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Abstract: Accurate and timely mapping of crop types and having reliable information about the
cultivation pattern/area play a key role in various applications, including food security and sustain-
able agriculture management. Remote sensing (RS) has extensively been employed for crop type
classification. However, accurate mapping of crop types and extents is still a challenge, especially
using traditional machine learning methods. Therefore, in this study, a novel framework based
on a deep convolutional neural network (CNN) and a dual attention module (DAM) and using
Sentinel-2 time-series datasets was proposed to classify crops. A new DAM was implemented to
extract informative deep features by taking advantage of both spectral and spatial characteristics of
Sentinel-2 datasets. The spectral and spatial attention modules (AMs) were respectively applied to
investigate the behavior of crops during the growing season and their neighborhood properties (e.g.,
textural characteristics and spatial relation to surrounding crops). The proposed network contained
two streams: (1) convolution blocks for deep feature extraction and (2) several DAMs, which were em-
ployed after each convolution block. The first stream included three multi-scale residual convolution
blocks, where the spectral attention blocks were mainly applied to extract deep spectral features. The
second stream was built using four multi-scale convolution blocks with a spatial AM. In this study,
over 200,000 samples from six different crop types (i.e., alfalfa, broad bean, wheat, barley, canola,
and garden) and three non-crop classes (i.e., built-up, barren, and water) were collected to train and
validate the proposed framework. The results demonstrated that the proposed method achieved high
overall accuracy and a Kappa coefficient of 98.54% and 0.981, respectively. It also outperformed other
state-of-the-art classification methods, including RF, XGBOOST, R-CNN, 2D-CNN, 3D-CNN, and
CBAM, indicating its high potential to discriminate different crop types.

Keywords: crop mapping; deep learning; convolutional neural networks (CNN); attention modules (AM);
dual attention CNN; Sentinel-2; multi-temporal

1. Introduction

Considering the prospect of human population growth, which is expected to reach
8.7 billion by 2030, the food supply system is subjected to escalating pressure [1,2]. Addi-
tionally, climate change effects and catastrophic natural disasters (e.g., drought and flood)
are already hampering agricultural production and threatening food security from local
to global scales [3,4]. Accordingly, it is vital to obtain authentic information about the
location, extent, type, health, and yield of crops to ensure food security, poverty reduction,
and water resource management [5]. Additionally, it is more appealing to incorporate
efficient approaches that facilitate the requirement of sustainability and climate change
adaption [6,7]. Thus, it is crucial to employ efficient approaches, such as advanced machine
learning along with remote sensing (RS) data, to ensure high-quality information is derived
about crops in order to achieve specified goals [8].
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RS has long been recognized as a trustworthy approach for extracting specialized
information about agricultural products [9–12]. This is owing to the frequent, broad-scale,
and spatially consistent data acquisition of RS systems. In particular, RS allows timely
monitoring of croplands to extract different information concerning the crop phenological
status [13,14], health [15], types [16–18], and yield estimation [19,20] over small- to large-
scale areas, based on different characteristics of satellite images (e.g., spatial, temporal,
and spectral resolutions). These practices have been performed using different sources
of RS data, including multi-spectral [21,22], synthetic aperture radar (SAR) [23,24], light
detection and ranging (LiDAR) [25,26], hyperspectral [27,28], thermal [29,30], and digital
elevation model (DEM) [31,32].

Along with the advancement of RS, image processing techniques and machine learning
algorithms have also been significantly promoted [33–35]. Accordingly, machine learning
algorithms offer the potential to exploit the information content of RS data through auto-
mated frameworks [36,37]. In this regard, many scholars incorporated RS data and machine
learning algorithms for crops mapping and monitoring. For instance, Zhang et al. [38] im-
plemented a random forest (RF) algorithm to classify croplands in China and Canada. To
this end, textural features and vegetation indices were extracted from RapidEye images
and were added to the spectral bands. The results revealed that the integration of all
spectral, textural, and vegetation indices features could considerably enhance the clas-
sification results. Additionally, Mandal et al. [39] employed a support vector machine
(SVM) classifier along with time-series RADARSAT-2 C-band quad-pol data to discriminate
different crops in Vijayawada, India. Temporal signatures of backscattering intensities were
initially derived, and then informative features were selected by adopting kernel principal
component analysis (PCA). It was reported that selecting discriminative temporal features
improved the classification results by 7%. Moreover, Maponya et al. [40] evaluated the
potential of five machine learning algorithms, including SVM, RF, decision tree, K nearest
neighbour, and maximum likelihood, for crop mapping using multi-temporal Sentinel-2
images. Four different scenarios were considered for the classification tasks, and the results
indicated the superiority of RF and SVM over other classifiers, especially when a subset
of hand-selected images (i.e., knowledge-based) were utilized. Furthermore, Saini and
Ghosh [41] identified the major crop types in Roorkee, India, using four different machine
learning algorithms and Sentinel-2 images. It was observed that extreme gradient boosting
(XGBOOST) outperformed other classifiers with an overall accuracy of 87%.

