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Abstract: Wildfires drive deforestation that causes various losses. Although many studies have used
spatial approaches, a multi-dimensional analysis is required to determine priority areas for mitigation.
This study identified priority areas for wildfire mitigation in Indonesia using a multi-dimensional
approach including disaster, environmental, historical, and administrative parameters by integrating
20 types of multi-source spatial data. Spatial data were combined to produce susceptibility, carbon
stock, and carbon emission models that form the basis for prioritization modelling. The developed
priority model was compared with historical deforestation data. Legal aspects were evaluated for
oil-palm plantations and mining with respect to their impact on wildfire mitigation. Results showed
that 379,516 km? of forests in Indonesia belong to the high-priority category and most of these are
located in Sumatra, Kalimantan, and North Maluku. Historical data suggest that 19.50% of priority
areas for wildfire mitigation have experienced deforestation caused by wildfires over the last ten
years. Based on legal aspects of land use, 5.2% and 3.9% of high-priority areas for wildfire mitigation
are in oil palm and mining areas, respectively. These results can be used to support the determination
of high-priority areas for the REDD+ program and the evaluation of land use policies.
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1. Introduction

Forests play an essential role in maintaining a balance in the ecosystem. Forests can
reduce air temperature, produce oxygen, store carbon dioxide, provide clean water supply,
and prevent several natural disasters such as landslides and floods [1]. Vegetation in forests
can reduce the accumulation of carbon in the atmosphere through photosynthesis, as it
absorbs CO;, breaks it down, and stores it in the form of biomass [2]. Forest ecosystems
have higher biodiversity compared with other ecosystems [3]. The Intergovernmental Panel
on Climate Change reports that deforestation and forest degradation account for 17% of
global greenhouse gas emissions (GHGs) and they occurred at the rate of 100,000 km? per
year between 2015-2020, contributing significantly to the loss of biodiversity [4,5]. Recent
data from Global Forest Watch (GFW) show that Indonesia lost 94,800 km? of primary
forests from 2002 to 2019 [5]. This figure is equivalent to 36% of Indonesia’s forest cover
lost concurrently during that period [6].

Wildfire is a forest deforestation driver that results in losses in various aspects. It causes
significant organic matter removal, loss of nutrients, change of quantity and composition of
small invertebrates, and deterioration of structure and porosity of soil [7]. It also increases
the probability of further burning in the following years, as dead trees topple to the ground,
open up forest to drying by sunlight, and build up the fuel load with an increase in
fire-prone species [8].

Rising global temperatures and more frequent heatwaves and associated droughts
increase the likelihood of wildfire by promoting hot and dry conditions conducive to fire
weather [9]. Current fire management problems (e.g., logging operations, fire suppression,
water quality) in national forests may worsen due to the increase in severity and length
of forest fires due to climate change. Changes in high-severity fire activity may lead to
the loss of forest ecosystem resilience and the conversion of the forest structure, dominant
species, life forms, or functions. In addition, increasing forest fire activity can have several
adverse consequences on carbon emission, water supply, and the wildland-urban interface
(WUI) [10].

The impact of air pollution or smog caused by wildfires is directly related to human
health, which can cause various respiratory problems and death [11,12]. According to
WHO data, air pollution has the most significant environmental impact on health, killing
three million people annually [13]. Consistent evidence from many studies also indicates
that wildfire smoke exposure is associated with respiratory problems such as exacerbations
of asthma and chronic obstructive pulmonary disease (COPD) [14].

According to the Ministry of Environment and Forestry (KLHK) data for 2019, Indone-
sian wildfire spread over an area of 16,492.58 km? [15]. These impacts have prompted the
Indonesian government to review policies and take corrective actions to improve the sus-
tainable management of forest ecosystems [16]. In addition, the Indonesian government has
committed to increasing the role of forestry in reducing GHGs as specified in the Nationally
Determined Contribution program [17]. The Reducing Emissions from Deforestation and
Forest Degradation in Developing Countries (REDD+) framework of the United Nations
Framework Convention on Climate Change promotes policy approaches and incentive
mechanisms for activities that reduce emissions from deforestation and forest degradation,
conservation, sustainable forest management, and carbon stock enhancement [17].

Previous studies have conducted spatial analyses of wildfire susceptibility. Studies by
Erten et al. [18] and Jaiswal et al. [19] analyzed wildfire risk zones using vegetation param-
eters, slope, and distance from roads and settlements. Ghorbanzadeh et al. [20] determined
the readiness to deal with wildfires using vegetation, topography, climate, distance from
settlements, and social factors including education level, age, facilities, and occupation
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of residents. Ma et al. [21] conducted a study involving vegetation, climate, topography,
and socio-economic parameters to enumerate the driving factors of wildfires. However,
the disaster management approach is usually based on physical parameters. Currently
available data products containing data on carbon stock [22-24] and emissions [25] can be
used as additional parameters in developing susceptibility models to represent potential
losses and wildfire events of the past.

The susceptibility of most regions of Indonesia to wildfires is a major challenge. In
some areas, the topography is complex and accessibility is minimal. Therefore, there is a
need for an in-depth study that can prioritize forest locations for wildfire mitigation. A
previous study adopted an analytical approach that used physical parameters, environmen-
tal and climatic characteristics, and forest disturbances to prioritize forest restoration [26].
A spatial model for prioritizing restoration was generated based on environmental and
infrastructural parameters using a multi-criteria analysis for Colombian regions [27]. A
spatial prioritization model for the conservation of forest areas was designed based on Earth
Observation Data, including forest biophysical parameters, forest disturbances, and burnt
areas [28]. Similar research was also conducted by Tracey et al. (2018) to support wildfire
management based on indicators such as threat and biodiversity using the Pareto-based
multi-criteria method [29]. Raharjo and Nakoggoshi (2017) used the hierarchical analytical
process (AHP) method based on forest biophysical parameters, infrastructure, threats, and
the environment for conservation and rehabilitation efforts and built a spatial priority
model [30]. The fire-suppression priority index was produced by Rodriguez et al. (2014) by
combining potential fire behavior and suppression difficulty indexes for the prevention
and suppression of wildfires [31].

