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Abstract: Evaluating and exploring regional eco-environmental quality (EEQ), economic develop-
ment equality (EDE) and the coupling coordination degree (CCD) at multiple scales is important
for realizing regional sustainable development goals. The CCD can reflect both the development
level and the interaction relationship of two or more systems. However, relevant previous studies
have ignored non-statistical data, lacked multiscale analyses, misused the coupling coordination
degree model or have not sufficiently considered economic development equality. In response to
these problems, this study integrated multisource remote sensing datasets to calculate and analyse
the remote sensing ecological index (RSEI) and then used nighttime light data and population den-
sity data to calculate the proposed nighttime difference index (NTDI). Next, a modified coupling
coordination degree (MCCD) index was proposed to analyse the MCCD between EEQ and EDE.
Then, spatiotemporal and multiscale analyses at the county, city, province, urban agglomeration and
country levels were performed. Global and local spatial autocorrelation and trend analyses were
performed to evaluate the spatial aggregation degree and change trends from 2001 to 2020. The main
conclusions are as follows: (1) The EEQ of China displayed a fluctuating upwards trend (0.0048 a−1),
with average RSEI values of 0.5950, 0.6277, 0.6164, 0.6311 and 0.6173; the EDE of China showed an
upwards trend (0.0298 a−1), with average NTDI values of 0.1271, 0.1635, 0.1642, 0.2181 and 0.2490;
and China’s MCCD indicated an upwards trend (0.0220 a−1), with values of 0.4614, 0.5027, 0.4978,
0.5401 and 0.5525. (2) The highest global Moran’s I of NTDI and MCCD was achieved at the city scale,
while the highest RSEI was achieved at the county scale. From 2001 to 2020, the spatial agglomeration
effect of the RSEI decreased, while that of the NTDI and MCCD increased. (3) A power function
relationship occurred between NTDI and MCCD at different scales. Furthermore, the NTDI had a
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higher contribution to improving the MCCD than the RSEI and the R2 of the fitted curve at different
scales ranged from 0.8183 to 0.9915.

Keywords: modified coupling coordination degree; spatiotemporal analyses; multiscale analyses;
remote sensing; trend analyses; China

1. Introduction

Since the implementation of the reform and opening-up policy in 1978, China has
experienced tremendous changes, especially in terms of urbanization development [1]. Ac-
cording to the China Statistical Yearbook (2021) issued by the National Bureau of Statistics,
the urbanization rate of China increased from 17.92% in 1978 to 63.89% in 2020 [2]. Based on
the United Nations’ report, the world’s population living in urban areas is expected to reach
66% in 2050 [3]. However, with the acceleration of urbanization, the population density has
also increased, which has caused excessive resource consumption [4]. Accordingly, several
problems have been observed, such as the deterioration of the eco-environment [5], degra-
dation of land quality [6], increased number of natural disaster cases [7] and a widening
economic development gap among different regions [8]. These problems have hindered the
realization of sustainable development goals [9]. In response to these problems, China’s
government promulgated the regional coordinated development strategy in 2017 [1]. How-
ever, due to the complexity of urbanization and eco-environment subsystems, the coupling
coordination relationship between them remains to be explored [10]. Hence, it is urgent to
investigate their relationship and spatiotemporal change trends.

The eco-environment is defined as “the total quantity and quality of water resources,
land resources, biological resources and climate resources that affect human survival
and development” and it represents a social–economic–natural compound system [11].
Evaluations of eco-environmental quality (EEQ) include the construction of an appropriate
index system based on certain standards and scientific evaluations of the regional EEQ [12].
At present, existing studies can be mainly divided into two types. The first mainly utilizes
statistical data to evaluate regional EEQ; for example, Fu systematically evaluated the EEQ
of China [13]. The second mainly applies remote sensing and other geospatial data to
assess regional EEQ; for example, He et al. developed a comprehensive evaluation index
to assess urban EEQ changes [14]. The urbanization level evaluation method can also be
divided into two types. The first mainly adopts several statistical datasets to evaluate a
city’s urbanization level; for example, Chen et al. selected 16 indicators from 4 aspects
(population, land, society and economy) to assess China’s urbanization level [15] and
Zang et al. also selected 16 indicators to evaluate the urbanization level of Jilin Province
from 4 aspects, population, economy, spatiality and society [16]. The second mainly
utilizes remote sensing data to assess the regional urbanization level; for example, Sun
et al. adopted nighttime images to evaluate urbanization processes between China and
India from 1992 to 2013 [17]. Numerous studies have been performed on the relationship
between urbanization and EEQ. For example, Sarkodie and Strezov conducted an empirical
study of the environmental Kuznets curve hypothesis (EKC) [18] and Li et al. explored the
coupling coordination degree (CCD) between urbanization and ecosystems [19]. Several
theories have also been proposed, such as the environmental Kuznets curve [20], urban
metabolism theory [21], footprint family theory [22], tele-coupling theory [23], planetary
boundaries theory [24], coupling coordination degree model (CCDM) [25], stochastic
impacts by regression on population, affluence and technology model [26] and multi-agent
model [27]. Among these theories, the EKC and CCDM have been widely used. The EKC
indicates that an inverted “U” shape occurs between per capita income and EEQ. Although
researchers have validated this hypothesis [28–30], other researchers have indicated that
this hypothesis was not supported in their studies because the EKC fails to consider the
interaction between urbanization and EEQ [31]. Compared with the EKC theory, the CCDM
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considers the interaction between two or more subsystems [32]. Coupling, originating
from physics, is a phenomenon in which two or more subsystems in a whole physical
system affect each other via miscellaneous interactions [33,34]. To date, the CCDM has
been widely applied in exploring the coupling relationships between different subsystems.
For example, Li assessed the coordinated development level of the economy, society and
environment subsystem in a city [35]; Xie et al. analysed the coordinated development of
the “resources-environment-ecology-economy-society” complex system in China [36]; and
Shen et al. assessed the CCD between carbon emissions and EEQ [37].

Previous studies on EEQ evaluation, urbanization level assessment and exploration
of their relationship have achieved fruitful results. However, certain limitations were
observed. (a) Existing studies have mainly utilized statistical data to evaluate regional EEQ
or urbanization level. Statistical data have the advantage of high authority; however, they
may also include incomplete statistical indicators and inconsistent statistical calibres and
may not be able to perceive spatial distributions. More importantly, statistical data can
only be acquired at the administrative level and data at the pixel level cannot be acquired.
Compared with statistical data, remote sensing data have the advantages of long time
series and wide spatial distributions. For example, Ji et al. utilized MODIS data and
constructed a remote sensing ecological index (RSEI) to assess the EEQ of the Jing–Jin–Ji
urban agglomeration [11,12] and Xu et al. combined multisource remote sensing data
to investigate the coupling mechanism between EEQ and urbanization [10]. (b) Existing
studies have mainly analysed their results at one scale and thus lacked multiscale analyses.
Scale effects are widely observed in geography; thus, it is important to investigate CCD
at various scales. (c) Existing studies on urbanization level assessments have mainly
focused on the economy and few have focused on economic development equality (EDE).
(d) Several researchers have misused the CCDM [38]. In addition, the CCDM has only
been used to calculate the geometric mean of the coupling degree and comprehensive
development level, which has failed to distinguish cases with different coupling degrees
and comprehensive development levels but the same CCD.

