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Abstract: The increasingly frequent flooding imposes tremendous and long-lasting damages to lives
and properties in impoverished rural areas. Rapid, accurate, and large-scale flood mapping is urgently
needed for flood management, and to date has been successfully implemented benefiting from the
advancement in remote sensing and cloud computing technology. Yet, the effects of agricultural
emergency response to floods have been limitedly evaluated by satellite-based remote sensing,
resulting in biased post-flood loss assessments. Addressing this challenge, this study presents a
method for monitoring post-flood agricultural recovery using Sentinel-1/2 imagery, tested in three
flood-affected main grain production areas, in the middle and lower Yangtze and Huai River, China.
Our results indicated that 33~72% of the affected croplands were replanted and avoided total crop
failures in summer 2020. Elevation, flood duration, crop rotation scheme, and flooding emergency
management affect the post-flood recovery performance. The findings also demonstrate rapid
intervention measures adjusted to local conditions could reduce the agricultural failure cost from
flood disasters to a great extent. This study provides a new alternative for comprehensive disaster
loss assessment in flood-prone agricultural regions, which will be insightful for worldwide flood
control and management.

Keywords: flooding; crop recovery; remote sensing; machine learning

1. Introduction

The increasing extreme weather in the context of global climate change has posed
severe threats to the function of living environments and the health of humans [1]. Among
these threats, floods have become the most common type accounting for 44% of natural
disasters and affecting 1.6 billion people globally from 2000 to 2019 [2]. In addition to
the increased proportion of the population exposed to floods [3], agricultural production
activities tend to be another relatively vulnerable sector in response to damaging floods.
For example, the United Nations reported that 70% of global rain-fed agriculture and
1.3 billion people relying on arable lands are exposed to the threats of shifting rainfall
patterns and larger precipitation variability [2]. The impact of flooding on crop yield varies
dependent on flood characteristics (i.e., frequency, duration, depth, seasonality), crop types
(tolerance of excess water and anaerobic soil conditions), and emergency activities [4].
Apart from fluvial flooding, flash floods primarily caused by heavy rain events are more
dangerous as they occur suddenly and hinder early warning and emergency response.
Coastal flooding may cause similar scale and immediate property damage, while the
influence of salt deposition from seawater on agricultural soils could be persistent for years.
In Asia, the primary crop growing season such as rice, highly overlap with the monsoon
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season, resulting in serious storm-related crop loss in extensive vulnerable floodplains [5],
for example, in Bangladesh [6,7], Cambodia [8], Thailand [9] and China [10], etc. Without
effective strategies to respond to the increasingly frequent flood disasters, the goal of
poverty eradication and food safety becomes difficult to achieve.

Satellite remote sensing provides a spatially and temporally explicit framework for de-
tecting flood extent [6,11–14], measuring flooding severity [15–17], and assessing flooding
hazard and post-flood loss and recovery [18,19]. Among them, extensive studies have been
working in remote sensing-based water body extraction [14,20–25] since it is the basis of
flood monitoring and management. Compared with other applications requiring water
extraction techniques such as wetland mapping [26–28] and coastline extraction [29–31]),
flood detection confronts more challenges, including cloudy and rainy weather conditions.
Beyond that, a flood occurs suddenly in general, and the flood recession process varies
under the control of rainfall and surface conditions. Observations with a long revisit
period would overlook short-lived flooding and lead to underestimating the hazard level.
Thus, the higher spatial and temporal resolution of satellite observations is pivotal in flood
monitoring.

Two types of satellite data primarily map the inundation area, the synthetic aperture
radar (SAR) images and optical sensor images [3,17]. The active microwave remote sensing
displays its advantage with the character of working day and night and passing through
clouds in flood monitoring. SAR-derived information including backscatter intensity,
polarimetric parameters, and interferometric coherence, is commonly used for water inun-
dation classification [21]. Optical sensor is more often used in pre- or post-disaster flood
extent extraction due to cloud contaminations [3]. Besides, its ample spectral information
enables identifying flood-affected land cover types. Methods of flood extent extraction can
be categorized into pixel- and object-based, or from other perspectives, into supervised
and unsupervised approaches [21]. Traditional segmentation methods such as threshold-
ing, edge detection, active contour model and region growing always use specific bands
(i.e., VV and VH) or water indices (i.e., NDWI, MNDWI) to extract water body. Most of
these methods require parameter selection which is particularly complicated and uncertain
for time-serious monitoring of rapidly changing flood extent. In recent years, machine
learning (ML) techniques (i.e., the Random Forest Classifier, the Support Vector Machine)
have been applied in flood monitoring [11,32] with the benefit of combining multi-source
features. Also, deep learning (DL, i.e., Convolutional Neural Network) is increasingly
developed in this field to achieve rapid and more accurate flood mapping without data
annotation [33,34]. However, the computation cost and efficiency remain concerns for large-
scale flood detection. There are also amounts of research integrating digital elevation data
into hydrodynamic or conceptual models to predict flood inundation [35]. In a data-rich
environment, the integration of high spatial resolution imagery with flood inundation mod-
elling allows robust and temporally consistent flood propagation simulations. In addition,
remote sensing products including land cover datasets, global surface water [36], cropping
intensity maps [37], and social media data [38] are also important auxiliary information
for flood detection and subsequent hazard assessment. Adequately combing data from
both Radar and optical systems and other “Big Data” systems is of great potential in future
flood assessment [3].