The built priority models are intended individually for conservation or restoration
purposes that involve partial analysis, which mostly consider only physical and social
aspects. In this case, a comprehensive study involving historical and political view has
not been explored to propose wildfire mitigation prioritization concept and its relation to
conservation. In addition, multi-source remote sensing data products and socio-economic
data have been integrated to support a comprehensive spatial analysis at the national and
regional levels [32-36]. Hence, A spatial data-driven approach exposes an opportunity to
analyze tropical wildfire mitigation strategy extensively from multiple aspects [37-39].

Therefore, the main objective of this study was to perform multi-dimensional analysis
utilizing various types of spatial data for the prioritization of tropical wildfire mitigation.
In this study, the spatial model on wildfire mitigation priorities was constructed based
on susceptibility, carbon stock, and carbon emissions models. The wildfire mitigation
priority area was also linked to historical data on deforestation caused by wildfires and
status of land-use policies. As a novelty, disastrous, physical, social, historical, and political
aspects are consolidated to support wildfire mitigation as well as conservation prioritization
in Indonesia rainforests. The findings of this research contribute both for technical and
administrative purposes. From a technical perspective, the outcome of this research can
be used for the determination of priority areas for support through the REDD+/RAN
program for wildfire mitigation. From an administrative perspective, this research can
serve as a guide for the government to design spatial planning policies, especially in the
forestry sector.

2. Materials and Methods
2.1. Data

A total of 20 types of data were used in this study (Table 1). Data were classified into
three classes: wildfire susceptibility index (WSI), carbon stock index (CSI), and carbon
emission index (CEI). Table 2 lists the three classes.

2.1.1. Climate and Atmospheric Data Products

a. MODIS Land Surface Temperature. Land surface temperature (LST) is the tempera-
ture of the earth’s surface, which is a climate indicator that can be obtained from satellite
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imagery. The LST data of this study were derived from MODIS TERRA satellite observa-
tions with a resolution of 1 x 1 km (MOD11A1.006) [42]. The annual average LST in 2019
data were obtained and processed using Google Earth Engine to analyze carbon emissions.

b. CHIRPS Rainfall Data. These data were used to determine wildfire susceptibility.
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) [44] data were
obtained from the USGS in the form of rainfall (precipitation) in mm/day. The monthly

averages of daily data were obtained for a spatial resolution of 5.55 km.

Table 1. Data used in this study.

S. No. Data Source Temporal Resolution Spatial Resolution Reference
1 NO, ESA Monthly 3.5 x 7km [25]
2 SO, ESA Monthly 3.5 x 7km [25]
3 CcO ESA Monthly 3.5 x 7km [25]
4 Administration data BIG 2020 Vector [40]
5 Night light VIIRS Yearly 450 m [41]
6 Land surface temperature MODIS TERRA Yearly 1km [42]
7 Population WorldPop Monthly and yearly 100 m [43]
8 Precipitation CHIRPS Daily 5.55 km [44]
9 Drought KBDI Daily 4 km [45]
10 Wind speed ERA5 Daily 30 km [46]
1 Accessibility Acccftsizlsb;g% to 2015 900 m [47]
12 Tropical forest 111:01;?3,1 l;:;:slf 2001 30 m [5]
13 Global forest change USGS 2000-2020 30 m [48]

Global aboveground and
14 belowground biomass carbon NASA 2010 300 m [23]
density maps
WCMC aboveground and
15 belowground biomass UNEP-WCMC 2010 300 m [24]
carbon density
16 el corbon sock datmeet  Research et 2012 500m 2]
17 Burned area (FireCCI51) ESA Monthly (2001-2019) 250 m [49]
18 Burned area (MCD64A1) NASA Monthly (2000-2020) 500 m [50]
19 Mining area FWI 2019 Vector [51]
20 Palm oil plantation area FWI 2019 Vector [51]

NO;: nitrogen dioxide, SO,: sulfur dioxide, CO: carbon monoxide, WCMC: World Conservation Monitoring
Center, WHRC: Woodwell Climate Research Center, ESA: European Space Agency, BIG: Geospatial Information
Agency of Indonesia, VIIRS: visible infrared imaging radiometer suite, MODIS: moderate resolution imaging spec-
troradiometer, CHIRPS: Climate Hazards Group Infrared Precipitation with Station Data, KBDI: Keetch-Byram
drought index, ERA5: European Center for Medium-Range Weather Forecasts (ECMWEF) reanalysis 5th generation,
USGS: United States Geological Survey, NASA: National Space Agency of United States, UNEP-WCMC: United
Nations Environment Program World Conservation Monitoring Center, and FWI: Forest Watch Indonesia.
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Table 2. Data sharing based on data processing.
S. No. Data Wildfire Carbon Carbon
Susceptibility Index Stock Index Emission Index
1 NO, - - v
2 50O, - - v
3 Cco - - 4
4 Administration data 4 v 4
5 Night light - - 4
6 Land surface temperature - - v
7 Population v - -
8 Precipitation 4 - -
9 Drought 4 - -
10 Wind speed v - -
11 Accessibility 4 - -
12 Tropical forest v v 4
13 Global Forest change - 4 -
14 Global biomass carbon density maps - v -
15 WCMC biomass carbon density - 4 -
16 WHRC carbon stock dataset - 4 -

c. KBDI Drought Data. These data were used as climate parameters to determine
wildfire susceptibility. The product used was the Keetch-Byram Drought Index (KBDI) [45]
issued by the University of Tokyo, Japan. KBDI is computed with the land surface temper-
ature observed from the Japanese geostationary satellite, Advanced Himawari-8 Imager
(AHI) and rainfall from Global Satellite Mapping of Precipitation (GSMaP) data. The KBDI
is obtained from an estimate of soil drought and it is commonly used in drought monitoring.
The monthly averages of daily data were obtained for a spatial resolution of 4 km.