Currently, deep learning algorithms are recognized as a breakthrough approach for
processing RS data [35,42]. In particular, classification studies using RS data greatly benefit
from deep learning approaches because of their flexibility in feature representation, au-
tomation through the end-to-end procedure, and automatic extraction features [43–45]. In
this regard, different deep learning models (i.e., different structures and networks) have
been employed for crop type mapping and monitoring [46–51]. For example, Zhao, Duan,
Liu, Sun, and Reymondin [51] compared five deep learning models for crop mapping
based on dense time-series Sentinel-2 images. Their results suggested the high capabilities
of one-dimensional convolutional neural networks (1D-CNN), long short-term memory
CNN (LSTM-CNN), and gated recurrent unit CNN (GRU-CNN) models for crop mapping,
respectively. Furthermore, Ji, Zhang, Xu, Shi, and Duan [47] developed a three-dimensional
CNN (3D-CNN) model to automatically classify crops using spatio-temporal RS images.
The proposed network was enhanced using an active learning strategy to increase the
labelling accuracy. The results were compared to a two-dimensional CNN (2D-CNN)
classifier, suggesting higher efficiency and accuracy of their proposed approach.

Similar to other countries, RS data have widely been utilized for crop type mapping in
Iran. For instance, Akbari et al. [52] implemented the particle swarm optimization algorithm
to select informative features from time-series Sentinel-2 images for crop mapping in
Ghale-Nou, Tehran, Iran. The selected features were ingested into an RF classifier, and
the results showed the high potential of the proposed method for heterogenous crop
fields classification. Asgarian et al. [53] also investigated the potential of time-series
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Landsat-8 images for crop mapping in fragmented and heterogeneous landscapes of Najaf-
Abad, Iran. To this end, long-term in-situ phenological information was combined with
satellite images to map annual crop types using intensive decision trees and SVM classifiers.
Furthermore, Saadat, et al. [54] employed time-series Sentinel-1 data to map rice in the
northern part of Iran. To this end, Gamma Nought, Sigma Nought, and Beta Nought
features of Sentinel-1 images in three scenarios were used in the RF classifier. Their results
indicated the superiority of Sigma Nought and Gamma Nought Sentinel-1 data in vertical
transmittance and horizontal receiving (VH) polarization.

Although many crop mapping frameworks have been proposed by various researchers,
they generally have one of the following disadvantages:

(I) Most crop mapping studies have focused on conventional machine learning methods
(e.g., RF and SVM). These algorithms do not usually provide the highest possible
accuracies due to several factors, such as climatic conditions and the fluctuations in
planting times.

(II) Many studies have only used spectral-temporal information for crop mapping. How-
ever, spatial information should be included in the classification algorithm to produce
highly accurate maps.

(III) Many state-of-the-art deep learning methods for crop mapping have only used the
2D/3D convolution blocks for extracting deep features. All of these extracted deep
features are not informative for crop mapping and provide redundant information.
In this regard, attention blocks should be implemented to select the most informa-
tive features.

The Iranian crop system is under escalating pressure mainly due to the severe water
crisis and population growth [55]. Additionally, climate change and the current dramatic
drought condition in Iran also exacerbate the existing pressure [56]. Furthermore, the
current economic and political sanctions have become a notable issue that would amplify
this pressure in Iran [57,58]. Consequently, incorporation of advanced technologies, such
as remote sensing and machine/deep learning algorithms, is required to support efficient
agricultural practices in Iran. Considering the importance of crop mapping in Iran, a novel
deep learning algorithm was developed in this study for accurate crop classification. The
classification model has three main steps: (1) data preparation, (2) deep feature extraction
based on multi-scale residual kernel convolution and CNN’s parameters optimization, and
(3) crop type mapping based on an optimized model. The key contributions of this research
are as follows:

(I) Proposing a novel framework for mapping crop types based on a two-stream CNN
with a DAM.

(II) Introducing novel spatial and spectral attention mechanisms (AMs) to extract infor-
mative deep features for crop mapping.

(III) Utilizing multi-scale and residual blocks for increasing the accuracy of the pro-
posed network.

(IV) Evaluating the sensitivity of the proposed method during the growing season of crops
based on a time-series normalized difference vegetation index (NDVI).

(V) Evaluating the performance of commonly used machine learning and deep learning
methods for crop type mapping.

2. Study Area and Datasets
2.1. Study Area

The study area was an agricultural area in the southern portions of the Aq Qala
counties, Golestan province. This study area is approximately centered at a latitude and
longitude of 37◦50′ N and 54◦40′ E, respectively (see Figure 1). The climate of the study area
is mainly influenced by the Alborz Mountains and the Caspian Sea. Thus, it has different
climates with a diverse rate of precipitation and humidity [59]. For instance, the study
area contains semi-arid (northern parts) and humid (southern parts) climates with annual
precipitation between 249 and 529 mm [60]. Consequently, it includes both irrigated and
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rainfed agricultural systems. The study area is among the most important counties for crop
production in the province of Golestan, and various crops (e.g., wheat, alfalfa, and barleys)
are cultivated in this region during each growing season, of which wheat is the dominant
one. As one of the biggest crop production sources in Golestan, it is essential to establish
regular and accurate crop condition monitoring systems and estimate the cultivated crop
area with high reliability.
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Figure 1. (a) The geographical location of the study area, and (b) a false-color composite NDVI image
(R: first month NDVI, G: second month NDVI, and B: third month NDVI) from the study area.

2.2. Sentinel-2 Imagery

In this study, time-series Sentinel-2 optical satellite images were employed for crop
type classification. Sentinel-2 is a European satellite developed via the cooperation of the
European Commission initiative Copernicus and the European Space Agency [33]. This
platform carries the MultiSpectral Instrument (MSI) sensor, a wide-swath multispectral
imager that images the Earth’s surface using 13 bands with a spectral range from 443 nm
to 2190 nm. These bands are taken from visible to shortwave infrared domains of the
electromagnetic spectrum in three different spatial resolutions (i.e., 10–60 m) [61]. Sentinel-2
constellation (Sentinel-2A and B) provides global coverage of the Earth’s surface every
five days, making it suitable for a variety of land monitoring tasks. In total, 13 Sentinel-2
images were used in this study (see Table 1). As is clear from Table 1, the imagery acquired
in the first two weeks of February 2018 and the second two weeks of March 2018 were
not used because of the cloud cover over the study area on these two dates. Overall, we
could effectively distinguish various types of crops in the study area using these time-series
images [62,63].

