpectedly shows
outstanding performance in change detection, establishing an encoder–decoder benchmark
structure for subsequent research of change detection networks. Meanwhile, the method of
extracting bi-temporal image features using a Siamese network [11–22] is widely used as a
standard step in change detection. In order to improve the detection performance, some
methods use a feature pyramid to extract multi-scale features during the down-sampling
process of the encoder, which enriches the feature expression during up-sampling. Other
methods utilize the attention mechanism during encoder down-sampling and decoder
up-sampling to obtain better feature representation since attention-based methods (channel
attention and spatial attention) are effective in establishing global information. Although
the above methods have achieved good results in the change detection task, in these change
detection networks using the encoder–decoder structure, continuous down-sampling and
up-sampling will cause the loss of accurate location information in the shallow layers of
the network, which will lead to the blurring in the edge of the change areas and the missed
detection of small change areas in the detection results.

In this paper, we propose a convolutional neural network architecture, called RegCD-
Net, for end-to-end change detection in the bi-temporal SUAV low-altitude remote sensing
images. We build a multi-task CNN that implements bi-temporal low-altitude remote
sensing image registration and subsequent change detection in a single network and it can
be trained end-to-end. We use a combination of local and global correlation to solve the
problem that bi-temporal low-altitude remote sensing image registration using the optical
flow method performs poorly under large viewpoint changes and large displacement, and
use the optical flow pyramid for layer-by-layer optimization. In order to solve the problem
of loss of location information caused by continuous down-sampling in change detection,
we use nested connections to combine deep semantic information and shallow location
information and use the attention mechanism to perform network deep supervision and
optimize feature representation.

The main contributions of this paper are as follows:

(1) We propose an end-to-end CNN architecture RegCD-Net, which integrates registration
and change detection functions in a network, to achieve registration and change
detection in bi-temporal SUAV low-altitude remote sensing images.
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(2) We integrate global and local correlations to generate an optical flow pyramid and
realize image registration through layer-by-layer optical flow fields.

(3) We utilize nested connections to combine effective information in different layers
and perform deep supervision through a combined attention module to achieve
change detection.

(4) We propose a method for generation change detection dataset with viewing angle
changes using optical flow fields and generate a bi-temporal SUAV low-altitude remote
sensing dataset for change detection in the garbage-scattered areas of nature reserves.

The remainder of this paper is organized as follows. Section 2 reviews the related
works. Section 3 describes the proposed network architecture in detail. To evaluate our
method, the experiments are designed in Section 4. The comparison experiment results
are discussed in Section 5 and the ablution studies are shown in Section 6. Finally, the
discussion and conclusions are presented in Sections 7 and 8.

2. Related Work

Change detection is an important task in computer vision and a critical method in
remote sensing image analysis. When using this method to detect changes in bi-temporal
low-altitude remote sensing image pairs, registration is needed for the image pairs first. In
recent years, CNN has completely changed most fields in computer vision, and the method
using CNN has been greatly improved compared with traditional methods. Here, we focus
on CNN-based methods for image registration and change detection, as these are most
relevant to our work.

The feasibility of using CNN for image registration originated from Spatial Trans-
former Network, a fully convolutional neural network built by Jaderberg et al. [23] for
handwriting letter correction. However, the network structure is too simple, and it can
only predict the deformation field of simple semantic images, which is not competent for
realistic image registration. The motion relationship between bi-temporal images of the
same scene in reality can also be regarded as the change (viewpoint change and semantic
change) between the two images, and this change can be represented by an optical flow
map. The optical flow map can describe the changing field between the two images, so
that the two images can be registered by this field. Based on U-Net [24], Dosovitskiy et al.
[25] proposed the first optical flow estimation network FlowNet, which directly estimated
the optical flow between the original and target images by using the local correlation
layer, providing strong clues for image registration. Ilg et al. [26] stacked several basic
FlowNet models into a concatenated network FlowNet2, utilized correlation layers in a
coarse-to-fine manner to estimate the similarity within the neighborhood interval of the
center pixel, and used the intermediate optical flow to distort the target image for registra-
tion. Ranjan et al. [27] introduced an optical flow estimation network SpyNet combined
with a spatial image pyramid model, which distorts the target image at each pyramid level
through the current optical flow and calculates the updated optical flow to estimate the
displacement between images layer by layer. The recent network PWC-Net proposed by
Sun et al. [28] took the advantages of the above mentioned networks, combining spatial
image pyramid, layer-by-layer distortion of intermediate optical flow and correlation cost
volume in an optical estimation network, which is small and efficient.

Although the above-mentioned optical flow estimation models perform well when the
images are in small deformations, they are not competent in obvious deformations, large
displacements and significant differences in visual appearance (semantic changes) between
images. With regard to this, Melekhov et al. [29] proposed DGC-Net, which exploits global
correlation layers [30] to extract similarities between deep features and generates dense
2D correspondences to solve the optical flow prediction problem with strong geometric
transformations between images. However, the network builds global cost volume through
the coarsest resolution, which limits its accuracy in estimating small pixel displacement
optical flow in high-resolution images.
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In the field of change detection using CNN, the network U-Net proposed by Ron-
nerberger et al. [24] for image segmentation had shown outstanding performance in the
change detection task due to its ability to extract deeper feature information, and estab-
lished an encoder–decoder benchmark model structure for subsequent change detection
research. Subsequently, Xiao et al. [31] and Guan et al. [32] applied the connection method
of ResNet [33] and DenseNet [34] to U-Net, and proposed Res-Unet and FD-Unet respec-
tively, which further enhanced the feature extraction ability of original U-net. Although
the change detection models such as those based on U-net and its variants [18,35] can
accurately predict the change areas, the encoding and decoding process of U-net is too
direct and simple, and the accurate location information in shallow layers is often lost
during successive down-sampling and up-sampling processes, leading to blurring in the
change area edges and missed detection of small change areas.