Therefore, in response to these shortcomings, this paper combined remote sensing
data and the RSEI to evaluate China’s EEQ. Next, nighttime light data and population
density data were utilized to calculate the proposed nighttime difference index (NTDI).
Then, a modified coupling coordination degree index was proposed to analyse the modified
coupling coordination degree (MCCD) between EDE and EEQ. Finally, spatiotemporal and
multiscale analyses at the county, city, province, urban agglomeration and country levels
were performed. Global and local spatial autocorrelation and trend analyses were also
performed to evaluate the spatial aggregation degree and change trend from 2001 to 2020.
This paper is organized as follows: the section Material and Methods describes the study
area and methods, which include the methods for calculating the RSEI, NTDI, MCCD,
global and local spatial autocorrelation and change trend; the section Results presents
the spatiotemporal distribution, spatial autocorrelation and change trend of the RSEI,
NTDI and MCCD at four scales; the section Discussion validates the RSEI, investigates
the relationship among the RSEI, NTDI and MCCD and presents the implications and
limitations of this study; the section Conclusion presents the main findings of this paper.

2. Materials and Methods
2.1. Study Area

China is located in east Asia (73◦29′~135◦20′E, 3◦31′~53◦33′N), covers approximately
9.6 million km2 (Figure 1) and includes 23 provinces, 5 autonomous regions, 4 municipalities
and 2 special administrative regions. China has diverse terrain, different climate types
and complex natural conditions [39]. In addition, China is one of the countries with the
richest biodiversity in the world [40]. Regarding the population and economy, China is the
most populous country and the second largest economy in the world, with approximately
1.4 billion people and 15.9 trillion dollars GDP in 2020. In this study, Hong Kong, Macao
and Taiwan were excluded and only mainland China and Hainan Province were analysed.



Remote Sens. 2022, 14, 737 4 of 23

Figure 1. Location of the study area.

2.2. Data Sources

In this study, multiple remote sensing datasets and administrative division data were
collected, which are shown in Table 1.

According to Table 1, the MOD09A1 product provides an estimate of the surface
spectral reflectance of Terra MODIS bands 1–7 at a 500 m resolution and corrected for
atmospheric conditions. The MOD11A2 product provides an average 8-day land-surface
temperature (LST) at a 1000 m resolution [11,12]. In addition, to exclude the phenology
effect [41,42], the data collection period was from 1 June to 31 August because Zhang
et al. found that the annual RSEI change trend was similar to the average RSEI value in
summer [43]. NPP-VIIRS-like nighttime light data were acquired from Chen’s study [44]
and they were produced through a new cross-sensor calibration method, having better
spatial resolution (500 m). WorldPop data were acquired from the WorldPop website.
WorldPop provides the yearly population density spatial distribution data at a resolution of
1000 m. Administrative division data provided the boundary of different levels in shapefile
format. In this study, the EEQ, EDE and MCCD of 31 provincial administrative regions,
366 cities, 2842 counties and 19 urban agglomerations were analysed.
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Table 1. Introduction of datasets.

Name Spatial and Temporal
Resolution Data Availability Brief Description

MOD09A1 500 m
8 days

https://lpdaac.usgs.gov/products/mod09a1v006/
accessed on 16 March 2021

A product of surface spectral
reflectance of MODIS bands 1–7

MOD11A2 1000 m
8 days

https://lpdaac.usgs.gov/products/mod11a2v006/
accessed on 19 March 2021 A product of land surface temperature

NPP-VIIRS-like
nighttime light data

500 m
yearly

https://doi.org/10.7910/DVN/YGIVCD
accessed on 19 March 2021

A nighttime dataset for measuring
regional economic development level

WorldPop 1000 m
yearly

https://www.worldpop.org
accessed on 23 March 2021

A dataset for measuring population
spatial distribution

Administrative
division data \ http://www.ngcc.cn/ngcc/html/1/index.html

accessed on 5 March 2021
A vector dataset for data clip and

spatial analysis

2.3. Data Methods

Figure 2 presents the framework of this study, which includes the following four parts:
(a) RSEI calculation; (b) NTDI calculation; (c) MCCD calculation; (d) spatiotemporal, spatial
autocorrelation, change trend and multiscale analyses. Among them, RSEI and NTDI
were performed at the country scale and then each region’s RSEI value was acquired by
calculating the average RSEI values of all grids in this region. Based on each region’s RSEI
and NTDI values, the MCCD was calculated. Sections 2.3.1–2.3.5 introduce the calculation
formulas in detail.

Figure 2. Framework of this study.

https://lpdaac.usgs.gov/products/mod09a1v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://doi.org/10.7910/DVN/YGIVCD
https://www.worldpop.org
http://www.ngcc.cn/ngcc/html/1/index.html
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2.3.1. Calculation of the RSEI

The RSEI was promoted by Xu in 2013 [45]. It consists of four subindicators, normal-
ized difference vegetation index (NDVI), wetness (WET), normalized difference build-up
and soil index (NDBSI) and LST. Equations (1)–(6) were used to acquire mainland China’s
RSEI in 2001, 2005, 2010, 2015 and 2020 [11]. All equations were calculated using the Google
Earth Engine platform and ArcGIS 10.6 software.

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

WET = 0.1084× ρred + 0.0912× ρnir + 0.5065× ρblue + 0.4040× ρgreen−
0.2410× ρmir1 − 0.4658× ρmir2 − 0.5306× ρmir3

(2)

NDSBI = 1
2

{
2×ρmir2

ρmir2+ρnir
− ρnir

ρnir+ρred
− ρgreen

ρgreen+ρmir2
2×ρmir2

ρmir2+ρnir
+

ρnir
ρnir+ρred

+
ρgreen

ρgreen+ρmir2

}
+

1
2

{
ρmir2+ρred−ρnir−ρblue
ρmir2+ρred+ρnir+ρblue

} (3)

RSEIorigin = 1− PC1{f(NDVI, WET, NDBSI, LST)} (4)

Xrescale = (Xi − Xmin)/(Xmax − Xmin) (5)

RSEI =
(
RSEIorigin_i − RSEImin

)
/(RSEImax − RSEImin) (6)

where ρ stands for the surface reflectance bands; blue, green, red, nir, mir1, mir2 and mir3
are the MODIS bands at 459–479 nm, 545–565 nm, 620–670 nm, 841–876 nm, 1230–1250 nm,
1628–1652 nm and 2105–2155 nm, respectively; PC1 represents the first component of the
spatial principal component analysis (SPCA); LST denotes the land-surface temperature
acquired from MOD11A2; Xrescale indicates the normalized result of each index; and RSEI
means the normalized result of the RSEIorgin.