Table 1. Date and description of Sentinel-2 multispectral images that were used for crop mapping.

Data Date Description

Dataset–Time-1 November 2017 The first two weeks
Dataset–Time-2 November 2017 The second two weeks
Dataset–Time-3 December 2017 The first two weeks
Dataset–Time-4 December 2017 The second two weeks
Dataset–Time-5 January 2018 The first two weeks
Dataset–Time-6 January 2018 The second two weeks
Dataset–Time-7 February 2018 The first two weeks, high-cloudy, not used
Dataset–Time-8 February 2018 The second two weeks
Dataset–Time-9 March 2018 The first two weeks

Dataset–Time-10 March 2018 The second two weeks, high-cloudy, not used
Dataset–Time-11 April 2018 The first two weeks
Dataset–Time-12 April 2018 The second two weeks
Dataset–Time-13 May 2018 The first two weeks
Dataset–Time-14 May 2018 The second two weeks
Dataset–Time-15 June 2018 The first two weeks
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2.3. Reference Samples

Figure 2 illustrates the distribution of the collected in-situ samples over the study area.
These samples were collected from ten classes during several field surveys. The field data
were collected in 2018 from April to May for all crop classes. A handheld global positioning
system (GPS) with a positional accuracy of <5 m was used to record the locations of
the samples.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 25 
 

 

Dataset–Time-9 March 2018 The first two weeks 

Dataset–Time-10 March 2018 The second two weeks, high-cloudy, not used 

Dataset–Time-11 April 2018 The first two weeks 

Dataset–Time-12 April 2018 The second two weeks 

Dataset–Time-13 May 2018 The first two weeks 

Dataset–Time-14 May 2018 The second two weeks 

Dataset–Time-15 June 2018 The first two weeks 

2.3. Reference Samples 

Figure 2 illustrates the distribution of the collected in-situ samples over the study 

area. These samples were collected from ten classes during several field surveys. The field 

data were collected in 2018 from April to May for all crop classes. A handheld global po-

sitioning system (GPS) with a positional accuracy of <5 m was used to record the locations 

of the samples. 

 

Figure 2. The distribution of the reference samples from ten classes collected over the study areas. 

As is clear from Figure 2, more arboretum and agricultural-vegetable areas are lo-

cated on the right side of the study area while other crops are dispersed over the study 

area. 

Table 2 provides the number of samples for each class. The wheat and broad bean 

classes had the maximum and minimum numbers of reference samples. There are differ-

ent approaches, such as manual splitting, random splitting, and non-random splitting for 

the division of reference samples into training, validation, and test samples [64]. In this 

regard, random sampling is the most common way to split reference samples, which has 

extensively been used for classification tasks using remote sensing images [65–67]. Ac-

cordingly, in this study, random sampling was employed to divide reference samples into 

training (3%), validation (0.1%), and test (96.9%) samples. 

Table 2. The number of reference samples that were divided into training, validation, and test sam-

ples. 

ID Crop Type All Samples Training (3%) Validation (0.1%) Test (96.9%) 

1 Arboretum 9336 306 67 8963 

2 Agricultural-Vegetable 1618 53 12 1553 

3 Broad Bean 71 3 1 67 

4 Barren 58,604 1922 422 56,260 

5 Built-Up 43,252 1419 311 41,522 

6 Barley 17,363 569 125 16,669 

7 Water 5813 191 42 5580 

Figure 2. The distribution of the reference samples from ten classes collected over the study areas.

As is clear from Figure 2, more arboretum and agricultural-vegetable areas are located
on the right side of the study area while other crops are dispersed over the study area.

Table 2 provides the number of samples for each class. The wheat and broad bean
classes had the maximum and minimum numbers of reference samples. There are different
approaches, such as manual splitting, random splitting, and non-random splitting for the
division of reference samples into training, validation, and test samples [64]. In this regard,
random sampling is the most common way to split reference samples, which has extensively
been used for classification tasks using remote sensing images [65–67]. Accordingly, in
this study, random sampling was employed to divide reference samples into training (3%),
validation (0.1%), and test (96.9%) samples.

Table 2. The number of reference samples that were divided into training, validation, and test samples.

ID Crop Type All Samples Training (3%) Validation (0.1%) Test (96.9%)

1 Arboretum 9336 306 67 8963
2 Agricultural-Vegetable 1618 53 12 1553
3 Broad Bean 71 3 1 67
4 Barren 58,604 1922 422 56,260
5 Built-Up 43,252 1419 311 41,522
6 Barley 17,363 569 125 16,669
7 Water 5813 191 42 5580
8 Wheat 58,701 1925 423 56,353
9 Canola 8282 271 60 7951

10 Alfalfa 17,995 590 130 17,275

Total 221,035 7249 1593 212,193

3. Method

The general framework of crop type classification based on the proposed method
is illustrated in Figure 3. The proposed classification framework was implemented in



Remote Sens. 2022, 14, 498 6 of 24

three main steps: (1) data preparation and normalized difference vegetation index (NDVI)
calculation, (2) model training and parameters tuning, and (3) prediction and accuracy
assessment. The detail of each step is discussed in the following subsections.
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Figure 3. Overview of the proposed framework for crop mapping.