In order to extract more accurate location features, some studies applied feature
pyramid [15,17], such as STA-Net proposed by Bi et al. [36], which uses a feature pyramid
to extract multi-scale features in the down-sampling process, enriching the representation
of location information features during up-sampling. Other studies adopted attention
mechanism [11–14,16,21], for example, Zhang et al. [37] proposed IFN-Net by adding the
CBAM [38] to the change detection network framework and used CBAM to fuse features
in the up-sampling process to enhance the accuracy of the boundary reconstruction of the
detection results. Zhou et al. [39] proposed UNet++, which improves the region edge
segmentation accuracy by adding nested dense connections and skip-path convolutional
layers between the encoder and decoder, and adds a deep supervision mechanism to extract
the output of different decoding layers. On the basis of this, Fang et al. [40] proposed
SNUNet-CD, a change detection network based on Unet++. The network uses the Siamese
network to extract bi-temporal image features and feeds these features into a densely
connected encoder–decoder structure to output deep supervised features at different layers,
and finally utilizes an attention mechanism to filter features for output. However, the
network must input well-registered bi-temporal images, and images with poor registration
effects will generate more non-semantic change areas through the network.

3. Materials and Methods

In this work, our goal is to detect the garbage-scattered areas in the nature reserves by
means of change detection. We plan the flight paths of multiple SUAVs through the multi-
UAV collaboration platform, realize the capture of bi-temporal images of the large-scale
ground in the nature reserve and use the CNN to accomplish the detection of changes in
the garbage-scattered areas in the bi-temporal images.

In the classic remote sensing image change detection task using CNN, the bi-temporal
images usually need to be pre-registered to ensure that the perspectives of the two images
are consistent, and the change detection can be performed. Among them, registration
and change detection are two separate processes that need to be accomplished by using
different networks. Different from these approaches that separate the registration pro-
cess from change detection, in this work, we treat registration and change detection as
two consecutive tasks in the same network, and proposed an end-to-end network to ad-
dress the registration pretreatment of bi-temporal images and subsequent change detection
issues.

The architecture of the proposed network is presented in Section 3.1. In Sections 3.2 and 3.3,
the optical flow registration subnetwork and subsequent change detection subnetwork of
the overall network architecture are described in detail. Section 3.4 provides details of the
multi-SUAV collaboration platform. In Section 3.5, the training details are presented in
detail, including the structure of the loss function and the generation of the dataset.

3.1. Network Architecture

The proposed network is an encoder–decoder structure overall. As shown in Figure 1,
the network is mainly composed of three parts: down-sampling backbone, optical flow reg-
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istration sub-network and nested connection change detection subnetwork. The bi-temporal
images are firstly encoded by a down-sampling backbone, and then the two images are
registered through the optical flow registration subnetwork. Finally, the registered pair
of images is sent to the nested connection change detection subnetwork for decoding to
obtain the final change detection result.

Figure 1. The architecture of the RegCD network.

The ResNet18 [33] backbone is used as the down-sampling network in the encoder.
Furthermore, the siamese down-sampling network, which is constituted by two parallel
ResNet18 backbones, is designed for simultaneous down-sampling of source and target im-
ages. As shown in Figure 1a, bi-temporal images are input into two branches of the siamese
down-sampling network and down-sampled simultaneously. Owing to weight sharing
between the two branches, two down-sampling networks with the same set of parameters
can extract approximately the same feature in two images. Then, the concatenation is used
to fuse the two extracted feature maps into a single one that contains the same and different
features of the two maps. It should be emphasized that one of the feature maps involved in
fusion is the registered feature map obtained after warping by optical flow.

Before the decoder performs up-sampling, the input bi-temporal images are necessary
to register to ensure that two images are in the same perspective. That is to say, the
feature maps of target images in each level are registered to the perspective where the
corresponding feature maps of the source images are located. The estimated displacement
field w ∈ RH×W×2, which is often called optical flow, is used to warp the target images It
to the source images Is as follows:

Is(c) = It(c + w(c)) (1)

where c ∈ Z2 is the coordinate of each pixel in images. Through field w, the coordinate
c in the target images can be mapped directly to its corresponding location in the source
images to complete the registration of the two images.

The optical registration is applied to each feature map level and accomplished layer
by layer from deep to shallow layers of the network. As shown in Figure 1b, in the deepest
layer of the down-sampling, the two feature maps are sent to the global correlation module
GC to calculate global cost volume, and then the result is sent to the global mapping
decoder GD to estimate an optical flow field. The target feature map in the deepest layer
is warped through the optical flow field, and the field will be sent to the previous layer
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after 2× up-sampling. In the shallow layers, the target feature map is firstly warped by
an optical flow field from the deeper layer, and then the local cost volume is calculated
together with the source feature map in the local correlation module LC. The optical flow
field from the deeper layer is not only decoded by the local mapping decoder LD together
with the local cost volume into a new optical flow field, but also added to this new field
to finally generate the optical flow field of this layer. The optical flow filed w in shallow
layers is defined as:

wl = LD
[

LC
(

Warp
(

Fl
t , U(wl−1)

)
, Fl

s

)
, U(wl−1)

]
+ U(wl−1) (2)

where U denotes the 2× up-sampling, and l denotes the level of the feature layer. Fs and Ft
refer to the feature maps of the source and target images. LC is the operation of computing
the local correlation, and LD is the decoding operation using a local mapping decoder.
Warp is the operation that uses the optical flow field to warp the target feature map to
achieve registration. In the top layer, the target image will be directly warped to generate
the registered original-size image. More details about optical registration are available in
Section 3.2.

The nested connection up-sampling structure acts as a decoder to densely up-sample
the feature map of each layer. The paired source and warped target feature maps of
each layer in down-sampling are sent to the corresponding feature map size up-sampling
network together. The semantic and spatial information in the feature maps of different
layers are fused through densely nested connections, and the four feature maps of original
size are generated by stepwise up-sampling. Eventually, these four feature maps are
convolved through an attention module to generate a final change detection map, as shown
in Figure 1c. Please refer to Section 3.3 for details of the nested connection and change
detection. The integral inference detail of our RegCD-Net is shown in Algorithm 1.

