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Abstract: Accurate knowledge of snow cover extent, depth (SD), and water equivalent is essential
for studying the global water cycle, climate, and energy–mass exchange in the Earth–atmosphere
system, as well as for water resources management. Ratio between SAR cross- and co-polarization
backscattering (σVH/σVV) was used to monitor SD during snowy months in mountain areas; however,
published results refer to short periods and show lack of correlation during non-snowy months.
We analyze Sentinel-1A images from a study area in Central Pyrenees to generate and investigate
(i) time series of σVH/σVV spatial dispersion, (ii) spatial distribution of pixelwise σVH/σVV temporal
standard deviation, and (iii) fundamental modes of σVH/σVV evolution by non-negative matrix
factorization. The spatial dispersion evolution and the first mode are highly correlated (correlation
coefficients larger than 0.9) to SD evolution during the whole seven-year-long period, including snowy
and non-snowy months. The local incidence angle strongly affects how accurately σVH/σVV locally
follows the first mode; thus, areas where it predominates are orbit-dependent. When combining
ascending- and descending-orbit images in a single data matrix, the first mode becomes predominant
almost everywhere snow pack persists during winter. Capability of our approach to reproduce SD
evolution makes it a very effective tool.

Keywords: snow depth monitoring; SAR backscattering; bakscattering spatial dispersion; non-
negative matrix factorization of backscattering

1. Introduction

Snow cover plays a crucial role in several important Earth phenomena, from water
resources to climate change, e.g., because of surface albedo. Accurate knowledge of snow
cover extent (SCE) and snowpack parameters—snow density, snow depth SD and snow
water equivalent SWE, i.e., the amount of water contained in the snowpack—is essential
for studying the global water cycle, climate, and the energy–mass exchange in the Earth–
atmosphere system, as well as for water resources management.

Unfortunately, morphology and condition variability in mountain regions often make
SCE, SD and SWE ground measurements (where they are carried out) partially representa-
tive of the surrounding areas; moreover, high elevations and inaccessible and remote places
are seldom equipped with instrumentation. These disadvantages are partly overcome by
space-borne remote sensing, which is a powerful snow monitoring technique with a resolu-
tion of tens of meters as for both optical and Synthetic Aperture Radar (SAR) sensors. Even
if optical products are easier to use than SAR ones, nevertheless, clouds and illumination
conditions can severely limit their applicability.

Reliable snow cover estimation from SAR backscattering dates back to about 30 years
(e.g., [1] and references therein), following the possibility to use repeat-pass multi-temporal
observations. Different missions are equipped with L- (15–30 cm), C- (3.8–7.5 cm) and X-
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(2.4–3.8 cm) band sensors and can provide even SAR time series; the snowpack is nearly
invisible in L–band data, X–band data have the highest sensitivity, but C–band SAR data
are also suitable and most–used for snow detection (e.g., [2]).

Different approaches have been developed to sense SCE, SD, and SWE from SAR data
(e.g., [3–5]; for a review, e.g., [6]). As for SCE, backscattering–based methods were the first
to be implemented, but also interferometric and polarimetric methods are well developed.
Backscattering indicators relying on different ad hoc thresholds have proven effective in
terms of a true/false—i.e., snow presence or absence—binary result; indicators based on
interferometric analyses rely on the choice of an appropriate coherence threshold; indicators
based on decomposition methods from polarimetric SAR techniques rely on machine
learning classification trained by external SCE results, seasonal parameters’ difference
before thresholding, or direct thresholding (for a review, see, e.g., [1]).

Spatial resolution of recent SAR missions (e.g., C-band Sentinel-1, pixel size down to
less than 5 m in Stripmap mode, which is used to image small islands and in exceptional
cases only [7], and about 5 × 20 m in Interferometric Wide (IW) swath mode [8]) is fully
spatially adequate for sensing SCE, while temporal resolution is still insufficient to detect
day-lasting dynamic phenomena (e.g., sudden SCE changes because of snow melt). SD and
SWE are not directly obtained from SAR data; their retrieval requires inversions or empirical
models. Signatures of polarimetric SAR backscattering over snow have been used to retrieve
SD; in particular, ratio between cross- and co-polarization backscattering depends on SD
and, with respect to mere backscattering, can reduce the impacts of ground, vegetation,
and surface geometry (e.g., see details in [2] about Sentinel-1 expected backscattering in
co-polarization, σVV , and cross-polarization, σVH). As for SWE, snow density and wetness
can be estimated by using polarimetric—HH, VV, VH, HV—SAR data (e.g., [9,10]) but
ancillary in situ data are needed to link remote sensing measurements and snow properties
in a backscattering inversion model accurately. SWE has also been estimated through
SAR interferometry, relating the interferometric phase changes to SWE temporal changes;
interferometric data have to be calibrated using ancillary in situ measurements (e.g., [11]).
Besides, SD and SWE have been retrieved from dual polarization SAR data, relying on
co-polar phase difference and particle anisotropy (e.g., [5] for X-band SAR).