3.1. Data Preprationand Time-Series NDVI Calculation

Sentinel-2 datasets require several preprocessing steps, such as cloud masking and
atmospheric correction. In this regard, we selected only non-cloudy images for the analysis.
Moreover, the atmospheric correction was implemented using the Sen2cor module [68],
which is available in the SNAP software.

Spectral feature extraction is the most common step in RS classification tasks [61]. The
feature extraction can be conducted in two main categories: (1) combining spectral bands
using simple mathematical operations, such as the spectral indices of NDVI [69,70]; and
(2) deriving high order statistical features (i.e., covariance and correlation), such as PCA [71]
and factor analysis (FA). Among different spectral indices, NDVI was selected due to its
simplicity and its high applicability for crop mapping [72–75]. NDVI was computed based
on the red (0.665 µm) and near-infrared (NIR) (0.842 µm) bands (see Equation (1)).

NDVI =
(NIR− Red)
(NIR + Red)

(1)

Crops have a dynamic nature because of their growth during their lifetime. Thus, employing
time-series datasets is an effective and pertinent solution for mapping crops [76,77]. Consequently,
the time-series NDVI features were utilized in this study for crop types classification.

3.2. Proposed Deep Learning Architecture

This study proposed a new dual-stream CNN architecture with both spectral and
spatial attention blocks. According to the presented architecture in Figure 4, the proposed
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method received input patches of 11 × 11 × 13, and then the patches were fed into two
separate streams for deep feature extraction.
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Figure 4. The proposed dual-stream spatial and spectral attention blocks framework for crop mapping.

The first stream explored deep features based on multi-scale residual convolution
blocks and spectral attention blocks. This stream focused on deep spectral feature extraction
based on spectral AM. In this regard, a shallow multi-layer feature extractor, max-pooling
layer, spectral attention blocks, and multi-scale residual blocks were employed. First, the
shallow deep features were extracted via a multi-scale convolution block. Then, the spectral
attention block was employed to investigate the inter-channel relationship of feature maps.
Subsequently, the max-pooling layer was applied to reduce the size of the generated
feature maps. The multi-scale residual block was then employed to find more meaningful
features. Similarly, the spectral attention block and max-pooling were employed. Finally,
the extracted deep features were transferred to the latest multi-scale residual and spectral
attention blocks to generate high-level deep features.

The second stream investigated deep features while concentrating on deep spatial fea-
tures using spatial attention blocks. Similarly, this stream had one multi-scale convolution
block and three multi-scale residual blocks. Moreover, after convolution block layers, the
spectral attention block and max-pooling layers were employed.

After deep feature extraction based on multi-scale residual blocks and attention blocks,
the deep features were flattened using a flattening layer. Then, they were fed to a dense
layer, and the decision was made via a soft-max layer.

The main differences between the proposed architecture and other CNN frame-
works are:

(1) Utilizing a double streams framework for investigating spatial/spectral deep fea-
ture extraction.

(2) Proposing a novel AM framework for extraction of informative deep features that have
a higher efficiency compared to the convolutional block attention module (CBAM).

(3) Taking advantage of residual, depth-wise, and separable convolution blocks as well
as combining them for deep feature extraction.

(4) Employing separable (point/depth-wise convolution layers) convolution which has a
better performance.
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3.2.1. Attention Mechanism (AM)

The AM in deep learning was inspired by the psychological attention mechanisms
within the human brain [78–82]. The main idea behind the AM is to direct the focus of the
network on extracting meaningful features instead of non-essential features [81]. The effi-
ciency of the AM in deep learning models has been proven in previous literature [78,82–85].
In this regard, this study proposed a novel AM to increase the efficiency of the imple-
mented/developed architecture by considering both spectral and spatial AM. The main
idea to incorporate the AM was to explore the relationship between spectral-temporal and
spatial-temporal information of input patches for the crop type classification task.

The developed spectral AM concentrated on ‘what’ is meaningful in the given input
feature map [83,84,86]. To this end, we introduced a spectral attention block in accordance
with the architecture illustrated in Figure 5. Based on this, the input feature map was fed
into a convolution block with a kernel size (a,b) that was equal to the length and width
of the input feature data. The size of the output feature map was 1 × 1 × c. Moreover,
the number of filters was c, which was equal to the number of feature maps of the input
data. After reshaping the output of the previous layer, the features were transferred into
a multi-layer perceptron (MLP) layer with two dense layers with different neuron sizes.
The first and second layers reduced the number of neurons based on the reduction rate and
reconstructed the features, respectively. Simultaneously, the separable convolution layer
was employed for input data before the multiplication of features with the input feature
map. Finally, the output of the first stream and separable convolution layer was fused using
multiplication. The separable convolution layer was implemented in two steps: point-wise
convolution and depth-wise convolution on the output of the point-wise convolution.
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Figure 5. The proposed spectral attention block.

The developed spatial AM considered the inter-spatial relationship of feature maps [84,87,88].
The spatial AM concentrated on ‘where’ a useful region within the input feature map
is [86,89]. This AM was implemented similarly to the spectral AM, but with different
output sizes of convolution layers (see Figure 6). Based on this, the input feature map
was transferred into a convolution block with a kernel size (a,b) with only one kernel
convolution and padding. This means that the output size of the feature map was a × b × 1.
After reshaping the output of the previous layer, the features were fed into an MLP with two
fully connected layers with different neuron sizes. The first layer reduced the number of
neurons based on the reduction rate. Then, the second fully connected layer reconstructed
the features. Simultaneously, the separable convolution layer was employed for input data
before the multiplication of features with the input feature map. Finally, the output of the
first stream and separable convolution layer was fused via multiplication.
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3.2.2. Convolution Layer

Convolution layers are the central core of CNN frameworks, and the main task of
these layers is extracting high-level deep features from input imagery [90]. The convolution
layers automatically explore spatial and spectral features at the same time. The basic
computation of the convolutional layer can be defined as follows (Equation (2)) [91].

fN = φ
(

wl fN−1
)
+ bN (2)

where x is the input data from layer N − 1, φ is an activation function, w and b are the
weighted template and bias vector, respectively.