There are a wide range of remote sensing applications centered on flooding mapping.
At a global scale, the UNU-INWEH developed the World Flood Mapping Tool based on
the Google Earth Engine with decades of Landsat data since 1985, which provides the
first comprehensive historical flooding information globally [39]. The automatic near real-
time flood detection software using Suomi-NPP/VIIRS data has been running routinely
since 2014 [40]. These map products including daily products and post-processed 5-day
composite flood extent datasets at the 375 m resolution, are updated routinely, supporting
monitoring global outburst flood. Nardi et al. [41] published a global high-resolution
dataset of Earth’s flood plain at a 250 m resolution with the Shuttle Radar Topography
Mission (SRTM) digital terrain model using the geomorphic algorithm GFPLAIN [42,43].



Remote Sens. 2022, 14, 690 3 of 22

Such maps can support large-scale risk management studies, including assessing human
exposure to potential flooding [41] and categorizing flood insurance levels for different
human settlement areas. Several attempts have been made to reveal large-scale annual
and interannual flooding patterns for some flood-prone areas such as the Mekong Delta
and the Ganges Delta [6,7,44]. In addition, many studies focus on specific extreme flood
events at local scales [16,17,32]. With abundant flooding products derived from space
observations, understanding detailed flooding progress and human reactions to natural
disasters is insufficient and more pressing.

In rural areas which inhabit more poor households and exist large-scale fertile farm-
lands, the flooding condition is highly correlated with dwellers’ livelihood and food security.
Although remote sensing data have been applied on crop loss assessment [45], the con-
tributions of adaptation measures such as rush planting have been limitedly considered.
At present, flood crop loss assessment could be categorized into the flood-intensity-based
approach and crop-condition-based approach. For the flood-based methods, most re-
searches stimulate flood conditions (i.e., inundation depth) and evaluate crop loss using
flood damage functions [45]. In this way, the natural ability of crops to withstand floods is
the preoccupation. The crop-condition-based approach is mainly achieved by comparing
pre- and post-flood vegetation conditions and establishing relations between vegetation
index and crop yield. Similarly, researchers hardly take account of the phenomenon that
Vegetation Index (VI) profiles decrease followed by the subsequent increase in the disaster
year. To date, few researchers apply remote sensing technology to highlight the effects
of rapid post-flood recovery activities initiatively conducted by local residents, which is
indispensable for comprehensive damage evaluation.

In the 2020 summer monsoon season, the unusually heavy and continuous precipi-
tation caused extensive flooding in many Asian countries, resulting in serious losses of
lives and properties [46]. According to the Ministry of Emergency Management of the
People’s Republic of China, the 2020 flood season in southern China has been recognized
as the most severe flood situation since 1998. July’s heavy rainfall and flooding event in
the Yangtze and Huai River basins, which affected 34.173 million people in 11 provinces
and caused 132.2 billion yuan economic losses, has been officially selected as one of the top
10 natural disasters in China 2020. As important grain-cultivating areas in southern China,
Yangtze-Huai River basin were exposed to immense pressure in agricultural production.
Nevertheless, local residents and agricultural technicians implemented active and timely
remedial measures adjusting to different types of flooded croplands. Hence the flooding
disaster losses were successfully mitigated [47].

In this paper, we proposed a method by combining SAR and optical imaging to
detect flood-affected cropland and monitor spontaneous agricultural recovery during
and after the flooding disasters. Specifically, we chose three experimental sites in Jiangxi
and Anhui Province which were seriously affected by the 2020 summer flood to test the
proposed methodology pipeline, with the aim to answer the following scientific questions:
(1) What is the spatial distribution of flood-affected croplands during the 2020 monsoon
season? (2) how to determine the timing and extent of recovered agricultural productions?
and (3) what are differences in local characteristics between recovered and unrecovered
agricultural productions?

2. Study Area and Data
2.1. Study Area

We focused on three regions with diverse natural environments and social functions,
including the Huai River, the Poyang Lake, and the Chao Lake. These three sites were
all exposed to severe flooding and experienced flood emergency management and post-
disaster agriculture recovery. The geographic position, the flood extent, and the number
of available observations captured by Sentinel-1 during the 2020 flooding period (July to
August) are presented in Figure 1.
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Figure 1. Geographic locations, flooding extents, and available Sentinel-1 imagery in July and August
2020 at three study areas: (a) the Huai River, (b) the Poyang Lake and, (c) the Chao Lake.

The Huai River region (Figure 1a) is highly populated with croplands covering around
70% of the study site. In the 2020 monsoon season, the rainfall along the Huai River exceeds
33% compared with the same period last year. Eight flood retention areas along the Huai
River were used by turn in late July. The Poyang Lake (Figure 1b) is the biggest freshwater
lake in China. Situated in the Jiangxi Province, it relieves flood discharge pressure of the
Yangtze River and regulates the surrounding five river systems. Benefitting from abundant
water resources, moderate climate, and fertile soils, the Poyang Lake region is one of
southern China’s most intensified agricultural regions [48]. In 2020, the flood season of the
middle and upper reaches of the Yangtze River began simultaneously. The rainfall in Jiangxi
Province was more than three times over former years, causing severe agricultural losses.
The Chao Lake (Figure 1c) is situated in Hefei City, the provincial capital of Anhui Province.
Intensive population, artery traffic, and infrastructure surround the lake. The Chao Lake
reaches a 150-year return period high water level in the 2020 monsoon season due to the
heavy rainfall, synchronously high water level in the Yangtze River and surrounding rivers,
and lacking flood detention areas.