The pattern of SD during accumulation and snowmelt seasons exhibits considerable
spatial and temporal variability. Field surveys show that snow accumulation in mountain
areas is extremely irregular even at small scales, due to topography, strong snow redis-
tribution by wind and spatial heterogeneity of the land cover. Images recorded during
very snowy years show a greater spatial dispersion (i.e., small- to large-scale variations in
contrast) with respect to less snowy years; seasonal changes of C–band radar backscattering
is also dependent on land cover and viewing conditions. As for land cover, different areas
show varying median values for the same cover classes, thus common backscattering
thresholds can not be delineated (e.g., [12]). As for viewing conditions, backscattering from
wet snow depends on the local incidence angle (LIA) more than backscattering from dry
snow. Backscattering coefficients of wet snow, dry snow, and snow-free surfaces in co-
and cross–polarization have often been used in the threshold polarization ratio algorithm
by [13]; however, threshold values have to be customized location by location and even
changed over time to detect SCE and SD (e.g., [14,15]). Proper threshold values for each
local incidence angle have also been used to identify snow-covered areas from interferomet-
ric coherence (e.g., [4]). Unfortunately, most studies using SAR backscattering are restricted
to one or two observation years and very few studies, or none at all, provide multi-year
SCE or SD time series (e.g., [1] and references therein).

Without demanding completeness, we mention that the most accurate estimation of
SD are obtained from airborne lidar measurements (e.g., [16]), but they are only applicable
at the local scale, and that SWE can be mapped using passive microwave sensors (for a
review, see, e.g., [17]), but spatial resolution is coarse. As for active microwave sensors, SD
and SWE have also been retrieved based on dual-frequency (X, 2.4 to 3.8 cm, and Ku, 1.7 to
2.4 cm) measurements available in the past (e.g., [18,19]).
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In this work we use Sentinel-1A radar images from a 451-km2 study area in Central
Pyrenees to obtain a seven-year-long SD time series, not relying on any threshold. We
investigate (i) time series of σVH/σVV spatial dispersion, (ii) spatial distribution of pixel-
wise σVH/σVV temporal standard deviation, and (iii) fundamental modes of σVH/σVV
evolution by non-negative matrix factorization. Both spatial dispersion evolution and the
first fundamental mode are highly correlated (correlation coefficients larger than 0.9) to
SD evolution during the whole analyzed period, including snowy and non-snowy months.
The three suggested approaches complement and support one another.

2. Study Area

The 451 km2 study area is located in the Spanish side of the Central Pyrenees (Figure 1)
close to the Laboratorio Subterràneo de Canfranc, where deformation related to snow
load and snow melting has been recorded by two underground high-resolution strain-
meters ([20,21]). Landscape is characterized by high reliefs, up to about 2800 m above sea
level (asl), and shaped by glacial and river—Aragón river and its tributaries—erosion. High
reliefs are mainly characterized by bare rock, natural grassland and sparsely vegetated
areas; steep slopes are usually covered by forests.

Generally speaking, temperature and precipitation are very heterogeneous in the
Pyrenees because of morphology and proximity to the Atlantic Ocean to the West and
the Mediterranean Sea to the East. In the western part most precipitations occur between
December and March, whereas in the eastern part most precipitations occur in spring
and autumn (April–June, September–November) (e.g., [22]). Snow mostly accumulates
during winter in the western part (where heavy snowfalls most likely occur) and during
late autumn, winter, and spring in the eastern part [23]. From late autumn onward,
precipitations occur as snow at altitudes higher than 1500–1600 m over the entire mountain
range [24], but snowfall spatial distribution cannot be clearly inferred from elevation and
position [23]. Snowpack is persistent above around 1600 m during the whole cold period
and between 1600 and 1300 m during the coldest months, usually December–February [25].
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Figure 1. Map of the 451 km2 study area. (a) Pyrenees location between France and Spain (maps data:
Google, @2021 Landsat/Copernicus); the red rectangle shows the study area. (b) Study area; colors
indicate land cover [26], white curves give topography [27], labeled black dots indicate stations N002
and N003 (map generated using QGIS v.3.10). UTM WGS84 30N coordinates.

3. Materials and Methods

Figure 2 shows pre-processing and processing steps employed in this study. We use
Ground–Range Detected (GRD) Sentinel-1A interferometric wide swath imagery [8], pro-
vided by the European Space Agency (ESA) and downloaded from the Alaska Satellite
Facility [28]. Level–1 GRD products consist of focused SAR data that has been detected,
multi-looked and georeferenced to geographic coordinates using the Earth ellipsoid WGS84,
but are still in SAR geometry. Thus, geocoding and radiometric terrain corrections are re-
quired, and are particularly important because of the high topographic variation in the
study area.

We analyze 201 ascending–orbit images, acquired at about 6 pm UTC, and 197
descending–orbit images, acquired at about 6 am UTC. Since the study area longitude is
about −0.5◦, UTC is very close to true solar time (TST). Images cover seven hydrological
years (October 2014–August 2021) which are characterized by different amounts of snowfall,
as shown by snow depth measurements (Figure 3i,j) at two stations—N002, around 2080 m
asl, and N003, around 1970 m asl—located inside the study area (Figure 1b).
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Figure 2. Schematic flowchart illustrating pre-processing and processing steps employed in this study.