2.3.2. Calculation of the NTDI

Traditional methods mainly utilize nighttime light data to evaluate a city’s urban-
ization level; however, nighttime light data cannot reflect the equality of different cities
because population density is not considered in these data. The Gini coefficient has been
widely applied to estimate income equality [46]. Equation (7) presents the Gini coefficient
calculation equation.

Gini =
(

1
2yu

)
1

n(n− 1)

n

∑
i

n

∑
j

∣∣∣yi − yj

∣∣∣ (7)

where yi and yj represent the per capita GDP for regions i and j, and yu indicates the mean
value of per capita GDP for n regions. The Gini coefficient ranges from 0 to 1 and a larger
value corresponds to a more equal distribution of GDP. Theoretically, Gini coefficients
of 1 and 0 represent absolute inequality and absolute equality, respectively. To allow the
highest value to represent the highest equality, NPP-VIIRS-like nighttime light data and
WorldPop data were combined and this paper proposes the NTDI. Equation (8) presents
the calculation formula.

NTDI = 1−
(

1
2NT

)
1

n(n− 1)

n

∑
i

n

∑
j

∣∣NTi −NTj
∣∣ (8)

where NTj and NTi represent the per capita nighttime light value for regions i and j, and
NT indicates the mean value of the per capita nighttime light value for n regions. The per
capita nighttime light value was obtained at the pixel level by dividing the light value by
the population density value.



Remote Sens. 2022, 14, 737 7 of 23

2.3.3. Calculation of the MCCD

The CCDM has been widely applied to analyse the coupling coordination degree.
Equations (9)–(11) present the calculation formulas.

C = 2×
{

U1 ×U2

(U1 + U2)
2

} 1
2

(9)

T = α×U1 + β×U2 (10)

D =
√

C× T (11)

where C represents the coupling degree; U1 and U2 represent two subsystems; T indicates
the comprehensive development level of U1 and U2; α and β represent the weights of U1
and U2, respectively; and α + β = 1. In this study, α and β were set as 0.5 and D denotes the
coupling coordination degree.

Although the CCDM considers the interaction of two or more subsystems, it only
calculates the geometric mean of C and T. However, it cannot differentiate cases with
different C and T but the same D, such as when C equals to 0.90, 0.30 and 0.10 and T equals
to 0.10, 0.30 and 0.90, but D equals to 0.30 in all cases. To solve this problem, this paper
proposes a modified coupling coordination degree (MCCD) index to calculate the MCCD
from the perspective of distance. Equation (12) presents the calculation formula.

MCCD =

√
2×C× T√
C2 + T2

(12)

where MCCD represent the modified coupling coordination degree and ranges from 0 to
1. In addition, a higher MCCD corresponds to a higher level of coupling coordination
degree between U1 and U2. In this study, U1 and U2 indicate the RSEI and NTDI values,
respectively.

2.3.4. Calculation of Spatial Autocorrelation

Spatial autocorrelation describes the correlation between a variable at a specific posi-
tion and its neighbouring position. A positive spatial correlation occurs when one observed
spatial value changes in the same direction as the surrounding values and a negative spatial
correlation occurs when these two values are inversely related. A random distribution
occurs when the observed values show randomness in spatial distribution, thus indicating
that the spatial correlation is not apparent. Spatial autocorrelation can be measured at the
global and local levels [12]. Equations (13)–(14) present the calculation methods.

Ig =

N∑
i

∑
j

wij(xi − µ)
(
xj − µ

)
(

∑
i

∑
j

wij

)
∑
i
(xi − µ)2

(13)

Il =
xi − µ

∑
i
(xi − µ)2 ∑

j
wij
(
xj − µ

)
(14)

where xi and xj represent the variable values at i and j; µ is the average value; wij is the
spatial weight function; and N is the number of sample pairs. In this paper, the inverse
distance method was adopted to conceptualize the spatial relationship, the Euclidean
distance was selected as the distance method, the number of permutations was set to 499
and the exponent was set to 1.
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2.3.5. Trend Analysis Method

In this study, a trend analysis was performed to quantitatively evaluate the change
trends of the RSEI, NTDI and MCCD. The principle of the trend analysis is to analyse
the change trend and intensity of a variable by performing a univariate linear regression
analysis. Among them, the slope of the regression equation represents the variable’s change
trend [47,48]. Compared with the Mann–Kendall trend test and Sen’s slope, the trend
analysis method has the advantage of simplicity and low sample size requirements [48]. In
this paper, only five periods were performed. For the Mann–Kendall trend test and Sen’s
slope methods, the sample size normally needs to be higher than 10 [49,50]. Equation (15)
presents the calculation formula.

θslope =

n×
n
∑

i=1
i×Ni −

n
∑

i=1
i

n
∑

i=1
Ni

n×
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (15)

where θslope indicates the change trend; n is the number of study periods and equals 5
in this study; Ni is the ith value of the RSEI, NTDI and MCCD. θslope > 0 represents an
increasing trend; and θslope ≤ 0 represents a decreasing trend.

3. Results
3.1. Spatiotemporal and Change Trends of the RSEI at Different Scales

The average RSEI values of China in the five periods were 0.5950, 0.6277, 0.6164, 0.6311
and 0.6173, which showed a fluctuating upwards trend with a change rate of 0.0048. This
finding indicates that the EEQ of China has improved over the past 20 years. Figure 3
displays the spatial distribution of the RSEI and its change trend from 2001 to 2020 at
different scales.