Geo-tagged photographs (Figure 2) taken during a field investigation in the Sanjiao
Township show different cropland statuses about two months after the flooding. Situated at
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the west of the Poyang Lake, the Sanjiao Township is one of the most seriously affected areas.
Over 20,000 people were evacuated and nearly all crops failed because of dikes broken in
early July. Not until late August did some residents could turn back and rebuilt their homes.
The crops hanging on the electric transmission lines (Figure 2a) and watermarks on the
building walls (Figure 2d) recorded high water levels during the flood period. Cropland
across the river in Figure 2b shows patches of crops near high embankment have markedly
turned green and recovered from the flooding. In contrast, lands in Figure 2a and left side
of Figure 2d were still in varying degrees of waterlogging. Additionally, there were also
some farmlands in the initial stage of recovery during the ground survey (Figure 2c and
right side of Figure 2d).

Figure 2. In-site observations were collected on 20 September 2020, two months after the local
flooding event in the Sanjiao Township, Yongxiu County. Red triangles show spatial locations and
viewing direction of the photos. The background is Sentinel-1 VV polarized image acquired on
18 September 2020. Photos show croplands at different stages of waterlogging and recovery: (a) water
logging, (b) recovered, (c) initial recovery, (d) severe waterlogging on the left and intial recovery on
the right side of houses.

2.2. Data and Processing
2.2.1. Sentinel-1 Imagery and Pre-Processing

Launched by European Space Agency (ESA), Sentinel-1 is an imaging radar mission
with twin polar-orbiting satellites (Sentinel-1A/B), providing all-weather, day-and-night
imagery at C-band with four-mode data combinations [49]. We selected imagery of the
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primary operational mode over land, the Interferometric Wide swath (IW) mode, provided
in dual-polarization, vertical transmit and vertical receive (VV), and vertical transmit and
horizontal receive (VH). It features a wide swath (250 km) with high geometric resolutions
suitable for flood detection. We obtained the 10 m pixel spacing Ground Range Detected
(GRD) Level-1 data with multi-looked intensity pre-processed, mainly including thermal
noise removal, radiometric calibration, and terrain correction on Google Earth Engine
(GEE). The final terrain-corrected values are converted to decibels [50].

The Sentinel-1 data in this study was mainly used for flood mapping. Images were
selected according to the flood peak period separately in the three areas to extract the
maximum flood extent (Table S1). Further, all available Sentinel-1 images in July and
August 2020 were used for agricultural recovery assessment. The number of Sentinel-1
observations in each site is shown in Figure 1. In this study, the VV polarized data was
chosen for its advantages in detecting floods [6,51]. A median filter with a 50 m radius
circle kernel was applied to reduce speckle noises.

2.2.2. Sentinel-2 Imagery and Pre-Processing

Sentinel-2 is a European high-resolution and multi-spectral imaging mission with twin
satellites flying in the same orbit and providing a high revisit frequency of 5 days at the
Equator [52]. In this study, we used Bottom-Of-Atmosphere (BOA) Level-2A product from
15 September to 31 December 2020, to detect the post-disaster agricultural reconstruction.
We first filtered out granules with cloudy pixel percentages greater than 50% and then
removed poor-quality surface reflectance values for the left Sentinel-2 archive using the
quality assessment (QA) information. The Normalized Difference Vegetation Index (NDVI)
and Enhanced Vegetation Index (EVI) were calculated from the retained values for each
pixel. We further merged the vegetation indexes and spectral bands (i.e., blue, red, green,
near-infrared, and short-wave infrared bands) to derive the cloud-free greenest post-disaster
Sentinel-2 composite.

2.2.3. Cropping Intensity Maps

In this paper, we used the 30 m global Cropping Intensity (CI) Maps during 2016–2018 [37]
to identify cropland extent, map recovery conditions and analyze the influence of flooding
and timely agricultural recovery measurements on CI in China 2020. We assumed no drastic
changes in rotations and cropland areas in the three study regions during the past few years.
The dataset was downloaded from the National Earth System Science Data Center, National
Science & Technology Infrastructure of China [53]. It was developed with the reconstructed
time series of Normalized Difference Vegetation Index (NDVI) from multiple optical satellite
data, including Landsat, Sentinel-2, and MODIS on the GEE cloud computing platform [37].
The cropland extent of interest was based on Global Food Security-support Analysis Data at
a 30 m resolution (GFSAD30) and also refined by incorporating an ensemble of three other
global land cover products [37]. The satisfactory overall accuracy (OA) of the provided CI
Maps reached from 80.0% to 98.9% across different regions worldwide [37].

2.2.4. Other Auxiliary Data

The 250 m GFPLAIN product [41] delineating the global floodplain was used as
the baseline for comparing different flood mapping methods. The gridded dataset was
produced with the Shuttle Radar Topography Mission (STRM) digital terrain model (DTM)
and a set of terrain analysis procedures [41]. We also collected the NASA SRTMGL1 product
at a spatial resolution of 1 arc-second [54] to calculate slope and exclude hill shadows (i.e.,
slope greater than 15 degrees) because the shaded hills are likely to be misclassified as
water.

2.3. Methods

Figure 3 presents a two-step methodology framework to map the flooded croplands
and quantify agricultural recovery conditions in the three study regions: (1) mapping
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of flooded croplands using Sentinel-1 SAR composite images and (2) determination of
post-flooding recovery conditions at different times and places.