d. ERA-5 Wind Speed Data. Wind speed is a climate parameter that was used to
determine wildfire susceptibility. Data from ERA-5, which is a climate analysis product
from the European Center for Medium-Range Weather Forecasts (ECMWF) [46], containing
various components were used for this purpose. The U and V components of wind speed
were utilized. Monthly averages of daily data were obtained for a spatial resolution of
270 km.

e. Sentinel-5P Data. Gas emission data were obtained from Sentinel-5P Level 2 (CO,
NO,, and SO3y) [25]. These data were released by ESA in 2018 with a spatial resolution
of 3.5 x 7.5 km and a temporal resolution of one day. Sentinel-5P data can be converted
into air quality data using the differential optical absorption spectroscopy method. These
data were used for time-series observations of emission patterns in the atmosphere and for
correlation analysis between emissions from wildfires.

2.1.2. Forestry Data Products

a. Tropical Forest (PHTF). This product developed by the Global Land Analysis and
Discovery (GLAD) team from the University of Maryland using Landsat images with a
resolution of 30 m represents primary humid tropical forest (PHTF) [5]. Tropical forest
areas in this product are represented by a value of 1.

b. Pantropical National Level Carbon Stock Dataset Above-ground Biomass (WHRC).
This data product of the WHRC Pantropical National Level Carbon Stock Dataset [22]
provides aboveground biomass density maps for tropical countries with a spatial resolution
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of 500 m. These data were produced from a combination of field measurements, LIDAR
observations, and MODIS imagery.

c. Global Above-ground and Below-ground Biomass Carbon Density (NASA ORLN
DAAC). NASA ORLN DAAC Carbon density product [23] provides information on above-
and below-ground biomass carbon density information for 2010 at a spatial resolution of
300 m. Above- and below-ground biomass carbon density maps were integrated separately
using different tree cover extents and land cover maps based on decision tree rules.

d. Above-ground and Below-ground Biomass Carbon Density (WCMC). WCMC
Above- and below-ground biomass carbon density data products [24] represent the storage
of terrestrial carbon above and below the ground surface (C, ton per hectare) for 2010 with
a spatial resolution of 300 m. Carbon stock data products as inputs were identified through
datasets from previous literature on carbon biomass in terrestrial ecosystems.

e. Data (MCD64A1). The MCD64A1 Burned Area [50] is a global monthly burned area
data product with a spatial resolution of 500 m that is available for 2000-2020. MCD64A1
uses a 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) image plus MODIS
active wildfire observations for 1 km. This data product uses an algorithm with a vegetation
index (VI) that is sensitive to the burned area. A range of data product values is encoded in
one data layer as the ordinal day of the calendar year in which the wildfire occurred and is
denoted with a value of 1-366. A value of 0 is assigned to pixels of unburned soil, lost data,
and water.

f. Burnt Area Data (FireCCI51). The MODIS burnt area pixel product version 5.1
Fire Climate Change Initiative 51 (FireCCI51) is a global monthly 250-m spatial resolution
dataset containing information on burned areas [49]. This data product is based on surface
reflectance in the near infrared (NIR) band from the MODIS instrument mounted on
the Terra satellite and active wildfire information from the Terra and Aqua satellites.
The FireCCI51 dataset includes each pixel, the estimated day of first fire detection, the
confidence level of the detection, and the burnt land cover (extracted from the ESA CCI
Land Cover v2.0.7 dataset).

g. Global Forest Change (GFC). GFC is a global forest data product with a spatial
resolution of 30 m [48]. These data provide forest cover, where trees are defined as vege-
tation with a height of more than 5 m. Forest loss is defined as the disturbance of stand
replacement or the change from the forest to non-forest state during 2001-2020. Forest gain
is defined as the inverse of loss or the change from the non-forest to the forest state during
2000-2020.

2.1.3. Socio-Economic Data Products

a. VIIRS Night Light Data. Night light data are data on the reflection of light on the
Earth’s surface at night that is sourced from the Colorado School of Mines [41]. These data
aim to determine the correlation between air emission and its relation to sources of human
activity emissions. Night light data have a spatial resolution of 350 x 450 m and the range
of these data values is 1.5 to 193,564.92 nanoW /cm?/sr.

b. WorldPop Population Density Data. These data reflect human activity for the
determination of wildfire susceptibility. The WorldPop Population Count 2019 data product
was used [43]. Data released by WorldPop indicate the population per pixel with a pixel
resolution of approximately 1 km.

c. Data on Accessibility to Cities (University of Oxford and JRC). These data also
reflect human activity for the determination of wildfire susceptibility. The Accessibility
to Cities 2015 data product developed by the Oxford Malaria Atlas project was used [47].
Data show the travel time in minutes from each pixel in an area to the nearest densely
populated place with a resolution of approximately 900 m.

d. Distribution of Oil Palm and Mining areas. Data on oil-palm plantations and mining
areas pertaining to Indonesia were derived from Forest Watch Indonesia (FWI) for 2019 [51].
Oil palm data are in the form of vectors indicating legal cultivation rights obtained in the
name of companies. Mining data is in the form of vector data on areas indicating mining
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permits. These data also contain names of companies, number of legal decrees, type of
permit, mining stage (exploration or production operation), commodity, and status.