The output of jth feature map for a 2D convolution at the spatial location of (x,y) can
be computed using Equation (3) [35].

f xy
N ,j = φ

(
bN ,j + ∑

m

RN−1

∑
r=0

SN−1

∑
s=0

Wr,s
N ,j f (x+r)(y+s)

N−1,m

)
(3)

where m is the feature cube connected to the current feature cube in the (N − 1)th layer,
and R and S are the length and width of the filter, respectively.

This research took advantage of both residual and multi-scale blocks. The multi-
scale blocks increase the efficiency of the network against the differences in the scale of
objects [35]. Moreover, the residual blocks improved the efficiency of the network and
helped to prevent gradient vanishing.

3.3. Model Training

Since the unknown parameters of the deep learning architecture cannot be calculated
through an analytical solution, the iterative framework was employed to optimize the
model parameters [90]. The adaptive moment estimation (Adam) optimizer [80] was used
in this study to optimize the model parameters. Furthermore, the cross-entropy (CE) loss
function was utilized to calculate the error of the network during the training phase. The
training phase was conducted based on the training samples, and then the loss value of
the trained model was computed using validation samples. The CE loss function can be
calculated using Equation (4):

CE-loss = −∑N
i=1 Φilogϕi (4)
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where Φ and ϕ are the true and predicted labels, respectively. Moreover, N refers to the
number of classes.

3.4. Accuracy Assessment

The statistical accuracy assessment was performed using independent test samples.
The six most common statistical criteria, all extracted from the confusion matrix of the
classification, were utilized to evaluate classification results. These criteria were overall ac-
curacy (OA), user accuracy (UA), producer accuracy (PA), Kappa coefficient (KC), omission
error (OE), and commission error (CE).

3.5. Comparison with Other Classification Methods

Crop mapping has widely been applied by machine learning and deep learning-based
methods [92,93]. The RF and XGBOOST are the most common machine learning methods
that have widely been used in many crop mapping applications based on time-series
datasets [93,94]. This research implemented these two machine learning-based methods to
evaluate their efficiency in comparison with deep learning-based methods. Thus, six dif-
ferent classifiers, including two commonly used machine learning algorithms (i.e., RF [94]
and XGBOOST [95]) and four deep learning models (i.e., recurrent-convolutional neural
network (R-CNN) [49], 2D-CNN [47], 3D-CNN [47], and convolutional block attention
module (CBAM)), were also implemented to produce a more comprehensive evaluation
of the performance of the proposed model. R-CNN, developed by Mazzia, Khaliq and
Chiaberge [49], combines the LSTM cells and 2D convolution layers for crop mapping
based on time-series datasets. Moreover, CBAM [82] combines channel attention and spatial
attention after each convolution layer, wherein the channel attention block is employed
after the spatial attention block. The inputs of the RF and XGBOOST algorithms were
spectral-temporal features with the size of 1 × 13 where 1 and 13 refer to the spectral (i.e.,
NDVI) and temporal information. Moreover, the input datasets of the deep learning-based
methods were spatial-spectral-temporal information with the size of 11 × 11 × 1 × 13,
where 11 × 11 was the width and length of spatial information, respectively, 1 was the
spectral information (i.e., NDVI), and 13 was the temporal information. It is worth noting
that the size of the spatial information for the deep learning-based methods was determined
by trial and error. The patch data were also generated by moving a window with the size
of 11 × 11. The label of this patch corresponded to the central pixel of the patch.

4. Experiments and Results
4.1. Parameter Setting

The proposed method and other classifiers have several parameters that need to be
set. As described in the Method Section, the optimum values of the parameters for each
classifier were determined based on several trial and error attempts (see Table 3). All
parameters of the deep learning-based methods were set identically. It is worth noting that
the selection of some of these parameters depended on the processing system.

Table 3. The optimum values of the classifier parameters.

Data Description

RF number of estimators = 105, number of features to split each node = 3
XGBoost number of rounds = 500, max. depth = 5, subsample = 1, min. child weight = 1, lambda = 1, colsample bytree = 0.8.

Deep Learning Models dropout rate = 0.1, epochs = 500, initial learning = 10−4, mini-batch size = 550, weight initializer = He normal