Figure 3. Flowchart of the methodology.

2.3.1. Mapping of Flooded Croplands

We first combined the SAR imagery during the period of flooding peak (Table S1)
to generate the maximum flood extent of each study area using the minimum composite
method. Given that the 2020 summer flood is highly variable across space and time, the
short-duration flood is likely to be underestimated within a single image. Moreover, the
SAR backscatter signal will decrease when floods submerge croplands, and the minimum
composite can identify the maximum possible croplands that turned to be flooded surfaces.
Then, we applied a constant threshold method to extract the water extent. Specifically, the
threshold was selected and validated as below.

First, we selected Sentinel-1 (acquired on 23 October 2020) and Sentinel-2 imagery
(acquired on 24 October 2020) pairs around the Poyang Lake with only a one-day gap
for lacking suitable cloud-free optical images during or shortly after the flood. Grids
of 0.05 × 0.05 degrees and 0.2 × 0.2 degrees fully covered by the selected Sentinel-1
and Sentinel-2 images were created separately for algorithm comparison (Figure 4c) and
reference samplings generation (Figure 4b). We developed a randomly distributed dataset
annotated with two classes (280 water points and 612 land points) within the 0.2 × 0.2
degrees grids by visual interpretation based on the Sentinel-2 image (Figure S1). Then, we
computed Receiver operating characteristic (ROC) curve for threshold selection using the
892 validation points. A threshold range between −16.5 dB to −14 dB was determined for
water body extraction based on Sentinel-1 VV polarized image (Figure S2). Croplands that
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are affected by riverine flooding and waterlogging sometimes share similar signals with
paddy fields flooded for irrigation purposes, a normal process of agricultural activities [55].
In order to minimize the possibility of unaffected paddy fields misclassified as flooded
croplands, we compared water areas extracted by different thresholds and sieving values
between the normal year (2019) and the flood year (2020) during the same time period
(Table S2). We found that large proportions of paddy fields would be considered as flooded
areas especially in the Huai River Region when applying higher water extraction thresholds.
Therefore, we selected −16.5 dB as the constant threshold to extract flooded croplands
through overlapping water extent and the cropping intensity map. Finally, flooded patches
with an area of 100 pixels (about 0.09 km2) or less were sieved using the 8-connected
algorithm [56].

Figure 4. The procedure of water delineation methods comparison. (a) Grid tiles generation by
overlapping floodplain dataset, Sentinel-1 and Sentinel-2 imagery with close dates; (b) Water/land
samplings creation through visual interpretation within the grids of 0.2 × 0.2 degrees; (c) grid
tiles of 0.05 × 0.05 degrees overlaying the Sentinel-1 imagery for water fraction calculation and
methods comparison.

To validate the model performance of flooding mapping, we compared the following
three methods, including the constant threshold of −16.5 dB, the Global Otsu Threshold-
ing [57], the adaptive local threshold algorithm [58,59] in the Poyang Lake region. The
Global Otsu Algorithm [57] has been widely used in SAR-based water mappings. An
optimum threshold was determined from maximizing the between-class variance of fore-
ground and background pixels in the image [22]. The adaptive local threshold detection
combining MNDWI, Canny Edge Filter, and Otsu thresholding was proposed to improve
the ability to detect the small fraction of water pixels in flat areas [58]. We compared
these methods in Sentinel-1 VV polarized images (acquired on 23 October 2020) within
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the floodplain areas. We also included the Random Forest Model to generate water extent
using Sentinel-2 imagery (acquired on 24 October 2020) as the benchmark to evaluate the
performances of the three Sentinel-1-derived water mappings. The above four methods
are compared by calculating water percentages in grids of 0.05 × 0.05 degrees (Figure 4c).
Considering the inapplicability for the local thresholding method in hilly areas [57], we
used a resampled floodplain dataset [41] to reduce confusion of shaded hills and water by
excluding 0.05 × 0.05 degrees grids on the condition that the proportion of floodplain areas
are less than 40%. Spectral predictor variables including Red, Green, Blue, NIR, Normal-
ized Differenced Vegetation Index (NDVI) [60], and Normalized Differenced Water Index
(NDWI) [61] were derived from the Sentinel-2 data. Further, we ran the classifications using
the Random Forest Model. For each classified pixel, ten decision trees were used at each
split. 80% of the samplings were used for training and 20% for model validation (Figure S1).
We assessed the accuracy using the overall accuracy (OA) metric with a standard error
matrix approach. Finally, the Sentinel-2-derived water map was compared with the three
Sentinel-1-based water mappings separately in the unit of 0.05 × 0.05 degrees grid.

2.3.2. Determination of Post-Flooding Recovery

We used the Random Forest Model [62] to map recovery conditions of flood-affected
croplands by training models separately for each study site in October and ran the classifica-
tion in October, November, and December. We first created a randomly distributed training
dataset through visual interpretation in each study area that identified the status of the
flooded cropland in late October. Regarding time-series of true-color and false-color images,
maximum NDVI composite image of Sentinel-2 from mid-September to the end of October,
pixels exhibiting greening trend within the flood-affected cropland areas were classified as
recovered croplands or otherwise uncovered ones. Nine predictor variables were used in
the Random Forest classification (Table 1). Considering that flood is highly variable, we
used flood frequency calculated from all Sentinel-1 SAR data during the major flooding and
recession period (July and August) in 2020 to represent flood duration and velocity of flood
recession. The characteristics of returning to green for the stricken cropland were identified
by ample spectral information from Sentinel-2 optical images. All predictor layers were
preprocessed at a 30 m resolution using the nearest-neighbor interpolation for unification.