We pre–process Sentinel-1A GRD images by using the Sentinel Application Platform
(SNAP) v.8 [29] and following a standard procedure—application of radiometric and geo-
metric corrections, thermal noise removal, radiometric calibration, speckle reduction (Re-
fined Lee filter), multilook processing (three range looks), and terrain correction (e.g., [30]).
At last, we obtain σVV and σVH georeferenced maps with a spatial resolution of about 30 m.
Using Generic Mapping Tools (GMT6) v. 6 [31], each map is filtered (nearneighbor tool)
and re-sampled in order to generate a rectangular grid—UTM WGS84 30N coordinates; x
from 691,700 to 713,700 m, y from 4,723,500 to 4,744,000 m—of pixels, 50 m × 50 m in size.

Pixels affected by shadowing are masked out. We also mask out pixels not labeled as
321 (natural grassland), 322 (moors and heathland), 324 (transitional woodland/shrub),
332 (bare rock) and 333 (sparsely vegetated areas) in CORINE Land Cover inventory 2018
(CLC, [26]) (Figure 1b) because of the complex SAR-woods interactions (e.g., [32]). The
actual studied area diminishes to 266 km2 and hereinafter by “all pixels” we always mean
CLC pixels 321, 322, 324, 332, and 333. Altitude, slope, and exposure are computed using
European Union Digital Elevation Model (EU-DEM) v. 1.1 [27].

To enhance readability of some figures, multitemporal despeckling is performed using
the Ratio-Based Multitemporal SAR Images Denoising (RABASAR) method; RABASAR is
based on the use of the ratio image, namely the ratio between an image and the temporal
mean of the stack, which is easier to denoise than a single image thanks to its improved
stationarity [33].

We start from the analysis of backscattering time series at pixels surrounding N002 and
N003. Subsequent analyses relate to (i) the time series of selected statistical parameters—
mean, median, standard deviation (stdev), mean absolute deviation (mad)—of the spatial
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distribution of σVH , σVV , and σVH/σVV inside the whole region or parts of it, (ii) the spatial
distribution of the standard deviation of the σVH/σVV time series at each pixel, and (iii) the
search for dominant coherent variations (i.e., fundamental modes) in the time series of
σVH/σVV .
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e

g

i j
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Figure 3. Time series of σVH/σVV at two square grids of 9 × 9 pixels each, centered on stations N002
and N003, respectively. Panels (c,d,g,h) have been obtained after applying RABASAR to SAR images,
in order to lower speckle noise and make plots more readable. All plots have been arbitrarily shifted
along the y–axis for clearness. (a,c) Pixels nearby N002, ascending orbit. (b,d) Pixels nearby N003,
ascending orbit. (e,g) Pixels nearby N002, descending orbit. (f,h) Pixels nearby N003, descending
orbit. (i) Snow depth at N002, daily data; the gray rectangle indicates lacks of measurements. (j) Snow
depth at N003, daily data.

We arrange data in an intrinsically non-negative data matrix U which has as many
rows as the number of images (Nt) and as many columns as the number of pixels (Np).
Each column gives the time series of a selected backscattering coefficient—σVH , σVV , or
σVH/σVV—at a specific pixel; each row gives the backscattering coefficient pixel by pixel at
the same time.

Row-wise mean and median—value which is greater than and less than at most half
of the population, in other words the 50th percentile of the population—give characteristic

evolution of backscattering, whereas stdev—i.e.,
√

∑
Np
i=1(xi − µ)2/Np, where µ is mean—and

mad—i.e., ∑
Np
i=1 |xi − µ|/Np—give spatial dispersion. Generally speaking, assessing the

dispersion of a data set implies knowing its variability near the center and in the tails;
standard deviation and mean absolute deviation measure both variabilities, but mad is
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less affected by extreme observations than stdev is. Column-wise standard deviation gives
temporal σVH/σVV standard deviation pixel-by-pixel.

As for the search for dominant coherent variations in the time series of σVH/σVV , we
approximate its data matrix through the product of two non-negative matrices W and H by
Non-negative Matrix Factorization (NMF) [34]. Column vectors of W can be regarded as
basis vectors in the data space (i.e., the fundamental modes of the time series), and rows
of H can be regarded as coefficients that scale the basis vectors (i.e., to what extent a
pixel follows each fundamental mode of the time series). The number of W columns and
H rows is the factorization rank r. For each k = 1, ..., r, multiplying the column vector
Wik, i = 1, ...Nt, by the row vector Hkj, j = 1, ...Np, gives a Nt × Np matrix product Mk
representing σVH/σVV evolution at each pixel because of the fundamental mode k of the
time series. Total variance (sum of column-wise variances) VARk of the matrix product Mk
is a measure of the relative importance of the k–th fundamental mode with respect to the
other fundamental modes.

In the NMF original formulation, matrices W and H minimize the objective function
(difference between the data matrix and its reconstruction by the decomposed matrices,
U–WH), by L2-norm (squared) error. This approach is prone to outliers; minimizing the
L2,1-norm error decreases the effects of outliers on the objective function [35]. L2,1-norm
means that the L2-norm is applied to columns, thus obtaining a vector of column-wise
squared errors; then, the L1-norm is applied to the squared-error vector, thus obtain the
final cost of the objective function. We have tested both L2-norm and L2,1-norm error
minimization, getting the same factorization of data matrix U. Thus, here we show only
what obtained by using the nmf function in MATLAB® R2020a, where matrix factorization
is optimized by L2-norm minimization of the objective function.