2.2. Methodology

This study comprehensively covered five aspects in the analysis, including wildfire
susceptibility, carbon stock, carbon emissions, deforestation hotspots, and land use policy.
Figure 1 illustrates the framework of this study.

Atmospheric
Data

ESA Datasets

Wildfire

Analysis

Carbon Emssion
Analysis

Monthly
Time-series

Linear
Regression

Wildfire

Carbon Stock

; Analysis
Multi-carbon

stock data

Raster
Calculation

Susceptibility

Emission

Emerging
Monthly Hotspot

Time-series

Data
Filtering

Tropical Wildfire
Mitigation 4

r

Deforestation
Hotspot Analysis

Maladministration
Deforestation

Reclassific
ation

Overlay

Qil Palm
Plantation in Hig
Priority Area

| Mining in High
Priority Area

=

Land Use Policy
Analysis

Figure 1. Flowchart of data processing. LST: land surface temperature, NO,: nitrogen dioxide, SO,:
sulfur dioxide, CO: carbon monoxide, WCMC: World Conservation Monitoring Centre, WHRC:
Woodwell Climate Research Center, ESA: European Space Agency, VIIRS: Visible Infrared Imaging
Radiometer Suite, MODIS: Moderate Resolution Imaging Spectroradiometer, FireCCI51: Fire Climate
Change Initiative 51, MCD64A1: MODIS burned area data, CHIRPS: climate hazards group infrared
precipitation with station data, KBDI: Keetch-Byram drought index, ERA5: ECMWEF reanalysis 5th
generation, and FWI: forest watch Indonesia.



Remote Sens. 2022, 14, 543

8 of 26

2.2.1. Wildfire Susceptibility Index

The wildfire susceptibility index for each pixel was determined using five parameters,
that is, drought, wind speed, rainfall, population, and accessibility. The next step was to
score each class through reclassification with a range of 1 to 5. The five parameters were
then summed to obtain the wildfire susceptibility index using Equation (1):

WSI=Ds + Rs + Ws + Ps + As D)

where, WSI is the wildfire susceptibility index and Ds, Rs, Ws, Ps, and As are the drought,
rainfall, wind speed, population, and accessibility scores, respectively. The wildfire suscep-
tibility index was classified into five susceptibility classes based on quantile classifiers [45].

2.2.2. Carbon Stock Index

Carbon stock data includes above- and below-ground biomass from WHRC above-
ground, WCMC above-ground, and below-ground carbon stock data, and global above-
ground and below-ground biomass carbon density maps. In this case, the above-ground
biomass was exploited to represent the carbon stock loss due to crown fires and surface
fires. While, the below-ground biomass was used to represent sub-surface fires which
frequently occur in Indonesian peatlands region. The initial step was to obtain a uniform
spatial resolution using a technique that equates the resolution of data to 500 m. The mean
value was then calculated to obtain CSI and standard deviation to determine the variation
in carbon stock data.

WCMCpgp + Globaly + Global g + WHRCy

I= 2
Cs 7] 2)
WCMCagp = Above-ground and below-ground biomass.
Globals = Above-ground biomass.
Globalg = Below-ground biomass.
WHRC = Above-ground biomass.
n . \2
STD = /== =) (,fl X)
®)

n—

S . (chmcugh77)2+(Xglobalagbfxi)er(Xglobalbgb7Y)2+(thrcugb77)2
TD = 1

STD = Standard deviation.

X; = Carbon stock data.

X = Mean carbon stock.

n = Number of carbon stock data.

2.2.3. Carbon Emission Index

Sentinel-5P data were processed to create a monthly model of gas emissions (CO,
NOy, and SO,) in Indonesia for 2019. The initial stage involved layer stacking with the
red band ‘R’ as CO gas, ‘G” as NO; gas, and the blue band, ‘B’ as SO, gas, to form the
Air-RGB model. The Air-RGB model was adapted and modified based on the research
of Misra and Takeuchi (2017) [52], who evaluated air quality in urban areas by observing
aerosol optical depth (AOD) and the Angstrom exponent. Gas emission calculations were
combined with the Air-RGB model based on latitude and longitude to determine the trend
of air emissions in each area. Furthermore, data on the Earth’s surface temperature, night
lights, and population were correlated with each gas emission. In addition, data for each
air emission were classified into five classes to obtain the CEI value.
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2.2.4. Wildfire Priority Index (WPI)

WS, CSI, and CEI with different spatial data resolutions were equalized to a 1-km
spatial resolution to produce a priority index model for wildfire mitigation. WSI determines
forest areas that are prone to burning. CSI determines large forest areas and areas with
high carbon sequestration potential. CEI indicates air emissions or pollutant sources in
the burned area. The method that integrates these indices uses quantile classification to
distribute a group of attribute values into classes containing the same amount of data [53].
The three indices are integrated based on Equation (4) to produce a priority model of
wildfire mitigation in Indonesia, which is classified into three priority classes of high,
medium, and low.