Table 1. Predictor data layers utilized by the Random Forest Classifier to classify pixels as recovered
croplands and unrecovered croplands.

Explanatory Variables Formula Variable Identifier

Near-Infrared (NIR) Near-Infrared (NIR) Nir_max
Short-wave infrared (SWIR) Short-wave infrared (SWIR) Swir_max

Blue Blue Blue_min
Green Green Green_min
Red Red Red_min

Normalized Difference Vegetation Index (NDVI) [59] NIR−Red
NIR+Red NDVI_max

Enhanced Vegetation Index (EVI) [63] 2.5 × NIR−Red
NIR+6×Red−7.5×Blue+1 EVI_max

Frequency of inundation during the flood period ΣNwater
ΣNtotal

1 VV_freq
Cropping intensity Cropping intensity CI

1 Nwater is the number of times classified as water bodies for each pixel during the flood period in 2020. Ntotal is
the total number of Sentinel-1 observations in the flood period in 2020.

We ran the model and delineated the extent of agricultural recovery in late October. As
a result of the difficulty in drainage or longer growth cycles for some rush-plant vegetation,
the model was also implemented to classify recovered croplands in late November and
December using longer time series of Sentinel-2 archives (from 15 September 2020 to 30
November 2020, and from 15 September 2020 to 31 December 2020) to comprehensively
evaluate the agricultural recovery measurements. Figure 5 illustrates the asynchronous
flood recession and cropland recovery process in 2020 in the northern Changzhou Township,
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Poyang County. Specifically, cropland with a higher elevation near the dikes was more
timely replanted and turned green earlier than the low-lying inner polder. The time series
of NDVI indicates crop rotation delays in 2020 compared with 2019 due to the flood.

Figure 5. The RGB composite of Sentinel-2 imagery in close dates of 2019 and 2020 shows gradual
agricultural recovery after the flooding in 2020 in the Changzhou Township, Poyang County. The red
and orange points indicate diverse recovery conditions due to different positions, cropping intensity,
and flooding duration. The solid and dashed lines represent temporal trajectories of NDVI based on
the two selected pixels in 2020 and 2019 separately. NDVI was derived from time series of Sentinel-2
imagery. (a–e) Sentinel-2 images acquired after flooding in 2020, (f–j) Sentinel-2 images in 2019
acquired with close dates in correspondance to the year of 2020.

Finally, we analyzed the statistical results of agricultural loss and recovery conditions.
Spatial patterns and local details were captured and visually interpreted separately for each
study site using official announcements and local news. All these analyses were conducted
on Google Earth Engine, which is a free cloud-based platform comprising a large archive of
public geospatial data with high-performance parallel computing ability [64].

3. Results
3.1. Comparison of Flood Mapping Result

Figure 6 shows the relationships between reference water ratios in grids of 0.05 × 0.05
degrees derived from Random Forest algorithm using Sentinel-2 imagery and classified
water ratios derived from (a) constant threshold of −16.5 dB, (b) the Global Otsu Algo-
rithm [57], and (c) the adaptive local threshold method [58] using Sentinel-1 imagery. The
overall accuracy of the Sentinel-2-derived water mapping reached 96.7%. Grey dashed lines
are the 1-to-1 lines assessing the flood mapping accuracy at the scale of 0.05 × 0.05 degrees.
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Results show that the constant threshold of −16.5 dB and the Global Otsu Algorithm
achieve a high correlation coefficient with the reference water map (i.e., Pearson’s r = 0.99).
The adaptive local threshold method performs well when the extent of flooded areas is
moderate. However, when the flooded extent relative to the grid tile size is less than 25%,
the flooded area is highly overestimated with high commission errors. This phenomenon
informs us that although we have applied floodplain dataset to exclude hilly regions, the
terrain is still an influencing factor of flood mapping accuracy, especially in the grid tiles
with small water proportions [58].

Figure 6. The relationships between reference water ratios in grids of 0.05 × 0.05 degrees derived
from Random Forest algorithm using Sentinel-2 imagery and classified water ratios derived from
(a) constant threshold of −16.5 dB, (b) the Global Otsu Algorithm [57], and (c) the adaptive local
threshold method [58] using Sentinel-1 imagery. Grey dashed lines are the 1:1 lines.

Finally, pixels with backscatter coefficients less than −16.5 dB on VV polarized images
were regarded as water in our study. Compared with other segmentation algorithms, first,
spatially and temporally, the mapping results are more stable than with methods such
as Otsu Thresholding [57] because the proportion of water bodies varies considerably in
different images tracks in the same study region on adjacent dates. While the performance
of the Global Otsu Algorithm strongly depends on flood extent size relative to full image
size [22]. Second, it is simple and computationally efficient.

3.2. Flooding and Post-Flood Recovery Condition

The affected cropland areas and recovery statistics are presented in Table S3 and
Figure 7. The total area of flood-affected cropland was approximately 749 km2, 379 km2,
and 958 km2, accounting for 7.24%, 8.41%, and 5.69% of the agricultural land in the study
region of the Poyang Lake, the Chao Lake and the Huai River, respectively. The damaged
area around the Chao Lake was the smallest. However, the stricken proportion was
the largest, indicating the severe condition of local food production. The affected single
cropping land area was three times more than double cropping around the Poyang Lake.
On the contrary, affected single cropping farmland was about three times less than double
cropping near the Huai River. When considering the original planting proportions, the
differences are weakened.