In principle, results may differ when analyzing ascending– or descending–orbit im-
ages, because of the different LIA and acquisition hours. To check for advantage and/or
disadvantage of a combined analysis, we also define a combined data matrix including
σVH/σVV from both ascending– and descending–orbit images. The number of pixels in
ascending–orbit images is slightly different from that in descending–orbit images, be-
cause of shadowing. In principle, ascending– and descending–orbit images should be
coeval to be combined. Descending–orbit images are acquired 36 h before ascending–orbit
ones; they are sufficiently coeval to our purposes and we assign the average acquisition
time to each couple. The number of analyzed image couples is 191, since a few images are
unavailable. We consider the average of the two rows (time series) related to each pixel for
computing temporal evolution of spatial statistical parameters. To search for and evidence
common fundamental modes, we apply non-negative factorization to the combined data
matrix, thus obtaining two coefficients related to the same fundamental mode for each
pixel which is in both ascending- and descending-orbit images.

4. Results
4.1. Backscattering Nearby Stations N002 and N003

We start from considering two square grids of 9 × 9 pixels each, centered on stations
N002 and N003, respectively; thus, side of each square is 450-m long.

Time series of σVH/σVV—arbitrarily shifted along the y–axis for clearness—are plotted
in Figure 3 for both ascending–orbit and descending–orbit images. Units are not shown
because unimportant; y-axis scale is the same for all curves in each plot but differs from
plot to plot. For the sake of comparison, panels in Figure 3 show time series which have
been obtained both applying and without applying RABASAR multitemporal despeckling
to images. Signal amplitude varies noticeably from pixel to pixel, even after applying
RABASAR. For completeness, Supplementary Material Figures S1 and S2 show the same
plots as Figure 3, but as regards σVH and σVV , respectively.

Figure 4 and Supplementary Material Figures S3 and S4 are intended to emphasize the
shape of the time series more than their amplitude. The three figures show evolution of (σi−
min(σi))/(max(σi)−min(σi)), where σi may be σVH/σVV (Figure 4), σVH (Supplementary
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Material Figure S3), or σVV (Supplementary Material Figure S4) ; max() and min() indicate
maximum and minimum values of σi for each pixel. Again, for the sake of comparison,
panels show time series which have been obtained both applying and without applying
RABASAR multitemporal despeckling to images.
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Figure 4. Normalized time series of σVH/σVV at two square grids of 9 × 9 pixels each, centered on
stations N002 and N003, respectively. Normalization evidences common paths among backscattering
time series. Panels (c,d,g,h) have been obtained after applying RABASAR to SAR images, in order to
lower speckle noise and make plots more readable. All plots have been arbitrarily shifted along the
y–axis for clearness. (a,c) Pixels nearby N002, ascending orbit. (b,d) Pixels nearby N003, ascending
orbit. (e,g) Pixels nearby N002, descending orbit. (f,h) Pixels nearby N003, descending orbit. (i) Snow
depth at N002, daily data; the gray rectangle indicates lacks of measurements. (j) Snow depth at
N003, daily data.

The shape of the time series is approximately the same for all the pixels nearby the
same station, but depends on plotted quantity and acquisition orbit. Ratio σVH/σVV seems
to follow two distinct patterns according to the two acquisition orbits. As for data collected
in ascending orbit, σVH/σVV is usually larger during summer than during winter for all
the pixels nearby N002 and more pixel-dependent (i.e., larger during summer than during
winter or, less frequently, vice versa) nearby N003. Winter maxima of σVH/σVV for pixels
nearby N003 are more pronounced than summer maxima for pixels nearby N002. As for
data collected in descending orbit, σVH/σVV exhibits “short-lasting” late winter maxima for
all the pixels, whereas it is small and flat during the rest of the year. Thus, ratio σVH/σVV is
usually larger in summer than in winter for ascending-orbit images, whereas the opposite
occurs for descending-orbit images.
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Although common patterns are clearly visible, nevertheless it is hard to correlate or
anticorrelate backscattering time series to the SD evolution at N002 and N003 (Figures 3i,j
and 4 and Supplementary Material Figures S1–S4) strictly. Reasoning in terms of backscat-
tering thresholds seems, at least in this case, ineffective also in small areas.

4.2. Evolution of Spatial Distribution of Backscattering in the Study Area

As backscattering time series differ from orbit to orbit and from pixel to pixel (Figures 3
and 4), we investigate the possibility of inferring SD evolution in the study area by using
temporal evolution (i.e., changes from image to image) of backscattering spatial distribu-
tion.