WPI = WSI + CSI + CEI 4)

2.2.5. Emerging Hostpot

Hotspot analysis aims to identify trends in the clustering point density in the burned
area. This study used spatial analysis based on the location and time of events collected
together into a bin referred to as the emerging hotspot analysis [54]. Emerging hotspots
evaluate spatiotemporal patterns using a combination of two statistical measures, namely
Getis-Ord Gi (Equation (2)) and the Mann-Kendall trend test using GFC data, that is,
MCD64A1 and FireCCI51 for 2010-2019. Each bin had a Z score and a p value. The larger
the positive Z score, the more intense the grouping that forms the hotspot negative Z
score. The lower the Z score and negative score, the lower the group that includes the
coldspot [55].

n . . . JE— n . .
Z wt, ]X] - X E wti, ]
=1 . j=1

Gi* = —== 2 5)
|:n ]:Z; 5 wiz,j—< ]:Zi . wi,]) }
) n—1
£y
—_ =
X=— (6)
s = @)

xj is the attribute value for feature j, wi, j is the spatial weight between features i and
j, and n is the number of features. Furthermore, the trends of hotspots and coldspots
were evaluated using the Mann—Kendall trend test to identify categories of hotspots and
coldspots. The emerging hotspot was applied for annual deforestation collected from GFW
during 2010-2020. The result was compared to the wildfire priority model as a consistency
assessment approach was used in this study.

3. Results
3.1. Wildfire Susceptibility Model

Wildfire susceptibility was classified into very-low, low, medium, high, and very-
high, as shown in Figure 2. From January to June, very-low-and low-susceptibility classes
dominated the territory of Indonesia. The emergence of areas with high to very-high
susceptibility classes began in July and peaked in September. Areas with high and very-
high classes experienced a decrease in area during October. Very-low susceptibility classes
dominated Indonesian forests during November and December, following the seasonal
cycle in the tropics. Figure 3 shows an in-depth analysis of the patterns of area per class
per month and the overall average for one year. Based on the monthly location for each
class, the total of the very-low class peaked in January (676,152.27 km?), low class in
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June (273,126.6 km?), medium class in September (294,217.1 km?), high class in August
(168,668.1 km?), and very-high class in August (23,429.88 km?). Based on these results, the
potential for wildfire susceptibility in Indonesia’s tropical forests in the third quarter of
2019 is a matter of concern.

March 2019
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-
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Figure 3. (a) Wildfire susceptibility classes in Indonesia in 2019 and (b) time-series of monthly area
patterns for each susceptibility class.
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3.2. Carbon Emission Model

According to Pribadi and Kurata (2017) [56], gas emissions from forest fires are domi-
nated by CO gas. This finding is also relevant based on the correlations observed between
population, night light, and Environmental, Social, and Governance (ESG) represented
by LST with CO gas emissions, as shown in Figure 4. In this case, population and night
light represent human activities, while ESG (LST) represents wildfires. The results of the
correlation analyses showed that LST and CO have a higher positive correlation than that of
night light and population, indicating that an increase in ESG corresponds to an increase in
CO gas emissions. Analysis of the Air-RGB decomposition model of air quality parameters,
including CO, SO,, and NO,, was used to understand their distribution.

(a) Scatter Plot CO Gas Emission againts Night Light (b) Scatter Plot CO Gas Emission againts Population
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Figure 4. Correlations of air quality with (a) night light, (b) population, and (c) Environmental, Social
and Governance (ESG).

Figure 5 shows that the pollutants in Sumatra were dominated by NO, and CO gases.
This phenomenon indicates that human activities in urban areas are directly proportional
to the population. According to Badan Pusat Statistik, Indonesia data (2020), Sumatra
Island has a middle-class population density of 72-267 persons/km? [57]. In addition,
high CO gas also indicates wildfires. According to KLHK data (2020), the area engulfed
by forest fires in Sumatra in 2019 reached 5357.88 km?, with 3064.36 km? occurring on
mineral-bearing lands and 2293.51 km? on peatlands [15]. Kalimantan was dominated by
CO gas, which indicates the existence of wildfire. KLHK data records that the wildfire area
in Kalimantan in 2019 reached 6845.99 km? with 4226.50 km? on mineral-bearing lands and
2619.50 km? on peatlands [15].

Monthly time-series analysis for 2019 showed that the highest CO levels occurred in
September in Sumatra and Kalimantan (Figure 6). This phenomenon was confirmed by
KLHK data obtained through TERRA /AQUA by Lembaga Penerbangan dan Antariksa
Nasional (LAPAN) [58]. The highest number of hotspots (16,178) occurred in September.
KLHK data showed that in Sumatra hotspots occurred in the provinces of Jambi, Riau,
South Sumatra, and Lampung with areas of 565.93, 905.50, 3367.98, and 355.46 kmzl re-
spectively [15]. LAPAN data showed 2705, 1055, 1507, and 100 hotspots, respectively in
these areas [59]. In Kalimantan, wildfire hotspots occurred in the region between 109°-117°
longitude and 3°-5° latitude, mainly in the West, South, Central, and East Kalimantan
provinces with consecutive wildfire areas in 2019 with areas of 1519.19, 1378.48, 3177.49,
and 685.24 km?  respectively, according to KLHK data (2020) [15], and the number of
hotspots-derived LAPAN data (2020) were 2656, 548, 5574, and 749, respectively.
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Time Series Analysis of Air-RGB Index Model for Air Pollution-Prone
Mitigation in Indonesia using Daily Earth Observation Satellite Data
(Average of 2019)
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Figure 5. Times series analysis of Air-RGB model indicating air quality of Indonesia using monthly
averages of daily Earth Observation Satellite data for the mitigation of wildfire (average 2019).
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Figure 6. CO gas time-series data based on (a) latitude and (b) longitude for 2019.