Algorithm 1 Inference of RegCD-Net for change detection
Input: I = {(Is, It)} (a pair of unregistrated images)
Output: C (a prediction change mask)

1 // step1: extract multi-layer features by a siamese down-sampling backbone
2 for i in {s, t} do
3 Fi = Down-sampling_Backbone(Ii)
4 end
5 // step2: use optical flow field to warp target feature maps for registration
6 if layer l = 1 then
7 W1 = Global_Decoder(Global_Corrleation(F1

s , F1
t ))

8 F̃1
t = Warp(F1

t , W1)
9 else

10 F̃l
t = Warp(Fl

t, Up-sampling(Wl−1))
11 ∆Wl = Local_Decoder(Local_Correlation(Fl

s, F̃l
t), Up-sampling(Wl−1))

12 Wl = ∆Wl + Up-sampling(Wl−1)
13 end
14 // step3: use nested connection to up-sample feature maps for change detection
15 for i in {0, 1, 2, 3, 4} do
16 if j = 0 then
17 Xi,0 = Conv(Concatenate(Fi

s, F̃i
t)))

18 else
19 Xi,j = Conv(Concatenate([Xi,k]

j−1
k=0, Up-sampling(Xi+1,j−1))

20 end
21 end
22 // step4: obtain change mask by attention module
23 C = Conv(CGAM(X0,1, X0,2, X0,3, X0,4))
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3.2. Optical Flow Registration

The optical flow is generated by a sequence of layers in the optical flow estimate
network to measure local and global correspondence between the source and target feature
images in each layer. The similarity calculated results of two feature maps, generally called
cost volume [25], can quantify the correspondence between two feature maps in each layer
and provide a strong basis for the network to estimate optical flow layer by layer. According
to the calculation range of the feature correspondence relationship, the cost volume can be
calculated in the way of local correlation and global correlation.

3.2.1. Local Correlation

The local correlation layer only calculates the feature correspondence in the neighbor-
hood pixel between the source and target feature map [41,42]. The local correlation LCl

between the source Fl
s ∈ RHl×Wl×Cl and target Fl

t ∈ RHl×Wl×Cl feature maps is defined as:

LCl(c, o) = Fl
t (c)

T Fl
s(c + o) , ‖o‖∞ ≤ R (3)

where l refers the the level in the feature pyramid layer, c ∈ Z2 is a coordinate in the target
feature map and o ∈ Z2 is the offset from this coordinate. The maximum offset in any
direction is always constrained in the neighborhood radius R, and the correlations are
only calculated in this neighborhood radius. In theory, the correlation result is a 4D tensor,
which is positions offset combine of two 2D tensor. In practice, the cost volume LCl is
organized as a 3D tensor, which has the size of Hl ×W l× (2R+1).

3.2.2. Global Correlation

The global correlation layer is only used in the deepest feature layer to calculate the
global correlation between the most roughly feature maps. It evaluates the correspondence
in all locations between the source and target feature maps [43,44]. The global correlation
GCl is defined as follows:

GCl(c, c′) = Fl
t (c)

T Fl
s(c
′) (4)

where Fl
s(c′) and Fl

t (c) refer to the feature map extracted from all source feature map
coordinates and target feature map coordinates, respectively. The cost volume GCl is
organized as a 3D tensor of size Hl ×W l × (HlW l).

3.2.3. Local and Global Correlation Assemble

According to their range of correlation calculation, the behaviors of the local and
global correlation layers present some complementary characteristics. The local correlation
layer is widely used in the optical flow estimate network to evaluate the displacements
of two feature maps. Limited by neighborhood radius calculation, the local correlation
layer can be applied in high-resolution feature maps to estimate small displacements
precisely. That is to say, the correlation calculations are restricted to a small range by
local correlation, and failed to estimate a large offset of source and target feature maps. In
contrast, the global correlation calculates a large range correspondence relationship without
maximum range radius limitation; therefore, it can estimate the large-scale displacement of
the two feature maps.

Moreover, the cost volume of the global correlation is calculated as a tensor in the
size of Hl ×W l × (HlW l), which refers to a coordinate in the source feature maps that
need to calculate two direction offsets with all coordinates in target feature maps. In
the high-resolution feature maps, the very large space complexity O((HlW l)2) will cause
the memory to be occupied by a huge amount of tensor computation. Hence, the global
correlation layer is only utilized in calculating the most coarse-resolution feature maps.
The architecture has a combination of local and global correlation, which is used in the
proposed network to estimate optical flow (Figure 2).
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Figure 2. The architecture of the optical flow pyramid with global and local correlations.

3.2.4. Flow Decoder

The flow decoder is used to estimate the optical flow field of this layer through the
optical flow field generated by the previous layer and the cost volume produced by the
correlation of this layer. In the deepest feature layer, only the resulting global correlation
GC needs to be sent into the flow decoder GD, as implemented in DGC-Net [29], to estimate
the optical flow field w1 at the coarsest level of the feature layers:

w1 = GD
(

GC(F1
t , F1

s )
)

(5)

In the rest level l of the feature layers, the residual flow ∆wl , which is the computing result
of the flow decoder LD, is defined as:

∆wl = LD
(

LC(F̃l
t , Fl

s ; R), U(wl−1)
)

(6)

where LC refers the local correlation with search radius R, and U(·) denotes the 2× up-
sampling. F̃l

t is the registered target feature map Fl
s warped by the up-sampled optical flow

field U(wl−1) from the deeper one layer, which is defined as:

F̃l
t (c) = Fl

t

(
c + U

(
wl−1(c)

))
(7)

where c is a coordinate in the maps. The complete optical flow field in layer l is defined as:

wl = ∆wl + U(wl−1) (8)

The flow decoder GD and LD both consist of five convolutional layers with dense
connections [34]. The number of channels in each convolutional layer is 128, 128, 96, 64
and 32, respectively, and the size of all convolutional kernels is 3 × 3. Finally, the estimated
optical flow field is output through a 2D linear convolution.