At the different scales, the spatial distribution of the RSEI was similar. Specifically, at
the county scale, the RSEI was higher in northeastern, central and southern China while
the RSEI was lower mainly in northwestern and north China. Over the past 20 years,
counties along the Yangtze River mainly showed a negative change rate, while counties in
Shanxi and Inner Mongolia mainly displayed a positive change rate. In addition, counties
in western Shandong, Chengdu and Yunnan also showed a negative change rate. In 2001,
6.68% and 2.28% of all counties belonged to the first and last grades, respectively, while, in
2020, 7.42% and 1.19% of all counties were in the first and last grades, respectively. In 2020,
counties in the first three grades increased while counties in the last two grades decreased
compared with 2001. At the city scale, higher RSEI values were mainly distributed in
northeastern, central and southern China and lower RSEI values were mostly observed
in northwestern China. Cities in Shanxi, Ningxia and Inner Mongolia had higher change
trends, indicating that their EEQ had improved. Chengdu, Meishan and cities along the
Yangtze River showed a downwards tendency from 2001 to 2020. Most cities of Xinjiang,
Qinghai and Guangdong also showed a positive trend but with a lower value. The highest
and lowest change trend values were 0.0389 and −0.0217, respectively, indicating that
the RSEI value of all cities did not drastically change. In 2001, 5.46% and 2.73% of cities
belonged to the first and last grades, respectively. Compared with 2001, the percentage of
cities belonging to these two grades in 2020 changed by 1.09% and −1.37%. At the province
scale, from 2001 to 2020, the RSEI values of Heilongjiang and Jilin belonged to the first grade
in five periods, while Xinjiang was always in the last grade. The RSEI of Shanxi improved
by two grades, thus showing an upwards trend. In addition, Inner Mongolia, Ningxia,
Shaanxi and Gansu also had a higher change trend, indicating that these provinces’ EEQ
had improved. However, the provinces of Jiangsu, Shanghai, Zhejiang, Hubei, Jiangxi and
Hunan displayed a downwards trend. From 2001 to 2020, the highest and lowest change
trend values were 0.0245 and −0.0127, respectively. At the urban agglomeration scale, in
2001, the three urban agglomerations including northern Tianshan, northern Ningxia and
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central Inner Mongolia belonged to the last grade, while, in 2020, the RSEI grade of the three
urban agglomerations improved. The Harbin–Changchun urban agglomeration was always
in the first grade. The Yangtze River Delta and central Changjiang urban agglomerations
showed a negative change trend. In addition, Shandong Peninsula, Chengdu Chongqing,
central Guizhou, central Yunnan and the west coast urban agglomerations also showed
negative values. Inner Mongolia and central Shanxi and Guanzhong urban agglomerations
had a higher change trend value and the highest and lowest change trend values from 2001
to 2020 were 0.0227 and −0.0109, respectively.

Figure 3. Spatial distribution and change trend of the RSEI from 2001 to 2020 at different scales.
(a–e), (g–k), (m–q) and (s–w) display spatial distribution of the RSEI at the county, city, province and
urban agglomeration scales, respectively. (f,l,r,x) are change trends of the RSEI at the four scales.

3.2. Spatiotemporal and Change Trends of the NTDI at Different Scales

The average NTDI values of China in the five periods were 0.1271, 0.1635, 0.1642,
0.2181 and 0.2490, with a change trend value of 0.0298. Compared with 2001, the average
NTDI value increased by 95.91% in 2020, indicating that the EDE improved gradually.
Figure 4 shows the spatial distribution and change trend of the NTDI from 2001 to 2020 at
different scales.
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Figure 4. Spatial distribution and change trend of the NTDI from 2001 to 2020 at different scales.
(a–e), (g–k), (m–q) and (s–w) display the spatial distribution of the NTDI at the county, city, province
and urban agglomeration scales, respectively. (f,l,r,x) show the change trend of the NTDI at the
four scales.

At the county scale, from 2001 to 2020, counties with higher NTDI values were mainly
distributed in Beijing, Tianjin, southern Jiangsu, northern Zhejiang, Shanghai and the Pearl
River Delta. Other counties with higher NTDI values were sporadically located in the main
districts of cities with better economies, for example, provincial capital. In 2001, 75.22% and
4.43% of counties belonged to the last and the first two grades, respectively, while, in 2020,
40.46% and 10.69% of counties belonged to these grades, respectively. In addition, 34.76%
of the counties’ grades had improved. The eastern coastal counties showed a positive
change trend with higher values, while northeastern, northwestern and western Sichuan
and Xizang had lower change values. Specifically, 90.57% of counties had a positive change
value, indicating that most counties’ economic development equality had narrowed. At the
city scale, over the past 20 years, cities with higher NTDI values were mainly distributed
in the eastern coastal region, while cities with lower NTDI values were mostly located
in northwestern and southwestern China. In 2001, 2.45% of all cities belonged to the
first two grades, while 66.39% of all cities belonged to the last grade. In 2020, 14.21% of
all cities belonged to the first two grades, while 19.12% of all cities belonged to the last
grade. Cities with higher change trend values were mainly distributed in southern Jiangsu,
central Shandong, eastern Henan, northern Zhejiang, eastern Fujian, eastern Sichuan and
western Guangdong. Cities with lower change trend values were mainly located in Xizang,
northwestern Xinjiang, northern Inner Mongolia and northeastern China. Generally, 96.45%
of cities showed a positive change trend. At the province scale, Beijing, Tianjin and
Shanghai always belonged to the first grade, while Xizang always belonged to the last
grade. In 2001, all remaining provinces except Beijing, Tianjin and Shanghai belonged to
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the last two grades. In 2020, only half of the provinces belonged to the last two grades and
seven provinces’ NTDI belonged to the top two grades. For the NTDI change trend, the
NTDI of all provinces displayed a positive value. Specifically, Hebei, Shandong, Jiangsu,
Zhejiang, Fujian, Guangdong and Hainan had higher change values, followed by Ningxia,
Shaanxi, Sichuan, Guizhou, Guangxi, Henan and Anhui, while Xizang, Inner Mongolia,
Heilongjiang and Jilin had lower change values. Beijing and Tianjin had relatively low
change values, although both cities belonged to the top two grades in all periods. At the
urban agglomeration scale, from 2001 to 2020, the NTDI values of urban agglomerations
along the coastal region, including Beijing–Tianjin–Hebei, Shandong Peninsula, Yangtze
River Delta, west Coast and Pearl River Delta, were substantially improved. In 2001, all
urban agglomerations belonged to the last three grades, while, in 2020, more than half
of the urban agglomerations belonged to the top two grades. All urban agglomerations
displayed an upwards change trend. Specifically, the Shandong Peninsula, Yangtze River
Delta and west Coast urban agglomerations had a higher trend value, followed by the
Beijing–Tianjin–Hebei, central plain, northern Ningxia, Pearl River Delta, southern Guangxi,
Chengdu–Chongqing and central Guizhou urban agglomerations, while the central Inner
Mongolia, Harbin–Changchun and northern Tianshan urban agglomerations had a lower
trend value.