4.2. Classification Results

The results of crop mapping based on the proposed deep learning method along with
other algorithms are illustrated in Figure 7. A high-resolution image from the study area
is also provided in Figure 7a for comparison purposes. The results showed that the map
produced using XGBOOST (Figure 7b) included salt and pepper errors. Furthermore, the
RF classifier (Figure 7c) could not delineate different classes with a high level of accuracy.
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In general, deep learning methods (Figure 7d–h) produced better results compared to the
XGBOOST and RF models. However, there were still several wrongly classified pixels
in the results of the deep learning methods, especially those of the R-CNN and 2D-CNN
methods. Overall, the proposed method (Figure 7h) provided the most accurate crop map
based on visual interpretation.
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Figure 8 shows the confusion matrices of the proposed and all implemented classi-
fication methods. Generally, the proposed deep learning method resulted in the lowest
confusion between the classes, indicating its high potential for accurate crop type mapping.
Among non-agricultural classes, there was considerable confusion between the barren and
built-up classes with other classes, except broad bean. Furthermore, water had the lowest
mixing with different classes. Overall, most confusions occurred between the arboretum,
barren, built-up, barley, and wheat classes. These confusions were much higher for the
XGBOOST, RF, and R-CNN algorithms compared to other methods. For example, the
highest confusion was between the barren and built-up classes (11,918 pixels) using the
RF algorithm. The R-CNN algorithm also resulted in relatively high confusion between
built-up/barren and barren/wheat. However, other deep learning algorithms, especially
the proposed method, had higher accuracies. Among the 2D-CNN, 3D-CNN, and CBAM
deep learning algorithms, the highest confusion was observed between barley and wheat
using the 2D-CNN algorithm. The RF, XGBOSST, 2D-CNN, and RCNN classification meth-
ods could not discriminate the broad bean class from other classes mainly due to the lower
number of its samples compared to other classes.

The statistical accuracy assessment of the crop maps using different accuracy measures
is also summarized in Table 4. Regarding the non-deep learning algorithms, the RF classifier
provided the lowest performance (OA = 74% and KC = 0.68), while XGBOOST provided
a satisfactory result (OA = 87% and KC = 0.84). However, all the deep learning methods,
except the R-CNN algorithm, achieved an OA of more than 90%. In particular, the proposed
method provided the highest accuracy in mapping crops with an OA and KC of 98.5% and
0.98, respectively.

4.3. Impacts of the Time-Series NDVI on the Classification Results

The crop type classification provides useful information before harvesting agricultural
products. This information can accurately be obtained by employing time-series NDVI
datasets in a growing season. In this regard, the sensitivity of the number of the NDVI used
in the classification was investigated in this study. For example, Figure 9 and Table 5 present
the calculated confusion matrices and accuracy measures when different NDVI datasets
were employed for crop type mapping using the proposed deep learning method. It was
observed that using more NDVI images (i.e., seven months NDVI dataset) resulted in higher
classification accuracies and lower confusions between different classes, closely followed
by using six months NDVI datasets. As is clear from Figure 9, adding further information
to the proposed method through adding more NDVI images could steadily reduce the
uncertainties and confusion between the classes. For instance, the total interchangeable
confusion between wheat and canola was continuously reduced by nearly 30% (i.e., from
800 wrongly classified pixels to 87 incorrectly classified pixels, when incorporating more
time-series NDVI datasets). Furthermore, barley and wheat had the lowest confusion
(113 pixels) when employing seven months of NDVI datasets, while the highest confusion
(304 pixels) was associated with using two months of NDVI datasets. Overall, as is clear
from Table 5, the highest accuracies were obtained when seven months of NDVI datasets
were utilized.
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Table 4. Comparison of the accuracies of different classification algorithms for crop mapping. The
bold values show the highest accuracies (OA: overall accuracy, KC: kappa coefficient, UA: user
accuracy, PA: producer accuracy, OE: omission error, CE: commission error, RF: random forest,
R-CNN: recurrent convolution neural network, CNN: convolution neural network, CBAM: convo-
lutional block attention module, 2D: 2-dimensional, 3D: 3-dimensional). The bold values show the
highest accuracies.

Method Index Arboretum Agricultural-
Vegetable Broad-Bean Barren Built-Up Barley Water Wheat Canola Alfalfa