3.2.5. Optical Flow Pyramid

In a typical CNN network structure, as the down-sampling process continues to
deepen, the feature maps in deeper layers contain more rich semantic information. How-
ever, accurate location information in shallow layers is continuously lost in the down-
sampling process. The feature pyramid structure [15,27,28,45] is used to combine the rich
semantic information in deeper feature maps and the accurate location information in
shallow feature maps to achieve more precise feature representation.
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Similarly, the feature pyramid structure in this paper is utilized for fusion of optical
flows from different feature layers. The optical flow in coarse layers can estimate large range
displacement, while the optical flow in high-resolution layers is used to determine tiny
offsets precisely. During the optical flow up-sampling process, the optical flow pyramid
fuses the deep and shallow optical flows layer by layer, eventually generating an optical
flow that can estimate the exact displacement of the two images at the original resolution.
The optical flow pyramid architecture is shown in Figure 2.

3.3. Nested Connection Change Detection

The standard encoder–decoder architecture is widely used in change detection. The
deeper the feature extraction layer of an encoder, the richer the semantic information of the
feature map that will be extracted, while the extracted location information will be more
vague. To tackle this contradiction, the decoder structure is added to fuse the semantic
information of the deep layer with the location information shallow layer, and up-sampling
to the original resolution step by step. Sparked by the ResNet, in order to achieve better
fusion information, the skip connection is used in the decoder to connect more deep and
shallow layers when up-sampling.

3.3.1. Nested Connection Up-Sampling

Different from the traditional network of the encoder–decoder structure, which connect
encoder and decoder feature maps straightly, in UNet++ [39], this direct connection is
expanded as dense connections by the use of skip connection. In order to maintain location
information in shallow feature maps and semantic information in deep ones, to bridge the
semantic gap between the encoder and decoder feature maps, the dense skip connection
between the encoder and decoder is used in the proposed network.

The dense skip connection is shown in Figure 3. The source and target feature maps
are down-sampled by two branched feature extraction backbones. Then, in each feature
layer level, the extracted feature maps of two branches are concatenated to generate a
single one that contains the same and different features of the two maps. The concatenated
feature maps participate in the nested connection up-sampling process, transmitting the
feature information from different layers to the decoder through skip connections, and
compensating for the loss of location information in deep layers. For example, the feature
maps of Xs

2,0 and Xt
2,0 are extracted by two branches of down-sampling backbone, then

the X2,0 is generated by convolution after concatenating the two. The three block of
Xs

3,0, Xt
3,0 and X3,0 are the one-level deeper counterparts, respectively, of Xs

2,0, Xt
2,0 and

X2,0. To obtain X2,2, X3,1 is obtained firstly by convolution after concatenating X3,0 with
2× up-sampled X4,0. Then, the intermediate unit X2,1 is generated by convolving the
concatenation of X2,0 and 2× up-sampled X3,0. At last, through skip connection, X2,0

could be concatenated with X2,1 and X3,1, eventually generating X2,2 by convolution. Up-
sampling is needed for every unit except for the original size unit, in order to achieve dense
nested connections throughout the up-sampling process of the decoder.

The convolution block is designed as a residual unit structure [33] through a skip
connection. Each convolution block is preceded by a concatenation block which concate-
nates the output of the previous convolution block in the same feature map level with the
up-sampled output of the one-level deeper convolution block and unified by convolution
blocks. The structure of the convolution block is shown in Figure 4.

Formally, let xi,j denote the output of unit Xi,j, where i denotes the down-sampling
layer level and j denotes the number of skip connections received by this unit. The xi,j is
defined as follows:

xi,j =

C
(
[xi,j

s , xi,j
t ]
)

, j = 0

C
([

[xi,k]
j−1
k=0, U(xi+1,j−1)

])
, j > 0

(9)
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where function C(·) denotes the convolution operation of the convolution block, function
U(·) is a 2×up-sampling operation, and [·] denotes the concatenation operation on the
channel dimension. Specifically, xi,0

s and xi,0
t are sourced from the down-sampling, and

other units xi,j at level j = 0 are concatenated by xi,0
s and xi,0

t ; units at level j > 0 receive
both the outputs of the previous units in the same sampling level and an up-sampled
output of the deeper unit. The location and semantic information in different levels of
encoders are transmitted to the decoders in succession for concatenation, convolution and
up-sampling through these dense skip connections.

Figure 3. The architecture of up-sampling nested connection.

Figure 4. The structure of the convolution block.

3.3.2. Channel Attention

The outputs of the nested connection up-sampling are four feature maps, which
are the outputs of the unit x0,1, x0,2, x0,3 and x0,4, with the same size as the original
images. However, the four outputs have different representations of semantic levels and
spatial location, because they are generated through different levels of skip connection
and up-sampling pathways. The outputs from shallow pathways have precise location
information and finer-grained features, by contrast, the outputs from deep pathways have
richer semantic information and coarse-grained features. Therefore, a select mechanism
is needed to screen out effective feature information representation when fusing the four
feature maps.