The recovery areas and the ratio of regions recovered to the flood-affected areas
are separately categorized by different cropping intensities in Figure 7. The study area
around the Poyang Lake and the Huai River shows effective recovery results, indicating
that extensive croplands avoid being abandoned in the disaster year. Their differences
existed in that the total recovered areas and percentage were higher around the Poyang
Lake in late October but were surpassed by the Huai River in late December. The results
could be explained by the flood peak around the Poyang Lake being approximately a half
month earlier than the study site near the Huai River. Besides, the high recovery rate
also indicates that the flooded cropland near the Huai River has conducted powerful and
timely measurements.
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Figure 7. (a) Recovery area, and (b) recovery percentage statistics of the flood-affected croplands
until late October, November, and December in the three study sites.

3.3. Validation of the Post-Flooding Recovery Maps

A standard confusion matrix approach was used to assess the overall accuracy (OA)
of the recovery classification results. We randomly selected 50 recovered points and 50
unrecovered points from time-series Sentine-2 images by visual interpretation for each
study site and period. We ran each model ten times. The mean overall accuracies are shown
in Table 2. The recovery maps in the three study sites reach high overall accuracies and
exceed 98%. Crops with less complex backgrounds at their peak growth stage could be
easily delineated using high-quality remote sensing data. The accuracy of the results could
meet the demand of our subsequent spatial–temporal analysis.

Table 2. Overall accuracies of the recovery results.

Region OA (October) OA (November) OA (December)

Poyang Lake 1 99% 99.9%
Chao Lake 99.4% 99.8% 98.9%
Huai River 98.6% 99.9% 99.9%

3.4. Spatial Patterns of Regional Agricultural Recovery

Figures 8–10 show the spatial patterns of agricultural recovery in three study areas.
Large areas of flooded cropland were located around the lake or along rivers and streams
due to leave break, while sporadically distributed inland flooded croplands possibly owned
to waterlogging caused by continuous precipitation during the monsoon season in 2020.
All study regions showed varying degrees of gradual agricultural recovery after flooding
and waterlogging disasters, where edges of affected areas and small patches of flooded
lands were found earlier to recover.

In the middle–lower Huai Basin, the flooded cropland was mainly situated along
the trunk (Figure 8) due to the government’s application of flood diversion and detention
areas [47]. These sites were employed every few years and made great contributions to
prevent a flood from destroying major cities, main traffic arteries, and large tracts of fertile
land. For example, the Mengwa Flood Storage area (Figure 8a) has opened its sluice gate
sixteenth times by the end of 2020. Apart from flood damages caused by artificial regulation,
the lake edges in the southern Huai River were also affected due to rising water levels
(Figure 8b). Nevertheless, over 80% of the flood-affected double-season croplands were
classified as recovery until late December in this study (Table S3). The successful self-help
production could be attributed to residents’ ample experience of flood emergency response.
According to the official announcements and local news [65], suitable crops were timely
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replanted as long as the water receded. The active reactions reduce economic losses and
avoid regional poverty for poor villages under frequent flooding threats.

Figure 8. Spatial pattern of agricultural recovery near the Huai River. The zoom-in maps show local
recovery conditions at (a) a flood diversion and storage area and (b) edges of a tributary.

Figure 9. Spatial and temporal patterns of agricultural recovery around the Chao Lake. The zoom-
in maps show recovery conditions of the flooded cropland mainly due to (a) rising waters and
(b) flood diversion.
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Figure 10. Spatial and temporal patterns of agricultural recovery around the Poyang Lake. The
zoom-in maps highlight different distributions of recovered cropland owing to diverse stricken
geographical locations: (a) recovered from away to close to the Poyang Lake; (b) recovered from
outer to inner side of a polder; (c) unrecovered cropland as encircled by lake water.

Figure 9 exhibits the spatial pattern of agricultural recovery around the Chao Lake.
Similarly, some paddy fields were used to diverse water for the Chao Lake (Figure 9b).
Many small dispersive croplands along tributaries flooded due to rapidly rising water
levels (Figure 9a). However, only around one-third of the flooded cropland was detected
as recovered (Table S3), mainly distributed at the flood periphery (Figure 9). Unlike the
disaster area near the Huai River, many flood storage areas around the Chao Lake had
never experienced flood diversion. Therefore, mass evacuation and agricultural recovery
were harder to carry out. Besides, the hydrothermal condition also possibly resulted in a
relatively low recovery rate.

The status of cropland after flooding around the Poyang Lake is presented in Figure 10.
Grain production is seriously affected by riverine flooding and waterlogging. For instance,
the Lianhu Township (Figure 10c) and Changzhou Township (Figure 10b) in Poyang
County, located east of the lake, were inundated entirely after the old embankment broke.
Agricultural recovery condition was highly related to the geographical position of farmland.
The Lianhu Township, located on an island in the Poyang Lake and surrounded by water,
was difficult to drain away water and hence hardly showed signals of turning green and
recovery (Figure 10c). In contrast, the boundary of flooded dike paddy fields (Figure 10b)
or small patches of waterlogged lands away from the Poyang Lake water (Figure 10a) were
found more straightforward to organize agricultural reconstruction. Overall, the damages
of flooded cropland (over 70%) were reduced benefit from the emergent and periodic local
recovery measurements.