Figure 5 compares evolution of the four analyzed statistical descriptors—mean, me-
dian, stdev, mad—with SD evolution at N002, N003, and the additional station N004, which
is located about 19 km East of N003, out of the area shown in Figure 1b.
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tering spatial distribution and snow depth. (a) Mean, σVH . (b) Mean, σVV . (c) Mean, σVH/σVV . (d)
Median, σVH . (e) Median, σVV . (f) Median, σVH/σVV . (g) Standard deviation, σVH . (h) Standard de-
viation, σVV . (i) Standard deviation, σVH/σVV . (j) Mean absolute deviation, σVH . (k) Mean absolute
deviation, σVV . (l) Mean absolute deviation, σVH/σVV . (a–l) Black dots, ascending orbit; red dots,
descending orbit. Black and red lines give moving average over three consecutive black and red dots,
respectively. (m–o) Snow depth (daily data) at stations N002 (blue), N003 (green), and N004 (orange).

Time evolution of all the four statistical descriptors show large yearly oscillations, very
similar to one another, which neither correlate nor anticorrelate with snow depth well. As an
example, σVH evolution during non-snowy periods (late spring to mid-autumn) is not flat.
As for σVV , results are conflicting; during winter, mean exhibits pronounced maxima during
snow accumulation while median exhibits pronounced minima during snow melting; stdev
and mad are relatively large during snow accumulation, but do not correlate with SD well.
As for σVH/σVV , evolution of mean and median show large yearly oscillations, very similar
to each other, which neither correlate nor anticorrelate with SD well; instead, evolution of
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stdev and mad are very similar to each other and strongly resemble SD evolution, for both
ascending and descending orbit data. Concordance between time evolution of stdev and
mad indicate robustness of σVH/σVV dispersion estimates, making σVH/σVV dispersion
an eligible investigation tool for inferring SD evolution.

To deepen our understanding of the tool capability, we plot evolution of σVH/σVV spatial
dispersion by altitude. Evolution of stdev is shown in Figure 6; for comparison, mad evolution is
shown in Supplementary Material Figure S5. As expected, time evolution of stdev and mad are
very similar to each other regardless from altitude, although amplitudes may differ. Both stdev
and mad evolve like SD at stations N002, N003, and N004 (Figure 6c) when considering altitudes
higher than about 1500 m, i.e., where snowpack is persistent during the whole cold period [25].
On the contrary, stdev and mad yearly variations are small below about 1500 m. Thus, pixels at
altitudes below 1500 m have a very small effect on plots in Figure 5i,l and, for brevity, we do not
show a refined version of Figure 5 after removing pixels at altitudes below 1500 m.
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Figure 6. Temporal evolution of the spatial standard deviation of σVH/σVV by altitude bands. Altitude
ranges 900–2800 m, at 100 m large intervals. (a) Ascending orbit. (b) Descending orbit. For comparison,
(c) gives snow depth (daily data) at stations N002 (blue), N003 (green), and N004 (orange).



Remote Sens. 2022, 14, 653 11 of 21

To quantify resemblance between evolution of σVH/σVV spatial dispersion and SD,
we plot scatter diagrams and compute Pearson’s (linear) and Spearman’s (rank) correlation
coefficients between stdev—computed on pixels above 1500 m—and SD—computed by
averaging N002 and N003 values— as well as between mad and SD (Figure 7). Each year,
SD data are zero padded 15 July–15 October because the study area is free from snow,
as confirmed by satellite—Landsat 7, Landsat 8, Sentinel-2 (easily visualizable, e.g., at
https://apps.sentinel-hub.com/eo-browser/, accessed on 17 December 2021)—images;
consequently, reported non-zero SD values are spurious. To decrease noise, stdev and
mad evolution are smoothed applying a moving average over three consecutive images,
whereas snow data are averaged over five consecutive days. Correlation coefficients are
around or larger than 0.9 for both ascending and descending orbits.
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Figure 7. Correlation diagrams for evolution of σVH/σVV and snow depth, computed as mean
of N002 and N003 values. Pixel altitude is higher than 1500 m. (a) Spatial standard deviation,
ascending orbit. (b) Spatial mean absolute deviation, ascending orbit. (c) First mode from non-
negative matrix factorization, ascending orbit. (d) Spatial standard deviation, descending orbit.
(e) Spatial mean absolute deviation, descending orbit. (f) First mode from non-negative matrix
factorization, descending orbit. In each panel, SCC and PCC give Spearman’s (rank) and Pearson’s
(linear) correlation coefficients, respectively.

When we analyze the combined data matrix which includes ascending– and descending–
orbit images, results are very similar to those presented so far; thus, for conciseness we do
not show them.

https://apps.sentinel-hub.com/eo-browser/
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4.3. Spatial Dispersion of the Standard Deviation of Backscattering Evolution at Each Pixel

To extend previous investigation, we pass from the evolution of selected statistical
indicators of the σVH/σVV spatial distribution in each image to the spatial distribution of
the standard deviation of σVH/σVV evolution at each pixel. In other words, we pass from
the temporal evolution of a spatial distribution to the spatial distribution of a temporal
evolution. Standard deviation of σVH/σVV evolution at each pixel is a measure of the
amplitude of yearly oscillations, as far as they are larger than noise.