On the basis of the channel attention module (CAM) [38], a select mechanism called
channel group attention module (CGAM) is proposed in this paper to select more appro-
priate feature information and focus on more effective feature representations between
each set of feature maps. As shown in Figure 5, the four groups of output feature maps are
concatenated first, and then a CAM is used to extract the inter-group channel relationship.
Meanwhile, another CAM is also used to extract intra-group relationships after summing
the four groups of feature maps. Finally, the final refined output is obtained by sequentially
multiplying the concatenated feature map and the two CAMs. In short, the CGAM of
feature map F ∈ RH×W×C is defined as follows:

CAM(F) = σ(MLP(AP(F)) + MLP(MP(F))) (10)

Mintra = CAM(x0,1 + x0,2 + x0,3 + x0,4) (11)

Minter = CAM
(
[x0,1, x0,2, x0,3, x0,4]

)
(12)
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CGAM = Minter ⊗
[

Mintra ⊗ x0,1, Mintra ⊗ x0,2, Mintra ⊗ x0,3, Mintra ⊗ x0,4
]

(13)

where σ denotes the sigmoid function, and MLP is the multi-layer perception layer. AP
and MP denote average pooling and max pooling operations, respectively. [·] denotes the
concatenation operation, and ⊗ denotes the element-wise multiplication between feature
maps and attention maps.

Figure 5. The architecture of CGAM.

Through the CGAM, refined feature maps with spatial attention are generated. As
a complement to CGAM, the spatial attention module (SAM) [38] is added to focus on
the more precise position of the semantic and location information on the feature map.
Finally, a feature map with channel refinement and spatial refinement features is obtained,
and the final change map Cmap ∈ RH×W×2 is generated after passing it through a 1 × 1
convolutional layer.

3.4. Multi-SUAV Collaboration Platform

A multi-UAV collaboration platform is established for change detection of nature
reserve garbage scattered areas. The detection and localization tasks can be run on a
computer to reduce the requirements for SUAVs’ energy consumption and performance.
At the same time, thanks to its openness, the platform can simultaneously connect multiple
SUAVs for data transmission. The platform can realize the path planning of multiple
SUAVs on a visual map interface, and display the video stream as well as flight information
returned by multiple SUAVs in real time. Meanwhile, the location information of the
detected garbage scattered areas can be read and then marked on the map. The visual
interface of the platform is shown in Figure 6. In function, the platform is mainly composed
of a multi-SUAV collaboration module, path planning module and location module.

3.4.1. Multi-SUAV Collaboration

The multi-SUAV collaboration module is used to build a multi-SUAV collaboration
remote sensing control system with open interfaces. The system can connect multiple
SUAVs at the same time, receive the video streams returned by each SUAV and display
them in real-time. Meanwhile, the cruise path of each SUAV can be planned by manual
punctuation in the visual map interface, and the real-time flight record of each SUAV can
also be displayed in the form of a text stream.
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The DJI’s civilian-grade SUAVs are chosen as the video acquisition terminal of our
multi-SUAV platform because DJI provides a stable software development kit (SDK) called
DJI Mobile SDK, which is convenient for our system development according to practical
applications [46–48]. Through this SDK, the flight data of the UAVs can be accessed
in real-time to realize functions such as automatic cruise, gimbal remote control, real-
time video streaming transmission, real-time GPS information acquisition and SUAVs’
status monitoring.

Figure 6. The multi-UAV collaboration platform.

3.4.2. Path Planning

The path planning module is designed for the global planning of flight range and
route. Path planning is essentially a waypoint task, which is needed to point the waypoint
path on the map first, and then achieved through UAVs passing through the ordered GPS
coordinates with elevation information in turn [49,50]. The path planning method, mainly
based on satellite maps and supplemented by the digital elevation model (DEM) [51–53],
is adopted, which not only realizes safer UAV route planning in nature reserves but also
makes the location of garbage-scattered areas more accurate.

3.4.3. Location

The location module is mainly based on GPS information and coordinate transfor-
mation, which is the core of the garbage-scattered area location. Using the GPS informa-
tion [54,55] contained in the video stream transmitted back by UAVs, the pixel coordinates
of the detected change area in each video frame are converted into GPS coordinates so as to
realize the location of the garbage-scattered areas.

3.5. Training
3.5.1. Loss Function

Our network, which combines the image registration and change detection task, is
trained end-to-end. The pre-trained ResNet18 feature extractor backbone is unfrozen
and participates in the training to update parameters. According to the different tasks
performed at each stage, the loss function of the proposed network is divided into the loss
function of the image registration phase and the loss function of the change detection phase.

In the field of image registration, the endpoint error (EPE), which is the standard error
measurement for optical flow estimation, is used as the training loss. It is the displacement
between the estimated optical flow and the ground truth, calculated from the Euclidean
distance. As proposed in FlowNet [25], we utilize the optical flow field information of
different optical flow pyramid layers for multi-scale training loss. The multi-scale EPE loss
can be formulated as:
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LMEPE =
L

∑
l=1

αl 1
Hl ×W l

Hl×W l

∑
c
‖wl

est(c)−wl
gt(c)‖2 (14)

where l denotes the level of the L-level optical flow pyramid. Hl and W l are the feature
map size in the level l. wl

est and wl
gt respectively denote the optical flow field estimated

by the network at the l pyramid level and the corresponding ground truth field. c ∈ Z2 is
the coordinate in the optical flow field. αl is the weight coefficient of each pyramid level to
adjust the weight of different pyramid layers.

In the phase of the image registration, the focal loss [56] is utilized as the loss function
to solve the sample imbalance problem in that the number of the changed pixel is much less
than the number of the unchanged pixel. In addition, the dice coefficient is also added to
assist in tackling this problem. Formally, the combination loss function of change detection
is defined as follows:

LCD = L f ocal + Ldice (15)

L f ocal =
1

H ×W

H×W

∑
k=1

(
− (1− pt)

γlog(pt)

)
(16)

Ldice =
1

H ×W

H×W

∑
k=1

(
1− 2 ·Y · so f tmax(Ŷ)

Y + so f tmax(Ŷ)

)
(17)

where pt is the simplified form of the cross entropy loss, and γ is the modulating factor. Y
denotes the ground truth and Ŷ denotes the predicted change map.

The final loss function L is the addition of LMEPE and LCD, which is defined as:

L = LCD + β · LMEPE (18)

where β is a hyperparameter. The final task of the entire network is to perform change
detection, however, the accuracy of this task is affected by the effect of the previous
registration task. Therefore, the hyperparameter β is added to adjust the size of the loss
function LMEPE, so as to weigh the proportion between the two tasks, which in turn
optimizes the final change detection effect.