3.3. Spatiotemporal and Change Trends of the MCCD at Different Scales

The average MCCD values of China in the five periods were 0.4614, 0.5027, 0.4978,
0.5401 and 0.5525, with a change trend value of 0.0220. Compared with 2001, the average
MCCD value increased by 19.74% in 2020, indicating that the coupling coordination rela-
tionship between EDE and EEQ has improved over the past 20 years. Figure 5 shows the
spatial distribution and change trend of the MCCD from 2001 to 2020 at different scales.

At the county scale, over the past 20 years, eastern coastal counties had a higher
MCCD value. In addition, counties in Liaodong Peninsula, central Shanxi, northern Henan,
main urban areas of Chengdu, Chongqing and other provincial capital cities also showed
a higher MCCD. In 2001, 28.85% and 25.12% of all counties belonged to the top two and
last two grades, respectively. In 2020, 69.59% and 5.38% of all counties were in the top
two and last two grades, respectively. Compared with 2001, counties in the top two
grades increased by 40.74% in 2020. A total of 91.91% of all counties showed a positive
change trend value, indicating that the MCCD between EDE and EEQ had improved.
However, counties with a negative trend value were mainly distributed in northeastern
Heilongjiang and sporadically distributed in other areas. Furthermore, counties with a
higher trend value were mainly distributed in central Guizhou, western Hunan, western
Sichuan, southern Qinghai, southern Gansu, southern Shaanxi, eastern Fujian, northeastern
Guangdong and southern Xizang. At the city scale, eastern coastal cities displayed a higher
MCCD value, for example, Beijing, Tianjin, Shanghai, southern Jiangsu, northern Zhejiang,
eastern Fujian and eastern Guangdong. Cities with a lower MCCD value were mainly
distributed in Xinjiang, northwestern Gansu, northwestern Inner Mongolia and western
Xizang. In 2001, 27.59% and 24.31% of all cities belonged to the top two and last two
grades, respectively. In 2020, 73.22% and 5.19% of all cities belonged to the top two and last
two grades, respectively. Compared with 2001, cities in the top two grades increased by
45.63%, while cities in the last two grades decreased by 19.12% in 2020. A total of 97.54% of
cities displayed a positive change trend. Cities with a negative change trend were Hegang,
Daxinganling, Yichun, Baishan, Tonghua, Changchun, Shihezi, Hulunbuir and Urumqi.
At the province scale, Beijing and Shanghai always belonged to the first grade. Xizang
and Xinjiang were always in the last two grades. In 2001, eleven and eight provinces
belonged to the last two and top two grades, respectively. In 2020, two and twenty-three
provinces belonged to the last two and top two grades, respectively. The eastern coastal
provinces had a higher MCCD grade, followed by the northeastern and central provinces.
Inner Mongolia, Yunnan and western China’s provinces had a lower MCCD grade. All
provinces displayed a positive change trend value. Specifically, Xinjiang, Inner Mongolia,
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Heilongjiang, Jilin, Liaoning, Beijing, Tianjin and Shanghai had lower change trend values,
while Shaanxi, Shanxi, Ningxia, Sichuan, Guizhou, Hainan, Guangdong, Zhejiang and
Fujian had higher change trend values, followed by Gansu, Hebei, Shandong, Henan
and Guangxi. At the urban agglomeration scale, in 2001, the four urban agglomerations
northern Tianshan, northern Ningxia, central Guizhou and central Inner Mongolia were
in the last grade and three urban agglomerations belonged to the second grade. In 2020,
seven urban agglomerations, almost all along the coastal area, were in the first grade
and only two urban agglomerations belonged to the last two grades—northern Tianshan
and central Inner Mongolia. All urban agglomerations displayed a positive change trend.
Specifically, the northern Tianshan, Harbin–Changchun and Liaodong Peninsula urban
agglomerations had a lower trend value, while the Guanzhong, northern Ningxia, central
Guizhou and west Coast urban agglomerations had a higher trend value, followed by the
Pearl River Delta, Shandong Peninsula, central Plain, central Shanxi, southern Guangxi
and Chengdu–Chongqing urban agglomerations.

Figure 5. Spatial distribution and change trend of the MCCD from 2001 to 2020 at different scales.
(a–e), (g–k), (m–q) and (s–w) display the spatial distribution of the MCCD at the county, city, province
and urban agglomeration scales, respectively. (f,l,r,x) show the change trend of the MCCD at
four scales.

3.4. Spatial Autocorrelation Analysis of the RSEI, NTDI and MCCD at Different Scales

Table 2 shows the global Moran’s I value at different scales.
The global Moran’s I value varied with the scale and index. Specifically, for the RSEI,

the average global Moran’s I values at the four scales were 0.2663, 0.2865, 0.0864 and 0.0660.
This indicates that the RSEI showed a higher spatial agglomeration effect at the city scale
but a lower spatial agglomeration effect at the province and urban agglomeration scales. In
summary, the global Moran’s I value of the RSEI displayed an inverted “U” shape as the
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scale increased. For the NTDI, the average global Moran’s I value represented an upwards
shape, indicating that the spatial agglomeration effect decreased as the scale increased. For
the MCCD, a similar change trend of the average Moran’s I value was found. The global
Moran’s I value of the RSEI showed an upward-shaped change trend, while the NTDI and
MCCD displayed an inverted “U” shape. The NTDI and MCCD showed a higher spatial
agglomeration effect at the city level. In addition, the RSEI change trend at the county scale
displayed a strong spatial agglomeration effect, with a global Moran’s I value of 0.6189.

Table 2. Global Moran’s I value at different scales.

Global Moran’s I Value 2001 2005 2010 2015 2020 Change
Trend

County Scale
RSEI 0.2957 0.2777 0.2455 0.2668 0.2459 0.6189
NTDI 0.3647 0.3693 0.4168 0.4066 0.4474 0.2326

MCCD 0.3197 0.3037 0.3285 0.2950 0.3298 0.1993

City Scale
RSEI 0.3228 0.3092 0.2795 0.2763 0.2448 0.5559
NTDI 0.2776 0.3031 0.3129 0.3449 0.3863 0.3550

MCCD 0.2889 0.3038 0.2977 0.3179 0.3446 0.2725

Province Scale
RSEI 0.1392 0.0817 0.0675 0.0916 0.0522 0.2817
NTDI 0.2504 0.2797 0.2809 0.2462 0.3320 0.1049

MCCD 0.2626 0.2953 0.2851 0.2161 0.2755 0.0709

Urban
Agglomeration

Scale

RSEI 0.1460 0.0827 0.0575 0.0420 0.0020 0.1690
NTDI 0.0795 0.0821 0.0622 0.0483 0.0756 0.0831

MCCD 0.1546 0.1461 0.1285 0.1215 0.1128 0.0627

Figure 6 shows the global Moran’s I value change trend from 2001 to 2020 at the county
scale. The global Moran’s I value of the RSEI displayed a downwards trend, while the
NTDI showed an upwards trend. For the MCCD, it displayed a fluctuating upwards trend.
Generally, the spatial agglomeration effect of the RSEI decreased from 2001 to 2020, while
that of the NTDI and MCCD increased. In particular, the spatial agglomeration effect of the
NTDI greatly increased, with the global Moran’s I value increasing by 22.68%.