3.3. Carbon Stock Model

The highest mean carbon stock obtained in this study was 996,951 tons per ha, while
the highest standard deviation was 1135.41 tons, indicating that carbon stock data vary
widely (Figure 7a). The Papua region has a high standard deviation as indicated by the
variations in the distribution of high concentation hotspots (in red). Variations in standard
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Integrated multi-carbon
stock (ton/ha)
M 1254.93

B 0.062

deviation show that biomass varies, indicating that it is challenging to identify individual
forest carbon stock for each area. Therefore, the three biomass products were integrated by
calculating the mean of the aboveground and belowground carbon stock data (Figure 7a).
The carbon stock model was then classified into five classes (Figure 7b).

i 1.301

Standard deviation
of C (ton/ha).

P 1135.41

v 1

liad
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Carbon Stock Classes
W Very Low
0 Low
Intermediate
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B Very High

Figure 7. (a) Standard deviation of C content derived from the multi-carbon stock model. (b) Inte-
grated multi-carbon stock, and (c) carbon stock classes.

3.4. Priority Model for Wildfire Mitigation

The priority model for wildfire mitigation in Indonesia was generated by integrating
susceptibility, carbon stock, and carbon emission models (Figure 8). In Kalimantan, Sumatra,
and North Maluku, the number of priority areas was high. In addition, these areas are also
dominated by forest areas with high carbon stocks. On the other hand, Papua and Sulawesi
have low priority because they have a low level of wildfire susceptibility even though they
have high carbon stocks. Java and Bali have small areas of forests and low carbon stocks
and therefore, the wildfire priority areas in these regions were relatively low. Figure 9
shows the ten provinces with the highest priority for wildfire mitigation in Indonesia.
These provinces are located in Kalimantan, Sumatra, and North Maluku. South Kalimantan
had the highest high-priority area of 6582 km?, a medium-priority area of 9173 km?, and a
low-priority area of 54 km?. However, based on the size of the highest-priority area, Central
Kalimantan had the most extensive high-and medium-priority areas at 37,357 km? and
64,229 km?, respectively. In Riau, the priority areas were dominated by medium and high
classes, indicating that the forest in the area needs special attention. North Kalimantan was
dominated by low-priority wildfire areas owing to its low susceptibility index and CO gas
emissions. In terms of forest land management, North Kalimantan is a primary forest area
in which mining or oil-palm plantation permits have not been issued. High-priority regions,
such as the Northeast, Central, and South Kalimatan, are forest areas whose concessions
are owned by mining companies or oil-palm plantations.
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Figure 8. Priority areas for wildfire mitigation in Indonesia.
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Figure 9. Top ten provinces based on percentage of priority areas for wildfire mitigation.

4. Discussion
4.1. Emerging Hotspots of Deforestation

Emerging hotspot analysis for 2010-2019 outlined the wildfire pattern in Indonesia.
Figure 10 shows the eight classes of patterns of wildfire in Indonesia as follows: new,
oscillating, consecutive, and sporadic hotspots and oscillating, persistent, sporadic, and in-
tensifying coldspots. Figure 10 is visualized based on a 25 x 25-km grid, while Figure 10a—c
is visualized in the actual data resolution of 1 km.
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Figure 10. Emerging wildfire hotspots of Indonesia using a 25 x 25-km grid; detailed visualiza-
tion using 1 x 1-km grids for the areas (a) Riau Province, (b) Central Kalimantan Province, and
(c) Merauke Regency.

Figure 11 shows that the trends of forest fires in Indonesia are dominated by oscillating
coldspot and oscillating and new hotspots. New hotspots occupy 7.009% of the area
and represent statistically significant hotspot locations only during 2018 and/or 2019,
i.e., during the last time step of the time series with high wildfire incidence (clustered).
Oscillating hotspots occupy 19.422%, which are locations that have become statistically
significant during less than 9 out of the considered 10 years (<90%) with a high incidence
of wildfires (clustered). In addition, statistically significant coldspots that occurred during
the previous time step have become consecutive hotspots occupying 0.061% of the area,
i.e., these are locations with one statistically substantial hotspot path without interruption
in the last time-step interval with a high wildfire incidence (clustered). Sporadic hotspots
occupy 0.004% of the area, wherein wildfires occur randomly (unevenly) but frequently
from year to year. Less than 9 out of 10 years (<90%) have become statistically significant
hotspots with a high wildfire incidence (clustered). Oscillating coldspots occupy 66.115%
of the area and represent locations that were statistically significant coldspots for less
than 9 out of 10 years (<90%) with occurrences of dispersed wildfires. Additionally, these
locations have a history of being statistically significant hotspots during the previous
time step. Persistent coldspots occupy 0.249% of the area, i.e., locations that have been
statistically significant coldspots for 9 out of 10 years (90%), with no visible trend showing
an increase or decrease in clustering intensity over time with the occurrence of dispersed
wildfire events. Sporadic coldspots occupying 7.131% of area representing locations of
wildfires that occurred randomly (unevenly) but frequently from year to year. Less than 9
out of 10 years (<90%) were statistically significant cold points with dispersed wildfires.
Intensifying coldspots occupy 0.009% of the area representing statistically substantial
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coldspot locations for 10 years. In addition, the intensity of the high number of clustering
at each time step increased with dispersed wildfire events.

Intensifying Coldspot
. 0.009%
Persistent Coldspot |
0.249%

Consecutive Hotspot

ﬁ 0.061%

Sporadic Hotspot
0.004%

Figure 11. Pie chart of emerging hotspots.