Figure 8 shows spatial distribution of the standard deviation of σVH/σVV evolution at
each pixel by altitude. To make them clearer, bivariate (2D) histograms in Figure 8 give relative
frequency of scaled temporal standard deviation (STSD). By STSD we mean the standard
deviation of σVH/σVV evolution at each pixel for each year (e.g., 1 October 2014–30 September
2015), divided by the overall summertime mean of σVH/σVV (i.e., the arithmetic mean during
all the seven periods 1 July–31 August belonging to the seven investigated years) in the altitude
band where the pixel is. Sub-panels refer to the different years. Histograms show very narrow
distributions below about 1500 m and larger distributions above about 1500 m, where snowpack
is persistent during the whole cold period [25]. Distribution width changes from year to year,
following SD evolution, at least approximately. These findings are consistent with those in
Section 4.2, but temporal resolution is obviously much poorer.

2014‒2015 2015‒2016 2016‒2017 2017‒2018

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

2018‒2019

0 0.5 1 1.5 2 0 0.5 1 1.5 2

2019‒2020

0 0.5 1 1.5 2

2020‒2021

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

Time (year)

0

200

400

S
no

w
 d

ep
th

(c
m

)

1000

1500

2000

2500

A
lti

tu
de

 (m
)

1000

1500

2000

2500

A
lti

tu
de

 (m
)

110-110-2≤10-3 Relative 
frequency

Scaled temporal standard deviation

a

b

c

Figure 8. Spatial distribution of the standard deviation of σVH/σVV evolution at each pixel, by al-
titude. Bivariate (2D) histograms give relative frequency of scaled temporal standard deviation by
altitude. Scaled temporal standard deviation: standard deviation of σVH/σVV evolution at each pixel
computed each year in the period 1 October–30 September and divided by the mean over σVH/σVV

in each altitude band during the seven periods 1 July–31 August related to the seven investigated
years. Sub-panels refer to different years. Altitude ranges 900–2800 m, at 100 m large intervals.
(a) Ascending orbit. (b) Descending orbit. For comparison, (c) gives snow depth (daily data) at
stations N002 (blue), N003 (green), and N004 (orange).
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4.4. Non-Negative Factorization of σVH/σVV Data Matrix

From Section 4.1 we know that σVH/σVV evolution seems to follow two distinct
patterns nearby N002 and N003, thus now we search for the two fundamental modes that
best account for observed σVH/σVV evolution in the whole study area.

Figure 9a,b show the two fundamental modes of σVH/σVV evolution at all altitudes,
as obtained by NMF (Section 3). For both ascending and descending orbits, the first mode
(Figure 9a) evolves like SD (Figure 9g), e.g., successfully identifying the snowiest years.
The second mode (Figure 9b) is characterized by yearly oscillations with summer maxima
and winter minima; its rising period (April–July) seems correlated with snow melting,
while its falling period extends from July to early December. Thus, the two modes actually
resemble the two σVH/σVV temporal patterns observed for data acquired in ascending and
descending orbits at N002 and N003 (Section 4.1 and Figure 4).
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Figure 9. Fundamental modes of the σVH/σVV time series. (a) Pixels at all altitudes, first mode. (b) Pixels
at all altitudes, second mode. (c) Pixels at altitudes higher than 1500 m, LIA larger than 40◦, first mode.
(d) Pixels at altitudes higher than 1500 m, LIA larger than 40◦, second mode. (e) Pixels at altitudes higher
than 1500 m, LIA smaller than 40◦, first mode. (f) Pixels at altitudes higher than 1500 m, LIA smaller
than 40◦, second mode. (a–f) Black dots, ascending orbit; red dots, descending orbit. Black and red lines
give moving average over three consecutive black and red dots, respectively. For each case—all altitudes;
altitudes > 1500 m and LIA > 40◦; altitudes > 1500 m and LIA < 40◦—MVR is ratio of total variance of
σVH/σVV evolution because of the fundamental mode correlated to SD evolution to total variance because
of the fundamental mode uncorrelated to SD evolution. For comparison, (g) gives snow depth (daily data)
at stations N002 (blue), N003 (green), and N004 (orange).
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Using notation in Section 3, matrix product M1 represents σVH/σVV evolution at each
pixel because of the first fundamental mode. Its total variance VAR1 is a measure of data
variability accounted for by the first fundamental mode. We find that VAR1 is about 1.8
and 2.5 times larger than total variance VAR2 of the matrix product M2, related to the
second fundamental mode, for ascending and descending orbits, respectively, (Figure 9).
Thus, total variance of σVH/σVV evolution because of the fundamental mode which is
highly correlated to SD is about twice the total variance because of the fundamental mode
uncorrelated to SD.

If we consider only pixels located above 1500 m, we obtain fundamental modes so
similar to those plotted in Figure 9a,b that we think it useless to show them. In this case,
VAR1/VAR2 is about 1.9 and 2.7 for ascending and descending orbits, respectively. Pear-
son’s (linear) and Spearman’s (rank) correlation coefficients between the first fundamental
mode—computed on pixels above 1500 m—and SD—computed by averaging N002 and
N003 values—are larger than 0.91 (Figure 7c,f). Before computing correlations, the first
mode is smoothed applying a moving average over three consecutive images, whereas
snow data are averaged over five consecutive days.

Each pixel usually has non-zero coefficients for both fundamental modes, and its
σVH/σVV evolution is approximated by a linear combination of the two modes. Multiplica-
tion of the standard deviation of the k–th fundamental mode by the related coefficient gives
a measure of the amplitude of the k–th fundamental mode at each pixel. We indicate the
resulting product with mk. Thus, σVH/σVV evolution resembles the first fundamental mode
more than the second one where ratio mr = (m1 −m2)/(m1 + m2) is positive; the opposite
occurs where mr < 0; obviously −1 ≤ mr ≤ 1 because m1 and m2 are both positive.