Figure 6. Global Moran’s I value change trend from 2001 to 2020 at the county scale.
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Figure 7 shows the local Moran’s I spatial distribution of the RSEI, NTDI and MCCD
from 2001 to 2020 at the county scale. For the RSEI, from 2001 to 2020, the high–high
cluster type was mainly distributed in northeastern and central China, while the low–low
cluster type was mainly distributed in northwestern China, southwestern Xizang and
Inner Mongolia. Compared with 2001, the low–low cluster type expanded in Jiangsu,
Henan and Hebei, while the high–high cluster type shrank in Hubei, Yunnan, Guangxi
and Guizhou in 2020. These counties are mainly located in eastern and central China. For
the NTDI, over the past 20 years, high–high cluster counties were mainly observed in
eastern China, including the Yangtze River Delta, west Coast, Pearl River Delta, Shandong
Peninsula, Beijing–Tianjin–Hebei and central plain. However, the low–low cluster type
was mainly located in central China, Xizang, western Xinjiang, Qinghai, Shaanxi, Gansu
and northeastern Inner Mongolia and Heilongjiang. Among them, northeastern Inner
Mongolia and Heilongjiang were newly expanded areas, indicating that these regions’
NTDI values were lower. Furthermore, the low–low cluster type decreased in the Chengdu–
Chongqing urban agglomeration. As one of five large urban agglomerations of China,
Chengdu–Chongqing presented a gradually improved EDE over the past 20 years. For the
MCCD, from 2001 to 2020, the high–high cluster type was mainly in eastern China and
central Henan, while the low–low cluster type was mainly distributed in western China,
Inner Mongolia and central China. Generally, compared with 2001, the high–high cluster
type in northeastern China decreased, while the low–low cluster type in the Chengdu–
Chongqing urban agglomeration, Hubei, Hunan, Shannxi, Guangxi and Jiangxi decreased
in 2020. Furthermore, Hainan was a newly expanded region with a high–high cluster type.
For the change trend of the RSEI, the high–high cluster type was mainly distributed in
Gansu, Ningxia, Shannxi, Shanxi, Inner Mongolia and Guangdong, while the low–low
cluster type was mainly distributed in these regions along the Yangtze River, Chengdu and
Yunnan. Regarding the change trend of the NTDI, the high–high cluster type was mainly
distributed in the eastern coastal areas and Chengdu, while the low–low cluster type was
mainly distributed in Xizang, Qinghai, Xinjiang and northeastern China. Regarding the
change trend of the MCCD, the high–high cluster type was mainly observed in Sichuan,
Chongqing, Guizhou, Guangxi, southern Shaanxi and eastern Xizang, while the low–low
cluster type was mainly distributed in northern Xinjiang, northern Inner Mongolia and
northeastern China.
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Figure 7. Local Moran’s I spatial distribution of the RSEI, NTDI and MCCD from 2001 to 2020 at the
county scale. (a–c) display the LISA result of RSEI in 2001, 2010 and 2020. (e–g) display the LISA
result of NTDI in 2001, 2010 and 2020. (i–k) display the LISA result of MCCD in 2001, 2010 and 2020.
(d,h,l) indicate local Moran’s I change trends of three indices.

4. Discussion
4.1. Spatial Principal Component Analysis of the RSEI and Its Validation

Based on the aforementioned analysis, an SPCA of the RSEI was performed; then,
ecological index (EI) data of Guangdong Province in 2010, 2015 and 2019 were collected.
Next, the relationship between the EI and RSEI data was investigated.

Table 3 shows the SPCA results for the RSEI from 2001 to 2020. According to Table 3,
all four indicators had a stable positive or negative symbol. The eigenvalues of the four
indicators in different years all showed relatively high values. In all years, the NDVI and
WET had a positive effect on the regional EEQ, while the NDBSI and LST had a negative
effect. These results are consistent with numerous previous studies. For example, Yuan
et al. found that the loadings of the NDVI and WET were all positive, while the loadings of
the NDBSI and LST were negative [51]; Gao et al. also showed that the load values of the
NDVI and WET were positive, while the load values of NDBSI and LST were negative [52];
and Xiong et al. found that the loadings of the NDVI and WET were positive, while the
loadings of NDBSI and LST were negative in the Erhai Lake Basin [53]. Generally, different
studies reached the same results regarding the loading effect of the four indicators; however,
regarding the contribution percentage of PC1, the results have varied. In general, the range
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of PC1’s contribution rate was higher than 60% [51–55]. In this study, the contributions
percentage of the five periods were 66.26% (2001), 63.57% (2005), 63.89% (2010), 65.79%
(2015) and 65.69% (2020). Similar to previous studies, PC1 aggregated the most information
of the four indicators with an average contribution percentage of 65.04%. To further validate
the results of the RSEI, a comparison between the RSEI and EI was conducted. The EI was
promulgated by the Ministry of Environmental Protection, China in 2015 [56]. However,
calculating the EI is complicated. Therefore, due to EI data accessibility, the EI values of
Guangdong Province in 2010, 2015 and 2019 were utilized for validation. Among them, the EI
value of 2019 was used to perform a correlation analysis with the RSEI in 2020. Figure 8 shows
the relationship between the EI and RSEI of Guangdong Province in 2010, 2015 and 2020.

Table 3. Spatial principal component analysis of the RSEI from 2001 to 2020.

Eigenvalue
PC1 PC2 PC3 PC4

NDVI WET NDBSI LST NDVI WET NDBSI LST NDVI WET NDBSI LST NDVI WET NDBSI LST

2001 0.73 0.23 −0.39 −0.50 0.58 −0.31 −0.04 0.74 −0.18 0.76 −0.43 0.44 0.29 0.51 0.81 0.03
2005 0.73 0.24 −0.40 −0.49 0.58 −0.33 −0.03 0.73 −0.17 0.76 −0.41 0.45 0.30 0.49 0.81 0.02
2010 0.75 0.22 −0.41 −0.45 0.55 −0.35 −0.01 0.75 −0.17 0.75 −0.41 0.47 0.31 0.50 0.80 0.02
2015 0.71 0.21 −0.40 −0.52 0.59 −0.29 −0.07 0.74 −0.18 0.77 −0.44 0.41 0.31 0.51 0.79 0.03
2020 0.67 0.25 −0.42 −0.54 0.61 −0.27 −0.13 0.72 −0.23 0.77 −0.42 0.40 0.34 0.51 0.78 0.04

Figure 8. Relationship between the EI and RSEI of Guangdong Province in 2010, 2015 and 2020.