Emerging hotspots of deforestation caused by forest fires were integrated with those
of handling forest fires to prioritize wildfire mitigation (Figure 12). Hotspot categories
must be prioritized for wildfire mitigation because wildfires can be high or clustered in a
location. Figure 13 shows the percentage and area of wildfire priority in the hotspot area.
The oscillating hotspot category had a high priority and occupied an area of 19.422%. High
priority areas occupied 2.121% and encompassed an area of 159 km? and medium priority
areas occupied 323 km?. The new hotspot category occupied 7.009%, of which 117 km? or
1.189% was of high and 131 km? was of medium-priority levels. The priority areas in the
hotspot category were Riau, Jambi, West Kalimantan, and Central Kalimantan (Figure 13).

Figure 14 shows a prioritized coldspot category in wildfire mitigation. The coldspot
category has a dispersed wildfire occurrence. The coldspot category had a higher extent
than the hotspot category, and therefore, it must be prioritized for wildfire mitigation.
Figure 15 shows the percentages and areas of priority for wildfires in the coldspot category.
Oscillating coldspots occupy the highest percentage and area of priority compared with
hotspots, with a percentage of 66.12%. High-priority oscillating coldspots occupied 15.49%,
amounting to 637 km? and a medium-priorty area of 2924 km?. The prioritized areas in
the coldspot category were Riau, South Sumatra, West Kalimantan, Central Kalimantan,
and Merauke. Table 3 shows the total area of emerging hotspots and the areas of emerging
hotspots in priority areas. The highest area of emerging hotspots was in the oscillating
coldspot category, with an area of 15,121 km?. The emerging hotspots located in priority
areas amounted to 3647 km? (24.119%).
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Figure 12. Prioritization for wildfire mitigation in hotspot areas using a 25 x 25-km grid. Detailed
visualization using 1 x 1-km grids for the areas (a) Jambi Province, (b) Central Kalimantan Province,

and (c) East Java Province.
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Figure 13. Priority areas for handling forest fires in emerging hotspots in the hotspot category in

terms of (a) Percentage (%) and (b) Area.
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Figure 14. Prioritization for wildfire mitigation in coldspot areas using a 25 x 25-km grid. Detailed
visualization using 1 x 1-km grids for the areas (a) Riau Province, (b) West Kalimantan Province, and
(c) Papua Province.
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Figure 15. Priority areas for wildfire mitigation in emerging hotspots in the coldspot category in
terms of (a) percentage and (b) area.

Table 3. Total emerging hotspot area and emerging hotspot areas in the priority area.

Emerging Hotspot Emerging Hotspot in
Category g(kliz) i PriofitygArea (imz) Percentage
New Hotspot 1603 272 16.968%
Oscillating Hotspot 4442 485 10.919%
Consecutive Hotspot 14 1 7.143%
Oscillating Coldspot 15,121 3647 24.119%
Persistent Coldspot 57 11 19.298%

Sporadic Coldspot 1631 45 2.759%
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4.2. Policy Intervention

The wildfire priority area model was overlaid with mining areas and oil-palm plan-
tations to evaluate the efficacy of government implemented forest management policies
(Figure 16). Accordingly, 59,238 km? of forest was allocated for oil-palm plantation and
57,830 km? was allocated for mining areas. These amounts account for approximately 10%
of the forest cover in Indonesia.

Figure 16. Wildfire mitigation in oil-palm plantation and mining areas (a) Riau Province, (b) North
Kalimantan Province, and (c) West Papua Province.

Figure 17 shows ten provinces with the highest wildfire mitigation priority areas in
oil-palm plantation areas. Central Kalimantan had the most significant medium- and high-
priority wildfire mitigation priority areas in oil-palm plantation areas. This phenomenon
indicates maladministration in permitting oil-palm plantations in forest areas. The higher
the priority for wildfire mitigation, the more forest must be maintained. Likewise, with
other provinces on the island of Kalimantan, the results of the Air-RGB model showed
that air quality was dominated by the concentration of CO. If the forest cover decreases, air
quality in the area can worsen because the forest can release CO;. In contrast to the Papua
Province, although oil-palm plantations in forest areas are among the largest, the priority
for wildfire mitigation was dominated by low- and medium-priority classes, indicating no
concern. However, monitoring must be conducted to prevent ineffective land use policies
in Sumatra and Kalimantan. Moreover, the CSI model suggested that the Papua Province
has the highest carbon stock. Therefore, although wildfire mitigation priority tends to
be low, it does not mean that deforestation is low because of the expansion of oil-palm
plantations or mining.
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Figure 17. Top ten provinces based on priority areas for wildfire mitigation in oil-palm plantation areas.

Figure 18 shows the top ten provinces in terms of priority for wildfire mitigation in
mining areas. Areas in Kalimantan dominantly displayed high priority. This phenomenon
shows the existence of maladministration because this province does not permit large-
scale forest clearing for oil-palm plantations and mining. West Papua Province ranked
second, which indicates the most significant priority for wildfire mitigation in mining
areas. The emergence of Maluku and North Maluku Provinces in the ten highest priority
provinces is interesting because their sizes are relatively small compared with the other
provinces, indicating that forest management in eastern Indonesia is still weak and it faces a
threat because of large-scale deforestation. Central Sulawesi also needs special supervision
because it appears in the top ten priority provinces for wildfire mitigation, both in terms of
oil-palm plantations and mining. Riau Province appears in this list because of the large
extent of palm oil plantations in it; however, it is not the top province in terms of wildfire
mitigation because most of the forests in the province have already been been deforested.
An extension of the moratorium on oil-palm plantation permits can delay their addition
of in forest areas and reduce deforestation. During the moratorium, policymakers and
permit owners in forest areas must evaluate the progress of forest management and design
programs to mitigate wildfires. Other aspects, such as the one-map policy, can also be
optimized. All forestry data must have one standard and one database, including company
concessions in non-overlapping forest areas leading to refinement of policies.
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Figure 18. Top ten highest provinces in terms of highest wildfire mitigation priority areas in mining areas.