Figure 10 shows mr distribution in the study area, for both (a) ascending and (b) de-
scending orbits. At altitudes higher than around 1500 m, pixels where mr < 0 for the
ascending orbits usually have mr > 0 for the descending orbits and vice versa, even if
many other pixels have mr > 0 for both orbits. At lower altitudes, mr is usually small and
negative, thus the yearly oscillating behavior slightly dominates. The different behavior of
pixels located below or above 1500 m is confirmed by the scatter plots in Figure 11a,b, and it
is consistent with the persistent snow line altitude during cold months. Thus, we only
consider pixels located above 1500 m to further investigate possible correlations. Scatter
plots in Figure 11c,d suggest strong correlation between mr and North-to-East exposure.
However, eastern exposure gives mr > 0 for ascending orbits and mr < 0 for descending
orbits; the opposite occurs for western exposure, thus correlation between exposure and mr
is a consequence of the satellite line-of-sight azimuth. On the contrary, correlation between
mr and LIA is very similar for ascending and descending orbits (Figure 11e,f), suggesting
that LIA actually drives mr.

To further investigate the LIA role, we apply NMF to pixels located above 1500 m,
separating those whose LIA is larger than 40◦ from those whose LIA is smaller than 40◦.
We choose this LIA threshold somewhat arbitrarily, but it is a round number which is
consistent with Figure 11e,f, as well as close to the mean incidence angle (37.5◦) for Sentinel-
1A interferometric wide swath imagery [8]. For LIA larger than 40◦ the two fundamental
modes are shown in Figure 9c and Figure 9d, respectively. The first mode is almost identical
to the one obtained by considering all pixels (Figure 9a,b), but now VAR1/VAR2 is about 5
for both ascending and descending orbits . Thus, data variability accounted for by the first
fundamental mode—the one highly correlated to SD—is much larger than in the case all
pixels are considered.

Figure 9e,f show the two fundamental modes when we apply NMF to pixels located
above 1500 m and whose LIA is smaller than 40◦. Now the second mode resembles SD
(Figure 9g), while the first mode is similar to the second mode obtained for LIA > 40◦.
Thus, yearly oscillations (uncorrelated to SD) dominate .
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Figure 10. Maps showing ratio mr = (m1−m2)/(m1 +m2) in the study area. Parameter mk (k = 1, 2)
is the standard deviation of the k–th fundamental mode times its coefficient. (a) Ascending orbits.
(b) Descending orbits. Black curves give topography. Maps generated using QGIS v.3.10, UTM
WGS84 30N coordinates.
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Figure 11. Scatter plots related to ratio mr = (m1 −m2)/(m1 + m2). Parameter mk (k = 1, 2) is the
standard deviation of the k–th fundamental mode times its coefficient. (a) Altitude vs. mr, ascending
orbits. (b) Altitude vs. mr, descending orbits. (c) Exposure (Eastward from True North) vs. mr,
altitude > 1500 m, ascending orbits. (d) Exposure (Eastward from True North) vs. mr, altitude
> 1500 m, descending orbits. (e) Local incidence angle vs. mr, altitude > 1500 m, ascending orbits.
(f) Local incidence angle vs. mr, altitude > 1500 m, descending orbits.

When we apply NMF to the combined data matrix which includes ascending– and
descending– orbit images (Section 3), we obtain fundamental modes which are so similar
to those plotted in Figure 9a–d that we think it useless to show them. MVR is 2.0. For each
pixel we also compute mr using coefficients related to ascending– and descending–orbit
images and select the larger one. That is to say, each pixel is assigned the orbit with the
larger mr. As a result, the first fundamental mode predominates almost everywhere at
altitudes higher than about 1500 m (Figures 12a,c). First mode predominance decreases on
south–facing slopes, as expected (Figure 12b).
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Figure 12. Larger value of ratio mr = (m1 −m2)/(m1 + m2) between the two related to ascending–
and descending–orbit images for each pixel. Parameter mk (k = 1, 2) is the standard deviation of the
k–th fundamental mode times its coefficient. Non-negative factorization was applied to a combined
σVH/σVV data matrix including ascending– and descending–orbit images. (a) Scatter plot of altitude
vs. mr. (b) Scatter plot of exposure (Eastward from True North) vs. mr. (c) Map showing ratio mr in
the study area.

5. Discussion

Our analyses show that typical evolution of σVH , σVV , and σVH/σVV—as expressed
by the time series of the mean and/or median values for each image—neither correlate nor
anticorrelate well with snow depth evolution. Lack of good correlation is mainly evident in
summer, when the study area is completely free from snow but a secondary maximum of
σVH/σVV is present. These findings are consistent with Figure 3 in [2], where two-year-long
time series at four sites are shown.

We demonstrate that snow depth evolution may be inferred following three com-
plementary approaches; the three approaches can also distinguish between snowy and
non-snowy months. Our results are also probably indicative for an area which is much
larger than the study area, as suggested by the consistency of snow depth measurements at
stations N002, N003 and N004.