3.5.2. Dataset Generation

Our network requires the supervised training data consisting of image pairs, optical
flow pairs, warp optical flow and ground truth of change detection. Unlike other vision
tasks, the used dataset of low-altitude remote sensing garbage in nature reserves contains
not only the ground truth of warp optical flow for image registration but also the ground
truth of garbage change detection. In general, obtaining such a dataset is hard, and no
public datasets exist that can satisfy the proposed network’s requirements for the dataset.
Therefore, we decide to make a dataset for training and validation of the network.

As shown in Figure 7, the artificial dataset is generated according to the following
steps: (1) The high-resolution images of the nature reserve ground are shot vertically
downward by SUAVs at a height of 30 m. (2) A large number of common garbage images
are collected, and their backgrounds are removed through matting software to generate
massive garbage image patches. (3) Some garbage patches are selected randomly to form
several garbage distribution areas with a certain probability distribution, and these areas
are covered randomly into the original image to generate the source image with a small
amount of garbage scattered areas, and the corresponding binary change map. (4) After
the affine transformation on the original image, the target image is generated by covering
more garbage scattered areas on it, and the binary change map is also produced. At the
same time, the affine matrix is saved and the optical flow map is generated through this
matrix to record the perspective change from the source image to the target image. (5) The
change map of the target image is restored to the perspective of the source image through
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the inverse matrix of the affine matrix and added with the change map of the source image
to generate the change map ground truth of the source and target images. (6) At the same
position on a group of source, target, change and optical flow maps, a set of dataset images
is obtained through cropping with small square boxes of the same size. Multiple sets of
dataset images can be obtained by performing the above operations at random positions
multiple times on a group of source images. (7) The entire dataset is obtained by deleting
those image sets with too large black border areas and repeated cropping areas, after
performing the above step on all source image groups. (8) To consummate the dataset,
data augmentation is used for the target images to increase the difference from the source
images and enhance the robustness of the network after training.

Figure 7. The procedure of dataset generation.

4. Experiments
4.1. Training Datasets

To evaluate our method, following the steps introduced in Section 3.5.2, we generated
a bi-temporal SUAV low-altitude remote sensing dataset for garbage-scattered areas change
detection in nature reserves, and designed a series of experiments on this dataset. To
increase the diversity of training data, we use several data augmentation methods when
generating the dataset. The data augmentation applied to the original images in step 4 is
mainly affine transformation, including rotation, translation and scaling. In step 8, the data
augmentation applied in target images is Gaussian blur, Gaussian noise and color jitter. The
parameter settings of data augmentation are shown in Table 1. We used SUAVs to capture
2000 original ground images with a resolution of 3840 × 2160 pixels in nature reserves and
obtained a dataset containing 48,000 pairs of images with a resolution of 256 × 256 pixels
through the above operations. Then, the dataset is divided into a training set, validation
set and testing set in a ratio of 6:2:2. Some selected samples from the dataset are shown in
Figure 8.
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Table 1. Parameter setting of data augmentation.

Parameter Name Value

rotation range ±30°
translation range ±0.2

scale range 0.8–1.2
pixel intensity range 0.5–1.5 per channel

contrast range 0.5–2 per channel
Gaussian distribution µ = 0, σ = 0.05 × 255

Gaussian blur probability 0.5
Gaussian noise probability 0.5 per channel

Gaussian kernel size 3

Figure 8. The overview of the dataset. Optical flow field color is encoded with the same method used
in FlowNet [25].

4.2. Evaluation Metrics

To evaluate the performance of the proposed method, we used three widely used
evaluation criteria: Precision (P), Recall (R), and F1 Score (F1). The formula of P, R and F1
are defined as follows:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1 =
2PR

P + R
(21)

where FP (False Positive) and FN (False Negative) represent the number of incorrectly
detected changes, and TP (True Positive) represents the number of correctly detected ones.
TP + FP is the total number of detected changes, and TP + FN is the total number of actual
changes. F1 is the harmonic mean of P and R. In the change detection task, the higher
precision value denotes fewer false detection results, and the higher recall value denotes
fewer missed detection results.

4.3. Implementation Details

All of our experiments were based on the deep learning framework Pytorch and
conducted on a single NVIDIA RTX-3090. To train our method, the Adam optimizer [57]
was adopted with an initial learning rate of 1× 10−4 for optimization. The momentum
is set to 4× 10−4 and the weight decay is set to 4× 10−4. The learning rate decays by
0.5 times every 10 epochs starting from the 60th epoch. The Kaiming normalization is used
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to initialize the weights of each convolutional layer. The hyperparameter β was set to
1× 10−3. The weights coefficients α are set to α1 = 0.005, α2 = 0.01, α3 = 0.02, α4 = 0.08,
α5 = 0.32. Except for our method, all other models are trained with the default parameters
of their official code. Model training is finished at 100 epochs with a batch size of 16.

5. Results

To evaluate the performance of the proposed method, we make a comparison with the
several representative and SOTA change detection methods on our dataset.

• FC-Siam-Conc [58]: The baseline model for change detection, which is fully consisted
of convolution. It is a simple combination of UNet and Siamese networks and uses
feature concatenation to fuse the bi-temporal information.

• FC-Siam-Diff [58]: The baseline model for change detection, whose architecture
is similar to FC-Siam-Conc, but uses multi-scale feature difference to fuse the
bi-temporal information.

• UNet++_MSOF [59]: Feature fusion method, which inputs concatenated bi-temporal
images into UNet++, and uses the multiple side output fusion for deep supervision.

• IFN [37]: Multi-scale feature concatenation method, which fuses the multi-level deep
features of images with different features by attention modules, and uses a deep
supervision strategy for optimization.