RF

PA 98.63 18.19 0.00 86.53 67.47 57.93 26.62 90.97 69.89 98.34

UA 40.08 20.61 0.00 69.51 85.62 78.88 88.62 76.61 44.17 75.21

OE 1.37 81.81 100 13.47 32.53 42.07 73.38 9.03 30.11 1.66

CE 59.92 79.39 100 30.49 14.38 21.12 11.38 23.39 55.83 24.79

OA 73.68

KC 0.678

XGBOOST

PA 84.85 94.99 87.50 81.86 84.74 95.97 98.50 89.86 92.26 94.13

UA 71.74 56.15 10.29 86.80 85.24 83.09 92.90 94.93 76.32 89.69

OE 15.15 5.01 12.50 18.14 15.26 4.03 1.50 10.14 7.74 5.87

CE 28.26 43.85 89.71 13.20 14.76 16.91 7.10 5.07 23.68 10.31

OA 87.48

KC 0.844

R-CNN

PA 82.95 70.50 0.00 79.97 87.90 90.14 96.49 86.54 78.68 86.05

UA 62.09 52.90 0.00 85.78 77.22 79.35 91.77 94.19 77.77 91.22

OE 17.05 29.50 0.00 20.03 12.10 9.86 3.51 13.46 21.32 13.95

CE 37.91 47.10 100 14.22 22.78 20.65 8.23 5.81 22.23 8.78

OA 84.87

KC 0.810

2D-CNN

PA 94.31 93.80 0.00 95.86 97.40 98.30 99.73 95.16 90.99 92.62

UA 81.22 78.98 0.00 96.22 97.64 91.54 99.78 96.28 84.97 98.57

OE 5.69 6.20 0.00 4.14 2.60 1.70 0.27 4.84 9.01 7.38

CE 18.78 24.02 100 3.78 2.36 8.46 0.22 1.72 15.03 1.43

OA 95.73

KC 0.947

3D-CNN

PA 93.09 97.61 100 96.87 98.62 97.97 99.61 98.09 92.52 97.77

UA 94.20 89.44 77.94 97.68 97.69 95.60 99.84 98.54 91.76 98.66

OE 6.91 2.39 0.00 3.13 1.38 2.03 0.39 1.91 7.48 2.23

CE 5.80 10.56 22.06 2.32 2.31 4.40 0.16 1.46 8.24 1.34

OA 97.45

KC 0.968

CBAM

PA 95.65 96.30 78.48 97.96 97.91 97.71 99.28 97.77 96.31 96.23

UA 92.98 93.75 91.18 96.55 98.84 96.44 99.07 98.81 92.67 99.72

OE 4.35 3.70 21.52 2.04 2.09 2.29 0.72 2.23 3.69 3.77

CE 7.02 6.25 8.82 3.45 1.16 3.56 0.93 1.19 7.33 0.28

OA 97.59

KC 0.970

Proposed
Method

PA 94.64 95.63 100 98.77 98.50 98.76 99.82 99.02 94.46 99.46

UA 96.47 95.75 76.47 98.46 99.33 97.14 99.82 98.73 96.42 99.15

OE 5.36 4.37 0.00 1.23 1.50 1.24 0.18 0.98 5.54 0.54

CE 3.53 4.25 23.53 1.54 0.67 2.86 0.18 1.27 3.58 0.85

OA 98.54

KC 0.981
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Table 5. The effects of increasing the number of NDVI datasets on the classification accuracies
obtained using the proposed method. The bold values show the highest accuracies (OA: overall
accuracy, KC: kappa coefficient, UA: user accuracy, PA: producer accuracy, OE: omission error, CE:
commission error).

Time Index Arboretum Agricultural-
Vegetable Broad Bean Barren Built-Up Barley Water Wheat Canola Alfalfa

Two months
after planting

PA 88.49 99.14 88.24 96.56 97.43 97.69 99.01 96.09 91.09 96.36

UA 86.59 89.18 66.18 96.80 97.22 94.89 98.12 98.53 81.54 97.75

OE 11.51 0.86 11.76 3.44 2.57 2.31 0.99 3.91 8.91 3.65

CE 13.41 10.82 66.18 96.80 97.22 94.89 98.12 98.53 81.54 97.75

OA 96.23

KC 0.953

Three months
after planting

PA 94.68 98.23 84.09 96.56 98.48 98.85 99.71 96.69 91.75 98.59

UA 90.90 89.31 54.41 98.07 98.04 95.31 98.98 98.83 86.58 96.68

OE 5.32 1.77 15.91 3.44 1.52 1.15 0.29 3.31 8.25 1.41

CE 9.10 10.69 45.59 1.93 1.96 4.69 1.02 1.17 13.42 3.32

OA 97.15

KC 0.964

Four months
after planting

PA 94.45 99.17 97.44 98.10 98.65 98.28 99.82 97.86 94.19 98.70

UA 95.0 91.82 55.88 97.83 98.90 96.32 99.75 98.75 92.99 99.04

OE 5.55 0.83 2.56 1.90 1.35 1.72 0.18 2.14 5.81 1.30

CE 4.96 91.82 55.88 97.83 98.90 96.32 99.75 98.75 92.99 99.04

OA 97.96

KC 0.974

Five months
after planting

PA 94.66 93.82 100 97.78 99.23 98.62 99.62 97.80 95.93 98.81

UA 94.14 94.85 22.06 98.50 98.41 96.40 99.75 99.14 90.69 99.06

OE 5.34 6.18 0.00 2.22 0.77 1.38 0.38 2.20 4.07 1.19

CE 5.86 5.15 7.94 1.50 1.59 3.60 0.25 0.86 9.31 0.94

OA 98.04

KC 0.975

Six months
after planting

PA 97.24 98.23 54.17 98.67 98.52 98.79 99.87 98.63 93.80 99.22

UA 96.69 96.72 57.35 98.44 99.35 95.84 99.25 98.86 96.11 99.54

OE 2.76 1.77 45.83 1.33 1.48 1.21 0.13 1.37 6.20 0.78

CE 3.31 3.28 42.65 1.56 0.65 4.16 0.75 1.14 3.89 0.46

OA 98.45

KC 0.980

Seven months
after planting

PA 94.64 95.63 100 98.77 98.50 98.76 99.82 99.02 94.46 99.46

UA 96.47 95.75 76.47 98.46 99.33 97.14 99.82 98.73 96.42 99.15

OE 5.36 4.37 0.00 1.23 1.50 1.24 0.18 0.98 5.54 0.54

CE 3.53 4.25 23.53 1.54 0.67 2.86 0.18 1.27 3.58 0.85

OA 98.54

KC 0.981

4.4. Ablation Analysis

The ablation analysis is a crucial step for evaluating the performance of different
aspects of an artificial intelligence method. The main purpose of this analysis was obtaining
an insight into the effects of removing a part of the system on the general performance of
the model. In this study, we investigated the impacts of ablation analysis on the efficiency
of the proposed crop type mapping framework through three scenarios (S): (S#1): without
AM, (S#2): without spectral attention block, and (S#3) without spatial attention block. The
results of these scenarios were also compared with the proposed method when all the
functions were used (i.e., S#4). Figure 10 shows the confusion matrices of four different sce-
narios of the ablation analysis. Although the obtained classification results were relatively
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similar, the results indicated the higher potential of the proposed method empowered
with the AM mechanism, especially in comparison to S#1. For example, the proposed
architecture considerably reduced the confusion between barley and wheat, which was
over 1000 pixels in S#1 and reached 113 in the proposed architecture. Moreover, the pro-
posed method successfully reduced the slight mutual confusion between canola/alfalfa
and arboretum/alfalfa, respectively. Finally, as is clear, the effect of spatial attention was
more than spectral attention in the classification results.
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5. Discussion
5.1. Accuracy