As for the first approach, time series of σVH/σVV spatial dispersion—as expressed by
the time series of standard deviation and/or mean absolute deviation for each image—is so
similar to snow depth evolution during the whole time period that Pearson’s (linear) and
Spearman’s (rank) correlation coefficients are around or larger than 0.9 for both ascending
and descending orbits. Spatial dispersion of σVH/σVV always remains small in areas
below about 1500 m in altitude, i.e., where snowpack is not persistent even during cold
months. Above about 1500 m, σVH/σVV spatial dispersion allows also to retrieve snow
depth temporal evolution by altitude.
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As for the second approach, we consider the spatial distribution of the standard
deviation of σVH/σVV evolution at each pixel by altitude, for each year. Distribution width
changes from year to year, following SD evolution, at least approximately.

As for the third approach, we obtain the two evolutionary fundamental modes for
σVH/σVV by non-negative factorization of the data matrix. The first mode is so similar to
snow depth evolution that Pearson’s (linear) and Spearman’s (rank) correlation coefficients
are larger than 0.91 for both ascending and descending orbits. Total variance of σVH/σVV
related to the first mode is about twice and triple that related to the second mode, for as-
cending and descending orbits, respectively. Thus, a large σVH/σVV variability is captured
by the first mode, making it a powerful tool for estimating snow depth. The second mode
is characterized by yearly oscillations with minima during winter and maxima during sum-
mer. Because of this second mode, at many pixels σVH/σVV evolution does not correlate
with SD, mainly in summer.

Although images are acquired at about 6 p.m. TST in ascending orbit and 6 a.m. TST
in descending orbit—thus in very different conditions with respect to snow melt-refreeze
processes—there is small difference in the results obtained when analyzing images acquired
in ascending or descending orbits. Instead, pixels essentially follows the first fundamental
mode when LIA is larger than about 40◦, regardless from the acquisition orbit.

When we select pixels with LIA > 40◦, total variance of σVH/σVV evolution because
of the fundamental mode which is highly correlated to SD is about five times larger than
total variance related to the fundamental mode uncorrelated to SD, for both ascending and
descending orbits.

When time series of ascending– and descending–orbit images are combined in a
single data matrix regardless from LIA, the fundamental mode correlated to SD evolution
predominates almost everywhere at altitudes where snow pack persists during winter
(Figure 12a,c), because most pixels with LIA < 40◦ for the ascending orbit have LIA > 40◦

for the descending orbit, and most pixels with LIA < 40◦ for the descending orbit have
LIA > 40◦ for the ascending orbit.

It is already known that backscattering depends on LIA for both wet and, to a lower
extent, dry snow; dependence characteristics differ for different polarizations (e.g., [13]).
Based on geometrical considerations, LIA impact is often reduced by incidence angle
normalization (e.g., [15]). Additionally, InSAR-based and PolSAR-based techniques are
affected by LIA (e.g., [4,36]). Dependency on LIA can be evaluated as high, medium, and
low in approaches based on backscattering, InSAR, and PolSAR, respectively; low LIA
dependency is usually considered a merit (e.g., [1]).

In this work, the role of LIA is different from that in previous studies. We show that
discriminating pixels according to LIA brings out a fundamental evolutionary mode of
σVH/σVV which is highly correlated to SD and allows good detection of SD evolution.
Thus, our approach is a paradigm change: LIA is no more a factor whose influence has to
be removed, but it determines the ability to monitor SD evolution.

6. Conclusions

We analyze Sentinel-1A SAR backscattering to obtain seven-year-long time series of
snow depth in a mountain region, not relying on any threshold. We follow three approaches
which complement and support one another; they consist in producing and investigating
(i) time series of σVH/σVV spatial dispersion, (ii) spatial distribution of pixelwise σVH/σVV
temporal standard deviation, and (iii) fundamental modes of σVH/σVV evolution by
non-negative matrix factorization.

Both spatial dispersion evolution and the first fundamental evolutionary mode are
highly correlated (correlation coefficients larger than 0.9) to snow depth evolution during
the whole seven-year-long period, including snowy and non-snowy months.

Being based on σVH/σVV spatial dispersion and non-negative data matrix factoriza-
tion, our approach is intrinsically unable to reach high spatial resolutions. Moreover,
obtaining quantitative snow depth estimates probably requires region-by-region conver-
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sion factors (ad hoc calibration). However, the capability of our approach to reproduce
snow depth evolution during several consecutive years, including snowy and non-snowy
months, makes it a potentially very effective tool, which can be used in many other moun-
tain areas, e.g., for water resources management and monitoring of climate change effects.
Even if proper calibration may be hard, e.g., because of lack of in situ snow depth data, our
approach can still provide quantitative information on relative snow abundance from year
to year.

In the next future, we aim to investigate the ultimate spatial resolution of the approach,
test it in other mountain areas where in situ now depth data are available, and lastly apply
it in mountain regions where in situ snow depth data are scarse or absent.
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stations N002 and N003, Figure S4: normalized time series of σVV nearby stations N002 and N003,
Figure S5: σVH/σVV mean-absolute-deviation evolution by altitude.
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