According to Figure 8, in 2010, 2015 and 2020, the R2 values in the three periods
were 0.4335, 0.7987 and 0.9089, with an average R2 of 0.7137. This finding indicates that
the EI was strongly correlated with the RSEI. Existing studies have also validated the
effectiveness of the RSEI at a large scale. For example, Ji et al. selected the Jing–Jin–Ji
urban agglomeration as the study area to compare the RSEI and EI values at the urban
agglomeration scale and found that the RSEI and EI displayed the same change trend [11].
Xu et al. chose Fujian Province as the study area to explore the relationship between the
RSEI and EI and found that the RSEI was comparable to the EI at either the index value or
grade [56]. Shan et al. compared the RSEI and EI of well-facilitated farmland and found that
the index values were similar [57]. However, Xu et al. found that the RSEI was significantly
underestimated based on the bias value and concluded that the traditional RSEI was not
applicable at a large scale [10]. In general, similar to numerous previous studies, the RSEI
and EI were comparable. In addition, four indicators of the RSEI were directly derived from
remote sensing images, which was more convenient and efficient [42]. However, as for
the inapplicability of RSEI at large scale, He et al. chose the RSEI to evaluate and validate
China’s EEQ [39] and they found that areas with a decreasing trend were mainly in the
Yangtze River Delta, central northern China Plain and central Xizang, which is consistent
with this study. Hence, although differences can be observed among previous studies, the
result of the SPCA and the comparison between the RSEI and EI indicate the feasibility of
evaluating China’s EEQ based on the RSEI.
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4.2. Relationship among the RSEI, NTDI and MCCD

To explore the relationship among the RSEI, NTDI and MCCD, data for all years were
used to draw a three-dimensional diagram at different scales using Unscrambler X 10.4
software (Figure 9). Specifically, the number of samples at different scales was as follows:
14,210 (county), 1830 (city), 155 (province) and 95 (urban agglomeration).

Figure 9. Three-dimensional diagrams of the RSEI, NTDI and MCCD at different scales.

Based on Figure 9, the relationship among the RSEI, NTDI and MCCD seemed to show
a saddle-shape distribution. To explore any two sets of relationships, scatter plots of the
RSEI, NTDI and MCCD at four scales were drawn (Figure 10).

Based on Figure 10, the relationship of the RSEI and NTDI at different scales seemed to
be negative, the relationship of the RSEI and MCCD did not show a correlation distribution,
while the relationship of the NTDI and MCCD displayed a power function distribution. To
explore the relationship of the RSEI, NTDI and MCCD, a multiple linear regression was
performed at different scales. Fitting formulas were acquired and are displayed in Table 4.

Based on Table 4, the coefficients of RSEI and NTDI were all positive, indicating that
improving the RSEI or NTDI would promote a region’s MCCD. However, compared with
the RSEI, the NTDI had a higher contribution. For example, at the county scale, when
a region’s NTDI increased by one unit, the MCCD would increase by 0.7831; however,
when a region’s RSEI increased by one unit, the MCCD would only increase by 0.4521.
In addition, the adjusted R2 showed an upwards tendency as the scale increased. To test
the model accuracy, a scatter plot between the original and predicted MCCD was drawn
(Figure 11).

Table 4. Fitting formulas of the RSEI, NTDI and MCCD at different scales.

Scale Fitting Formula Adjusted R2

County MCCD = 0.0473 + 0.4521 × RSEI + 0.7831 × NTDI 0.8183
City MCCD = 0.0710 + 0.4574 × RSEI + 0.7576 × NTDI 0.9156

Province MCCD = 0.0682 + 0.5053 × RSEI + 0.6441 × NTDI 0.9732
Urban agglomeration MCCD = 0.1022 + 0.4595 × RSEI + 0.6561 × NTDI 0.9915

Based on Figure 11, the original and predicted MCCD at four scales showed a good
relationship with R2 values of 0.8183 (county), 0.9275 (city), 0.9732 (province) and 0.9915
(urban agglomeration). However, at the county and city scales, the predicted MCCD would
be overestimated when the original MCCD was too low or too high. Generally, the fitting
formula could well predict the MCCD when the original MCCD value was in the mid-
range. Previous studies have explored the relationship of urbanization rate, EEQ and CCD.
Specifically, Xu et al. explored the relationship between urbanization rate and CCD and
found that they showed an inverted “U” shape; however, critical values for numerous cities
were not observed until the urbanization rate exceeded 100% [10]. However, the highest
value of urbanization rate was 100%. Hence, although there was a difference between
the NTDI and Xu’s urbanization rate evaluation methods, the power function could well
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demonstrate the relationship for both approaches [10]. Fang et al. did not identify a stable
functional relationship between the urbanization rate and EEQ at the urban agglomeration
scale [58]. These results indicate that the relationship between urbanization and EEQ
depended on the specific study area, which is consistent with this paper’s results. In this
study, although a weak negative correlation coefficient was observed between the NTDI
and RSEI, these indices could not be fitted by any function. In addition, the power function
relationship between the NTDI and MCCD was further confirmed. Moreover, this paper
found that the RSEI and NTDI had a positive effect on the regional MCCD at different
scales; however, the NTDI had a higher contribution.

Figure 10. Scatter plots of any two sets of the RSEI, NTDI and MCCD at different scales.

Figure 11. Scatter plot between the original and predicted MCCD at different scales.
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4.3. Implications, Limitations and Further Research

This study aims to explore the relationship of the RSEI, NTDI and MCCD. Based on the
RSEI results, northeastern and southern China mainly had higher EEQ, while Xinjiang and
Qinghai had lower EEQ. This finding is consistent with the vegetation coverage distribution
of China. According to statistical bulletins on the national economic and social development
of each province in 2021 [2], there were fifteen provinces with a forest coverage rate greater
than 40%. In addition, Beijing, Shaanxi, Heilongjiang and Jilin were located in the northern
China, while the remaining eleven provinces were located in the south. Based on the
Qinling Mountains–Huaihe River line, mainland China was divided into south and north.
The average RSEI value of southern China in all periods was 0.6974, which was higher than
that of northern China (0.6654). The difference was not large, because the summer season
was chosen to calculate the RSEI. This difference would be larger in winter because the
vegetation type in the north is mainly deciduous forest. Generally, southern China had
better EEQ than northern China. For the change trend, regions along the Yangtze River
and part of Chengdu had a negative value. Generally, the economic development level of
regions along the Yangtze River was relatively good compared with that in other regions of
in China. However, these regions consumed higher energy, which exerted considerable
pressure on the regional eco-environment. In addition, the Chengdu Plain, as an important
economic centre in southeastern China, consumed considerable energy. Ningxia, Shanxi,
Shaanxi, Gansu and Inner Mongolia had positive trend values, which is mainly due to
the implementation of the “Three-North Shelter Forest Program” [11]. Since this program
was launched in 1978, forestland increased by 30.14 million hectares. For Ningxia, Shanxi,
Shaanxi, Gansu and Inner Mongolia, the total forestland areas were 1.67 million hectares
by 2020 [2]. In addition, combined with He’s study, the RSEI value of Shanxi increased
considerably, while that of Shanghai decreased considerably [39], which further validates
this paper’s results.