• DASNet [12]: Attention-based method, which extracts features by a Siamese backbone,
and uses a dual attention mechanism to build connections between local features to
obtain more discriminant feature representations.

• BIT [60]: Transformer-based method, which models contexts within the spatial-
temporal domain through multi-attention heads, and projects them to the pixel space
to refine the representation of the original features.

• SNUNet-CD [40]: Multi-scale feature concatenation method, which combines UNet++
and Siamese network, and uses the ensemble channel attention module to integrate
multi-level outputs to perform deep supervision.

• RDP-Net [61]: Feature fusion method, which uses region detail preserving the network
to improve the detection performance on boundaries and small regions.

We implement the above CD methods using their public codes with default hyperpa-
rameters. We train the above networks on our dataset to examine their change detection
performance in realistic bi-temporal SUAV low-altitude remote sensing images with view-
point changes. Furthermore, as a comparison, these CD networks are also trained on our
dataset with registered bi-temporal images. The bi-temporal images are pre-registered by
the outstanding optical flow registration network GLU-Net [62], and we use the optical
flow in our dataset for the GLU-Net training.

Table 2 reports the overall comparisons of detection accuracy, parameters number
and FPS on our dataset. Our proposed RegCD-Net can outperform the other change
detection methods with relatively few parameters, fast speed and better integration with-
out additional registration networks. In comparison with UNet++_MSOF, IFN, BIT and
SNUNet-CD, our method achieves the highest P (96.74%), R (95.92%) and F1 (96.32%)
with minimal parameters (20.66 M). Owing to simple network structure, FC-Siam-conc,
FC-Siam-diff and RDP-Net have the least parameters, and the former two, also have the
fastest FPS. By contrast, our RegCD-Net achieves at least 1% accuracy improvement with
only about 5M more parameters and 0.7 less FPS. In addition, although DASNet gets the
highest R (96.42%), our RegCD-Net achieves the second best R (slightly lower 0.5%) only
with 32% parameters of DASNet.
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Table 2. Performance comparison results on our dataset. The parameters of different methods with
pre-registration contain the parameters of GLU-Net (13.59 M). The FPS is computed by adding the
registration speed of GLU-Net and the detection speed of different methods.

Method Pre-Registration Backbone P (%) R (%) F1 (%) Params (M) FPS

FC-Siam-conc × UNet 91.97 57.06 70.24 1.55 ×
FC-Siam-diff × UNet 92.20 56.69 70.02 1.35 ×
UNet++_MSOF × UNet++ 85.90 79.76 82.53 8.83 ×
IFN × VGG16 94.88 57.75 71.8 35.99 ×
DASNet × ResNet50 45.79 79.37 64.29 50.27 ×
BIT × ResNet18 88.18 76.63 81.43 12.40 ×
SNUNet-CD × UNet++ 87.59 67.07 75.28 12.03 ×
RDP-Net × RSNet 87.92 85.62 86.73 1.70 ×
FC-Siam-conc X UNet 95.94 94.31 94.67 15.14 (1.55 + 13.59) 26.3
FC-Siam-diff X UNet 94.78 92.71 93.73 14.94 (1.35 + 13.59) 26.0
UNet++_MSOF X UNet++ 95.28 94.16 94.72 22.42 (8.83 + 13.59) 25.1
IFN X VGG16 95.36 94.81 95.08 49.58 (35.99 + 13.59) 21.2
DASNet X ResNet50 85.42 96.42 90.59 63.86 (50.27 + 13.59) 18.9
BIT X ResNet18 93.35 95.29 94.31 25.99 (12.40 + 13.59) 20.1
SNUNet-CD X UNet++ 96.40 95.12 95.74 25.62 (12.03 + 13.59) 20.7
RDP-Net X RSNet 95.23 94.80 95.01 15.29 (1.70 + 13.59) 22.0

RegCD-Net (our) × ResNet18 96.74 95.92 96.32 20.66 25.6

The visualization comparison of different methods on our dataset is displayed in
Figure 9. The true positive, true negative, false positive and false negative are indicated by
white, black, red and green, respectively in the figure. From Figure 9, we can observe that
our RegCD-Net achieves better detection performance than others, which mainly benefited
from three perspectives. Firstly, our RegCD-Net employs global and local correlations
in the deepest and shallow layers to generate optical flow, respectively, to achieve better
registration performance in bi-temporal images with large viewpoint changes, thereby
indirectly improving change detection accuracy. Secondly, our RegCD-Net utilizes nested
connections in the up-sampling process, which combines rich semantic information and
precise location information, to achieve more delicate edge performance in the change map.
Furthermore, we also use the attention module CGAM to fuse features of the different
semantic level paths to automatically emphasize more precise change edge representation.
Thirdly, our RegCD-Net integrates registration and change detection sub-networks into a
single network, enabling end-to-end optimization of change detection on bi-temporal low-
altitude remote sensing images with viewpoint changes, which can reduce the influence
of imprecise pre-registration results on change detection performance. Benefiting from an
end-to-end structure, our method also has good real-time performance.
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Figure 9. Visualization results of different methods on our dataset. Four groups of different bi-
temporal images are marked with (a–d). Different colors are used for a better view, which is white for
true positive, black for true negative, red for false positive and green for false negative. The change
maps in the first row of each group only contain false positives and false negatives for better edge
error representation.

6. Ablation Studies
6.1. Ablation on Loss Function

We perform ablation on the loss function to validate its performance in our end-to-end
network RegCD-Net, where hyperparameter β is the core parameter in connecting two task
losses of optical flow registration and change detection. Table 3 shows the ablation study of
the hyperparameter β on our made dataset. From Table 3, we observe consistent drops in
AEPE as the decreasing of the β, while the peaks of P, R and F1 emerge at β = 1× 10−3. That
is because when adjusting the β of the two loss functions, more weight on registration loss
LMEPE means better loss optimization on it and more accurate registration performance.
Better registration performance further improves the accuracy of the change detection.
However, more weight on registration loss also means that network is more inclined to
the registration task. That is to say, when the loss decreases, it will be insensitive to the
change detection loss changes, which makes it difficult to effectively optimize the change
detection task, resulting in decreasing after accuracy reaches the peak value. We choose
the value of β at the accuracy peak as the loss function hyperparameter for subsequent
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RegCD-Net ablation experiments. The results of optical flow registration at chosen β are
shown in Figure 10.