4.3. Study Limitation

This study has several limitations, including data and processing methods. In the
discussed wildfire susceptibility analysis, the tropical forest data used refer to 2001, and
therefore the latest data must be used in the future. In addition, vegetation types were
considered homogeneous. Furthermore, the weights for each parameter were considered
equivalent. For carbon stock analysis, the data products of carbon stock above- and below-
ground have low spatial resolution, that is, 300 m and 500 m, respectively, leading to
lower accuracy in the estimation of carbon uptake (biomass). In addition, the biomass data
products used in this study used diverse data. Field validation was not carried out for air
quality analysis; however, remote sensing measurements related to air quality are coherent
with field data, and can represent in situ measurements [60]. The burned-area data product
used for ascertaining wildfire patterns, particularly emerging hotspots, has a low resolution
and cannot detect areas of <25 ha that are affected by small wildfires [61]. Land-use data
for analyzing palm oil plantations and mining areas were not sourced from the government
as there is no transparency in data pertaining to permits for cultivation from the Ministry
of Agrarian Affairs and Spatial Planning/National Land Agency, for mining from the
Ministry of Energy and Mineral Resources, for plantation business from the Ministry of
Agriculture, and for timber forest product utilization from the Ministry of Environment.
The problem of data disclosure affects the implementation of a one-map policy and results
in the overlap between mining areas and oil-palm plantations. In addition, the analysis
of forest management policies did not include the duration for the grant of permits for
mining and oil-palm plantations and did not include other forest concession areas such as
industrial forest plantations.

4.4. Future Research

Further research opportunities include the use of integrated tropical forest vegetation
diversity data for better representativeness, use of higher-resolution data to determine
carbon stock, and combining air dispersion with gas emission change pattern data for
understanding dispersion trends. The following future study also can be integrated not
only in regional-impact emissions (air quality: CO, NO,, etc.), but also in global impact
emissions (Greenhouse gasses: CO,, CHy, etc.) [62,63]. CO and CO, emissions are released
into the atmosphere by a combustion process that affects biomass carbon release in the
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air. The calculation of potential air emissions and chemical reactions between forest fire
emissions is difficult to calculate and predict because the timing and location of forest fires
are difficult to predict [64]. The development of a data-integration methodology by adding
various other parameters and applying weighting by considering different relationships
between parameters is required. In terms of accuracy assessment, a grid-based agreement
level method could be adopted to assess the consistency of the result based on similar
existing models [65-68]. This study can be localized using high-resolution data to examine
wildfires caused by natural or human actions. From a legal perspective, analysis must be
based on data from other chronological parameters, such as forest concession rights and
industrial forest plantation. Moreover, it is possible to add details of forest management on
national and regional scales to outline the impacts of these regulations on deforestation
and, consequently, policy evaluation.

In the context of tropical rainforests management, a multi-sensor data-intensive ap-
proach could be explored to study long-term forests dynamics in the priority areas [69,70].
In addition, land-suitability analysis could be conducted to support wildfire mitigation
through rehabilitation and agroforestry programs [71-74]. New trends in image processing,
such as artificial intelligence methods, especially machine learning [75] and deep learning,
can improve forest fire susceptibility analysis in the future [76-78]. Besides, the intensive
use of data, such as climate projection and extreme precipitation, using a long-term cli-
mate model, will enhance the quality of the wildfire prediction analysis [79]. Furthermore,
predictive analysis based on future climate scenarios could be studied to estimate differ-
ent impacts of various wildfire mitigation strategies [80,81]. The results of this study are
expected to serve as a guide in the selection of an effective area for REDD+ implementa-
tion. Wildfire priority areas identified in this study can be used for prioritizing mitigation
and prevention of deforestation caused by wildfires. Deforestation patterns could also be
used as information for the government in the selection of prioritized forest areas for the
implementation of REDD+.

5. Conclusions

A comprehensive analysis of wildfires in Indonesia was carried out based on five as-
pects, including wildfire susceptibility, carbon stocks, carbon emissions, historical patterns
of wildfire, and legal aspects of land use. Results showed that Sumatra and Kalimantan
are highly vulnerable displaying monthly patterns that follow the climate cycle peaking
between July and September. Kalimantan had the highest carbon stock in Indonesia. The
highest standard deviation value was 1135.41 tons, the lowest was 1.30 tons, and the aver-
age for all regions of Indonesia was 473.51 tons. Papua and Kalimantan displayed high
standard deviations and the minimum was in Java. The wildfire mitigation priority model
showed that 379.516 km? showed a high-priority status, and they are mostly in Sumatra,
Kalimantan, and North Maluku. Based on the integration of the wildfire priority model and
emerging hotspots, 19.50% of the forest areas were identified as priority areas for wildfire
mitigation in Indonesia. Over the last ten years, oscillating coldspot and hotspot categories
were dominant, and these are found in Riau, Jambi, South Sumatra, West Kalimantan,
Central Kalimantan, and Merauke. Based on legal aspects pertaining to land use, 5.2% of
high-priority areas are in oil palm permit areas that are primarily found in Kalimantan,
while 3.9% of high-priority areas are in mining permit areas that are mainly located in
Maluku, Central Kalimantan, and Southeast Sulawesi. Overall, the results of this study
provide support for technical and administrative aspects that can help policymakers to
determine suitable priority areas for the implementaion of the REDD+ program and serve
as a guide for the evaluation of lan—use policies in areas with high wildfire mitigation
priority status.
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