For the NTDI, over the past 20 years, coastal provinces, including Jiangsu, Shanghai,
Zhejiang, Fujian, Guangdong, Beijing and Tianjin, showed considerably increased values.
Based on the NTDI-change-trend spatial distribution map, almost all coastal provinces
had the highest change trend value, followed by central China and northeastern and
northwestern China. In addition, the average NTDI values of the whole country in the five
periods were 0.1271, 0.1635, 0.1642, 0.2181 and 0.2490, indicating that the EDE of China
narrowed. Based on the statistical yearbook of each province, the coefficient of variation
of China’s urbanization rate in the five periods was 0.3794 (2001), 0.3269 (2005), 0.2940
(2010), 0.2202 (2015) and 0.1707 (2020), indicating that the EDE of China had narrowed,
which further validates this paper’s results [2]. In view of the highest NTDI change trend
value of Zhejiang Province, each city’s urbanization rate in the five periods was determined.
The coefficients of variation in the five periods were 0.2179 (2001), 0.1784 (2005), 0.1505
(2010), 0.1109 (2015) and 0.1074 (2020). Over the past 20 years, the coefficient of variation
decreased by 50.71%, which is consistent with this paper’s findings. Regarding the MCCD,
the coupling coordination degree between EEQ and EDE, based on Figure 5, the MCCD
of China at the province scale in 2020 displayed a stepped distribution. The MCCD grade
almost decreased from the east to west. Coastal provinces had a higher MCCD, followed by
the central, northeastern and southern provinces. Northern and western provinces had a
lower MCCD. Combined with the RSEI, although regions along the Yangtze River showed
a negative change trend, these regions had a higher MCCD because of their higher NTDI.
The aforementioned analysis showed that the NTDI had a higher contribution to improving
the MCCD than the RSEI at different scales. Generally, this finding provides important
guidance for government policy making.

Despite these implications, this study still has some limitations that need to be further
explored. (a) The scientific evaluations of regional EEQ include numerous aspects. The
RSEI only considers four main aspects, greenness, wetness, dryness and heat. However,
other aspects, such as air quality or land-use intensity also play an important role in EEQ
assessments. The RSEI has its own shortcomings and it cannot fully cover and capture
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the eco-environmental situation. For example, shrub invasion might be accompanied by
an increase in greenness; however, the RSEI could not distinguish the greening caused
by eco-environmental degradation from the greening caused by eco-environmental im-
provement [39]. In addition, water needs to be masked before performing the SPCA to
exclude its influence on the final evaluation result [57]. However, water resources, as
important ecological resources, play a key role in climate regulation, vegetation irrigation,
the terrestrial water cycle and ecosystem balance [59]. Therefore, methods considering
the eco-environmental function of water need to be explored in the future. (b) This paper
only explores the relationship among the RSEI, NTDI and MCCD. However, accurately
predicting the future coupling coordination degree is more important. Therefore, com-
bining dynamic models or other methods to scientifically predict the MCCD remains to
be investigated.

5. Conclusions

This study utilized multisource remote sensing datasets to evaluate the RSEI, NTDI
and MCCD at multiple scales from 2001 to 2020. The main conclusions are as follows:
(1) China’s EEQ showed a fluctuating upwards trend (0.0048 a−1), with average RSEI
values of 0.5950, 0.6277, 0.6164, 0.6311 and 0.6173; China’s EDE displayed an upwards
trend (0.0298 a−1), with average NTDI values of 0.1271, 0.1635, 0.1642, 0.2181 and 0.2490;
and China’s MCCD represented an upwards trend (0.0220 a−1), with values of 0.4614,
0.5027, 0.4978, 0.5401 and 0.5525. (2) From 2001 to 2020, the EEQ of the Yangtze River Delta,
Shandong Peninsula and Chengdu Plain mainly showed a negative change rate, while that
of Shanxi Province mainly displayed a positive change rate. The EDE of most counties in
China (90.57%) improved, with the eastern coastal counties displaying a positive NTDI
change trend and northeastern, northwestern and western Sichuan and Xizang mainly
displaying a lower one. In addition, 91.91% of China counties showed a positive change
trend, with northeastern Heilongjiang presenting a lower MCCD change trend and central
Guizhou, western Hunan, western Sichuan, southern Qinghai, southern Gansu, southern
Shaanxi, eastern Fujian, northeastern Guangdong and southern Xizang presenting a higher
one. (3) The global Moran’s I values of the NTDI and MCCD were the highest at the city
scale, while the RSEI was the highest at the county scale. From 2001 to 2020, the spatial
agglomeration effect of the RSEI decreased, while that of the NTDI and MCCD increased.
(4) A power function relationship was observed between the NTDI and MCCD at different
scales. In addition, the NTDI had a higher contribution to improving the MCCD than
the RSEI.
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Abbreviations

CCD coupling coordination degree A measure of coupling coordination level between systems
CCDM coupling coordination degree model A model for calculating the coupling coordination degree
EDE economic development equality A measure of regional economic development equality
EEQ eco-environmental quality A measure of regional eco-environmental quality
EI ecological index An index for describing ecological quality
EKC environmental Kuznets curve A hypothesis between environment and per capita income
GDP gross domestic product A measure of regional economic level
MCCD modified coupling coordination degree A modified index for describing the coupling coordination level
NDBSI normalized difference build-up and soil index An index for describing regional eco-environmental dryness
NDVI normalized difference vegetation index An index for describing regional eco-environmental greenness
NTDI nighttime difference index An index for describing economic development equality
RSEI remote sensing ecological index An index for describing eco-environmental quality
SPCA spatial principal component analysis A multivariate statistical analysis method
LST land-surface temperature An index for describing regional eco-environmental heat
WET wetness An index for describing regional eco-environmental wetness
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