In reference to the announcements released by the Department of Agriculture and
Rural Affairs of Jiangxi Province [66] and Anhui Academy of Agricultural Sciences [67],
primary remedial measures adjusting to different types of flooded croplands implemented
by residents and agrotechnician were concluded. We summarized primary active arrange-
ments by farmers around the flooding areas in Table S4. Flooding in the three study areas
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mainly affected double-cropped early rice at harvest time and single-cropped rice at late
tillering stage or booting stage. After active arrangements, including draining, fertilizing,
and spraying insecticide, for the cropland with a relatively high elevation and washed out
in a short period, farmers rushed harvesting and planting in double-season cropland and
recovering the growth of single-season rice. As for the low-lying waterlogged farmlands,
once the water receded, practical measurements including replanting vegetables or dry
crops, applying ratooning rice technologies, and replacing double-season late rice with
early rice varieties were taken in terms of flood duration and hydrothermal condition.
Our results finely captured the spatial and temporal agricultural recovery patterns in the
three study sites.

4. Discussion

A practical and detailed understanding of post-flooding processes considered of hu-
man responses is essential. On the one hand, taking adaptation measures into count is
necessary for comprehensive flood economic loss assessments [68]. On the other hand,
the experience in agricultural recovery patterns could provide valuable information on
predicting resilience in other flood-prone farmlands. Specifically, it would support enacting
suitable risk reduction strategies at appropriate times and regions. Several attempts have
been made to monitor long-term recovery and community resilience from severe natural
disasters such as Hurricane Katrina [18,69]. Nevertheless, the effects of short-term agricul-
tural adaptation measures such as replanting the same crop or a new one in the disaster
year have not been treated in much detail.

The research proposes a method framework of mapping flood extents and quantifying
rapid post-flood recovery of agricultural production. Benefit from the combined utilization
of SAR and optical imagery acquired by Sentinel-1/2, a simple and effective method was
proposed and used to evaluate the recovery conditions of the severe flooding events in
the Yangtze and Huai River basins in July 2020. During the flood period, SAR signals can
accurately penetrate through clouds and delineate inundated croplands [33,34]. While in
the flood recession period, SAR-optical data fusion provides ample information on plant
growth. The study has demonstrated the remarkable subsequent recovery efforts in the
three disaster areas. It would inspire more flood-prone poor places worldwide to actively
conduct post-disaster self-help production adapted to local circumstances.

4.1. Characteristics of the Recovered Cropland

Previous researches have indicated that there is a significant association between
flooded regions and plant green-up delay in the United States [70]. In this study, we
also find periodical green-up delay of flood-stricken croplands in the middle and lower
Yangtze and Huai Rivers, China. Different periodical recovery measurements carried
out based on varying degrees of flood damage and hydrothermal condition in 2020 were
visualized by joint kernel density estimation (KDE) plots. The relationship of day of year
(DOY) between 2019 and 2018 on the second row (Figure 11) demonstrates no significant
changes in cropping patterns, because high-density regions are primarily distributed along
the diagonal lines. It is also apparent that delays of the maximum NDVI in 2020 due to
floods from the vertical distribution of KDE plots in the first row (Figure 11) represent
the relationship of DOY between 2019 and 2020. Besides, different periodical recovery
measurements could be deduced from the two primary high-density regions.

Flood duration, also known as water persistence, has been widely used as an indicator
to assess severity of flooding events [16,70–72]. Long flooding or waterlogging duration
has significant effects on stem characteristics [73] and causes more pressure on conducting
timely agricultural recovery activities. Based on the derived recovery maps, we visualized
the probability density function (PDF) of the inundation frequency difference, which
is defined as the difference between the inundation frequency three months after the
flood peaks in 2020 and that of the same period in 2019 (Figure 12). The formula of
inundation frequency is presented in Table 1. We find that the recovered croplands have the



Remote Sens. 2022, 14, 690 16 of 22

characteristics of relatively short flood recession time compared with the unrecovered lands
in all three flooded areas. Despite the hydrothermal and social conditions, we could infer
that the Chao Lake Region had less effective emergency responses than the Poyang Lake
Region, because large proportions of flooded croplands with relative short flood duration
were discarded in 2020 (Figure 12).

Figure 11. Joint kernel density estimation (KDE) plots show DOY delays of maximum NDVI due
to flood disasters in 2020 compared with 2019 and 2018 in the three study areas: (a) the Huai River
Region; (b) the Poyang Lake Region; (c) the Chao Lake Region. The KDE plots were generated by
5000 random points within the recovered flood-affected croplands.

Figure 12. Probability density function (PDF) plots show differences between the inundation fre-
quency three months after the flood peaks in 2020 and that of the same period in 2019: (a) the Huai
River Region; (b) the Poyang Lake Region; (c) the Chao Lake Region. The PDF plots were generated
using 2500 points within the recovered croplands and 2500 points within the unrecovered croplands
by stratified random sampling.
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4.2. Uncertainties in Cropland Recovery Mapping

Some cautions should be pointed out when extrapolating the methodology to other
areas. First, we provided the lowest estimated recovered proportions for the three agricul-
tural regions using the constant threshold of −16.5 dB to delineate water extent. However,
it is difficult to distinguish between unaffected paddy fields and flood-stricken croplands
during monsoon season in the three study areas based on remote sensing data. In the future,
SAR-optical data fusion and the flood inundation model combined with high-resolution
terrain data would help delineate more precise flooded croplands.