Table 3. Ablation study of hyperparameter β on our dataset.

β AEPE P (%) R (%) F1 (%)

1× 10−2 4.20 95.42 95.35 95.38
1× 10−3 5.22 96.74 95.92 96.32
1× 10−4 6.15 95.28 94.07 94.67
1× 10−5 7.34 94.57 92.35 93.45
1× 10−6 8.48 94.15 90.66 92.37
1× 10−7 9.55 93.68 88.87 91.14

Figure 10. The registration results in β = 1× 10−3. Wi denotes different optical flow pyramid levels.

6.2. Effect of Assemble Correlation and Nested Connection

We perform ablation on the optical flow correlation layer and up-sampling connection
module. We complete our experiments by adding or deleting the global correlation layer
and replacing connection methods. All models in the experiments do not contain any
attention modules. As shown in Table 4, only local correlation and UNet connection perform
the worst performance. When replacing the UNet connection with nested connections,
the accuracy has an improvement, which indicates that nested connections contribute to
change detection performance improvement. We also observe that compared to the model
with only local correlation and Unet connection, the model additionally containing global
correlation has obvious accuracy improvement, especially in recall score. It may be because
global correlation performs better in large displacement optical flow registration, and better
registration results will directly lead to higher detection accuracy. Compared to the above,
our RegCD-Net, which contains two kinds of correlation layer and nested connection can
perceive large-scale displacement under the premise of ensuring local registration effect
and achieve fusing shallow location information and deep semantic information, which
will undoubtedly perform the best in P, R and F1 score.

Table 4. Ablation study of our RegCD-Net on our dataset. Ablations are local correlation (LC), global
correlation (GC), Unet connection (UC) and nested connection (NC). All of the following models do
not add attention.

LC GC UC NC P (%) R (%) F1 (%)

X × X × 91.33 86.55 88.82
X × × X 93.24 88.98 91.00
X X X × 93.81 91.50 92.63
X X × X 94.88 94.02 94.45

6.3. Comparison on Attention Modules

To further evaluate the performance of our RegCD-Net, we add the attention mecha-
nism after four up-sampling outputs for performing network deep supervision, to auto-
matically select better feature representations from different semantic level up-sampling
pathways. We designed ablation experiments on attention modules to compare the perfor-
mance of the widely used attention module CBAM and our designed CGAM on our dataset.
Table 5 shows that the model, which only uses CAM or SAM, has small improvements
over the no attention module, and the model combining two of the above performs better
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in accuracy. By contrast, the model adding our CGAM further improves the accuracy. It
proves that our CGAM can effectively focus on the intra-group common feature of four up-
sampling outputs, and selects more appropriate feature representation channels between
four groups to make the boundary position in the change detection results more precise.

Table 5. Ablation study of attention models on RegCD-Net with our dataset. Ablations are the
channel attention module (CAM), spatial attention module (SAM) and channel group attention
module (CGAM).

CAM SAM CGAM
(Our) P (%) R (%) F1 (%)

× × × 94.88 94.02 94.45
X × × 95.26 94.74 94.99
× X × 94.96 94.93 94.94
X X × 95.82 94.96 95.38
× × X 96.74 95.92 96.32

7. Discussion

The above extensive comparison experiments and ablation studies demonstrate the
effectiveness of proposed RegCD-Net. Specifically, several observations from the above
experiments are summarized as follows:

• RegCD-Net can achieve the registration of bi-temporal SUAV low-altitude remote
sensing images with viewpoint changes, with no pre-registration, better integrity,
fast speed and relatively fewer parameter numbers. It can improve change detection
accuracy through end-to-end optimization.

• Global and local assemble correlation can capture large displacements between feature
maps in the deep layers of the network, and can achieve more detailed local associa-
tions in the shallow layers. It achieves fine registration of remote sensing images with
large viewpoint changes by the construction of a coarse-to-fine optical flow pyramid.

• Nested connection up-sampling can combine the rich semantic information in the deep
layers and the precise location information in the shallow layers through different
skip connections and up-sampling pathways to achieve more delicate edge detection
performance in the change detection maps.

• Channel group attention module CGAM can effectively focus on the intra-group com-
mon feature and the inter-group different features of four up-sampling outputs from
different up-sampling pathways, and select more appropriate feature representation
channels to make the boundary position in the change detection results more precise.

These observations can provide us with very meaningful guidance, laying the founda-
tion for our subsequent construction of faster, fewer parameters and better performance
in end-to-end change detection network in the field of low-altitude SUAV remote sensing
with a higher-resolution and wider view.

8. Conclusions

In this paper, we propose RegCD-Net, an end-to-end method for change detection in bi-
temporal SUAV low-altitude remote sensing images. We integrate registration and change
detection sub-networks in a network, and utilize assemble correlation, nested connection
and deep supervision attention module to optimize the uncertainty of pixels at the edge of
change detection results. In addition, we also generate a bi-temporal SUAV low-altitude
remote sensing dataset for change detection of garbage-scattered areas in nature reserves
and experiment on this dataset. Extensive experiments have validated the effectiveness of
our method, without an additional pre-registration network. Our end-to-end RegCD-Net
can detect more precise edge changes with the best accuracy, fewer network parameters
and better detection speed. In the future, we will focus on high-level simplification and
integration of network structures in end-to-end no pre-registration change detection, and



Remote Sens. 2022, 14, 6352 21 of 23

apply our method to bi-temporal low-altitude remote sensing images with higher resolution
and larger view field.
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