In this study, a new crop mapping framework was proposed using Sentinel-2 time-
series NDVI datasets. The results of crop mapping using different classifiers showed
that the deep learning-based methods had relatively high potential. For example, the
statistical methods (i.e., RF and XGBOOST) provided accuracies lower than 87%, while
deep learning methods generally produced crop maps with more than 95% accuracy.
Overall, the proposed method had the lowest errors in terms of OE and CE (under 5% in
almost all classes).
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Imbalanced reference samples are among the common problems in supervised learning
frameworks [96,97]. Due to several limitations in this study, the size of the reference samples
was not balanced for all classes. For example, the broad bean class had the lowest number
of reference samples (i.e., 72 pixels). Nevertheless, the proposed method was able to classify
this class with a UA of more than 76% and PA of 100%. This indicated the robustness of the
proposed network against the imbalanced reference samples.

Figure 11 shows zoomed in patches of the classified results using the proposed method.
Based on the results, the proposed method provided promising results for both crop and
non-crop class types. For instance, the proposed method accurately delineated built-up
areas with very few missed classifications. Additionally, the proposed method correctly
classified arboretum areas in Figure 11c,d.
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5.2. Sensitivity Analysis

The effect of the number of NDVI datasets on the crop classification was also inves-
tigated in this study (see Section 4.3). Based on Table 5, the lowest accuracy was related
to the two-month NDVI datasets (OA = 96%), and the highest accuracy was associated
with the case of using NDVI datasets of all months (OA = 98.5%). As a result, although the
agricultural crops could be detected with the NDVI datasets after two months of planting,
increasing the number of NDVI datasets from other months of the growing season could
potentially improve the accuracy. Table 6 shows the performance of the proposed method
compared to other state-of-the-arts deep learning methods.
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Table 6. Comparison of the performance of the proposed method with other crop mapping methods
(OA: overall accuracy).

Reference OA% Method

Zhong, Hu, and Zhou [45] 85.54 Deep learning

Xu et al. [98] 98.3 Deep learning

Wei et al. [99] 85.01 Deep learning

Tamiminia et al. [100] 80.48 Kernel-based clustering

Hamidi et al. [101] 95.26 Deep learning

Kwak and Park [102] 96.37 Deep learning

Proposed 98.54 Deep learning

5.3. Proposed Architecture and Deep Feature Extraction

Informative feature extraction is of the most critical factors in classification tasks. These
features can be obtained based on combining spectral and spatial features. The results of
pixel-based crop type mapping based on RF and XGBOOST algorithms showed that these
methods had lower capability than deep learning-based approaches, mainly due to the
employment of only spectral features. This indicated the impact of extracting informative
spatial features for accurate crop type classification.

Suitable architecture is a key factor for extracting deep features based on CNN meth-
ods. In this regard, we designed a new framework for extracting deep features based
on multiscale-residual block convolutions. Furthermore, spectral and spatial AMs were
implemented to increase the efficiency of the proposed framework [89]. The results of
crop type mapping demonstrated the high capability of the proposed algorithm to extract
informative deep features, which could enhance the performance of the proposed method
compared to other advanced crop mapping techniques.

The stability of deep learning-based methods is the most important factor in classifi-
cation. To this end, the efficiency of the proposed method was evaluated in ten different
epochs, the results of which are provided in Table 7. Based on the results, the proposed
method had a high stability in different runs because the OA did not considerably change
(i.e., 98.49 ± 0.04).

Table 7. The accuracy of the proposed method through different iterations (OA: overall accuracy).

Index Value

OA 98.50, 98.51, 98.52, 98.54, 98.40, 98.46, 98.48, 98.52, 98.47, 98.49

Mean 98.49

Standard Deviation ±0.04

Although the semantic segmentation-based methods, such as deeplabV3+ and U-Net,
have achieved promising results in crop mapping [99,103], they require a high amount of
sample datasets. This is because all pixels of the image dataset must be labeled through
field visits, which is time-consuming and resource-intensive. However, the proposed
method required nearly 7000 training samples, the collection of which was applicable in
comparison with semantic segmentation-based methods.

The AM increases the performance of deep learning methods in processing tasks [79,81].
The CBAM is the most well-known attention block among other types of AMs [82]. Based
on the results, the proposed AM outperformed the CBAM mechanism in all classes. This
indicated the high potential of the AM in extracting deep features. In fact, the AM improved
the accuracy of the proposed deep learning framework by concentrating the network on
informative deep feature extracting.
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6. Conclusions

Timely and accurate crop mapping is one of the most important components for man-
aging and making decisions to support food security. In this regard, this study presented a
novel deep learning-based technique for crop type mapping. We evaluated the efficiency
of the proposed method on seven and three crop and non-crop classes, respectively. This
research used the time-series NDVI for mapping crop types mainly because of the dynamic
nature of crops. The results of crop type mapping were also compared with other advanced
supervised learning techniques. The statistical and visual analyses indicated that the pro-
posed deep learning model produced excellent performance in comparison to different
state-of-the-art classification methods. Furthermore, the efficiency of the proposed AM was
proven in the crop type classification task, as it resulted in achieving higher classification
accuracy than the CBAM architecture. Moreover, we assessed the efficiency of the proposed
manner using different NDVI datasets and observed the high potential of the proposed
method by achieving high accuracies with different NDVI datasets (i.e., OA = 96% to 98%).
The highest accuracy was related to when seven-month NDVI datasets were employed.
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