Second, the cropping intensity dataset for extracting the cropland area was produced
from 2016 to 2018 [37]. Although no significant change (e.g., cropland losses with urban
expansion or policy implementation year of returning farmlands to lakes) occurred in
crop areas and rotation patterns in the three study areas in 2020, the time gap would still
deteriorate the accuracy of the results.

Third, in this study, a primary hypothesis is that croplands in the three study areas
were supposed to have a period of high greenness from middle September 2020 to late
December 2020 if not affected by the flooding disasters. This assumption is reasonable for
double-, triple-, and most single-cropped farmlands in our three study areas. One exception
exists in a small proportion of single-cropped lands where the crop maturity and harvest
time are similar to double-cropped early crops. Such cropland was merely affected by the
flooding and did not need recovery intervention because the land in the normal second-half
years was uncropped.

A localized comparison of maximum NDVI from mid-September to the end of De-
cember in 2019 and 2020 is shown in Figure 13. The geographic locations of the three
representative sites are exhibited in Figure 8b, Figure 9a, and Figure 10b, respectively. In
2019, most areas in Figure 13(a1,b1) during the period show good crop condition and yield
status inferred from the large proportion of high peak NDVI values. However, along the
tributary at the southern Huai River (Figure 13(c1)), many farmlands were uncultivated in
2019 after mid-September.

To quantify the combined errors from the second and third circumstances, we plot a
frequency histogram of maximum NDVI of the unrecovered croplands from mid-September
to late December in 2019 for each study area (Figure 14). When applying the NDVI threshold
of 0.5 to separate crops at peak growth stage from sparse vegetation or barren land, about
14% (around the Chao Lake), 24% (around the Poyang Lake), and 40% (along the Huai
River) of the flooded land classified as unrecovered were found uncropped after mid-
September in previous years [74]. These areas are either uncropped in 2020, or particular
single-cropped lands mentioned ahead, resulting in 3.4% (around the Chao Lake), 5.4%
(around the Poyang Lake), and 9.0% (along the Huai River) underestimation of the recovery
rates. Therefore, a large-scale and high spatial–temporal resolution vegetation growth
curve dataset, cropping intensity dataset with more details such as maturity period and
crop type maps would be of great help for more precise post-disaster assessment of flooded
agricultural fields.

4.3. Impications for Application and Future Development

It is worth mentioning that the successful case of agricultural recovery from flooding in
China 2020 is not only because of active post-disaster measurements such as rush planting,
but also benefit from hydraulic engineering, great dedication from soldiers, and corpora-
tions of local residents living in the flood detention areas, etc. Still, general experiences
such as agricultural recovery measurements conducted from high to low elevations and
the local response of current cropping intensities to flooding and recovery measurements
(Figure 13(a4,b4,c4)) are essential for future disaster prevention and reduction. Our results
indicated that, for other flood-prone agricultural regions worldwide, annually flooding
duration maps combined with natural conditions (e.g., terrain, heat and precipitation)
and socioeconomic backgrounds would help delineate potential areas to conduct timely
agricultural recovery and schedule appropriate cropping patterns. Future studies on the
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current topic would help vulnerable areas increase adaptability to global climate change
and reduce the adverse effects of extreme weather events in rural agricultural areas.

Figure 13. Local details of the classification results. The maximum NDVI composite from mid-
September to December in 2019 and 2020, the zoom-in agricultural recovery map and local character-
istics of recovered and unrecovered croplands in the east of the Poyang Lake (a1–a4), northeast of the
Chao Lake (b1–b4) and south of the Huai River (c1–c4).

Figure 14. Frequency histograms of maximum NDVI values after 15 September 2019 at the area of
classified unrecovered croplands. The dash line indicates a NDVI value of 0.5. (a–c) represent the
study site in the Chao Lake, the Poyang Lake, and the Huai River.
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5. Conclusions

The present study was designed to determine the effects of agricultural recovery
measurements after the catastrophic flooding at three seriously affected grain-producing
areas in China 2020 with multi-sensor and multi-temporal satellite data. The results have
shown that croplands in all study areas have experienced flooding and waterlogging at
varying degrees. In contrast, as a result of active coping, over 33~72% of the affected
croplands were replanted and recovered from flooding. These results have significant
implications for understanding how much governments and residents could do to reduce
the flood damage with timely measures adapted to local conditions. The findings will be of
interest to major grain-producing countries where some districts are exposed to constant
flooding threats like climate change. Understanding the spatial distribution of flood-prone
cropland and the characteristics of water recession and agricultural recovery is significant.
By exploiting the potential of land resources, optimizing the management of agricultural
disaster assistance, applying continuous post-disaster monitoring, and motivating local
residents to conduct measurements according to local hydrothermal conditions would
potentially contribute to the world’s flood control and management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14030690/s1. Table S1: The acquisition date and identifier
information of the employed Sentinel-1 IW datasets for flood extent extraction, Table S2: Water areas
within croplands extracted by different thresholds and sieving values between the normal year (2019)
and the flood year (2020), Table S3: Statistics of the flood-affected croplands and recovery conditions
in the three study areas, Table S4: Active arrangements summarized in reference to the official
announcements, Figure S1: Spatial distribution of visually interpreted training and test samples for
water extraction method comparison, Figure S2: Receiver operating characteristic (ROC) curve for
water extraction threshold selection. The ROC curve was calculated over the dataset of 892 validation
points.
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