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Abstract: The monitoring of species and functional diversity is of increasing relevance for the de-
velopment of strategies for the conservation and management of biodiversity. Therefore, reliable
estimates of the performance of monitoring techniques across taxa become important. Using a unique
dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vege-
tation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro.
To disentangle the structural LiDAR information from co-factors related to elevational vegetation
zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and
4 feeding guilds were modeled and the standardized study design allowed for a comparison across
the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by
elevation with normalized RMSE values but only for three of those taxa and two of those feeding
guilds the difference to other models is significant. Generally, modeling performances between
different models vary only slightly for each assemblage. For the remaining, structural information at
most showed little additional contribution to the performance. In summary, LiDAR observations
can be used for animal species prediction. However, the effort and cost of aerial surveys are not
always in proportion with the prediction quality, especially when the species distribution follows
zonal patterns, and elevation information yields similar results.

Keywords: biodiversity; species richness; LiDAR; elevation; partial least square regression; arthro-
pods; birds; bats; predictive modeling

1. Introduction

We are facing a decrease of global biodiversity [1,2] and the rate of this loss is accel-
erating with ongoing climate change [3] as well as the rapid transformation of natural
habitats by human landuse [4]. To mitigate the effects of this biodiversity loss on the
functionality of ecosystems [5–7], monitoring of species and functional diversity is an
important prerequisite for focused management strategies [8–10]. To facilitate a unified
monitoring system, a set of essential biodiversity variables (EBVs) were developed during
the last years, e.g., [11–13]. However, gathering those variables during field campaigns is
only possible in a number of limited situations, as area-wide coverage is unfeasible due to
high costs as well as the lack of experts. This is particularly true for surveys across large
areas with a steep elevation gradient, as complex terrain hinders accessibility [14].

Facing this challenge of comprehensive mappings of EBVs [15,16], Pettorelli et al. [17]
proposed a subset of the EBVs that could potentially be surveyed using satellite remote
sensing. Some of these remote sensing based EBVs already meet reasonable quality require-
ments (e.g., land cover, leaf area index or phenology), others like species occurrences or
taxonomic diversity require further research. The retrieval of the latter is often based on
correlations between land-cover properties and information on taxonomic richness from
field studies that is used to build remote sensing models [18–22]. Multispectral or hyper-
spectral retrievals primarily rely on compositional information (e.g., [23–26], reviewed
in [27]). LiDAR retrievals utilize information on the vertical structure of the ecosystem,
e.g., [28,29] and seem to be particularly successful for flying organisms [30–39], although
the biological background of this observation is poorly understood.

To advance the application of species richness related EBVs from remote sensing,
performance must be compared across many taxa. While meta-analyses across different
case studies allow some conclusions, the individual study design, different computations
of error estimates and the uniqueness of the study regions make it difficult to actually
compare the results regarding the model performance for different taxa. This becomes
even more challenging if the study has been conducted in mountainous terrain, which is
common for ecological space-for-time approaches as global biodiversity hotspots often tend
to be in mountainous areas [40]. Here, elevational change of the land cover in combination
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with a fixed amount of work force generally limits the number of ground samples that
can be collected within one land cover zone. These individual limitations in training and
testing datasets lead to a variety of testing approaches with varying degrees of reliability
and comparability of error estimates.

This study analyzes the predictive performance of airborne LiDAR-derived variables
for mapping the species richness of 17 taxonomic groups from four feeding guilds in a
comprehensive manner. The study area is located at the southern slopes of Kilimanjaro
(Figure 1) and field observations stretch from an elevation of 800 to 4400 m. Since the
taxonomic assemblages cannot be directly observed using LiDAR, vegetation structure is
used as a surrogate for species richness. It is assumed that the taxa or the aggregated feeding
guilds can be predicted differently well by LiDAR data. For example, the ”plant diversity
hypothesis”, links consumer richness (especially herbivores) to plant diversity [41–43].
Therefore, it is expected that the performances of structural models decline from herbivores
to predators [14,44], as the distance of their position in the food chain to plants increases.
Furthermore, as structural properties, at scales accessible for remote sensing, tend to be
more relevant for animals with larger body-sizes [45–48], it is expected that the performance
of species richness models increases with increasing body size. Similar consideration of
correlation between structure and species traits apply for flying taxa that perceive the
landscape with a grain not as detailed as walking taxa (environmental grain hypothesis,
e.g., Kaspari and Weiser [49], Sarty et al. [50]). The unique dataset also allows for critically
evaluating whether LiDAR-derived information brings any gain at all compared to models
that rely solely on the known decrease of species richness with elevation or elevation
correlated environmental properties [43]. This study investigates the potential of LiDAR-
derived variables characterizing vegetation structure as predictors for animal species
richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR
information from co-factors related to elevational vegetation zones, LiDAR-based models
were compared to the predictive power of elevation models.

Land-cover type:
maize plantation
savanna
coffee plantation
home garden
grassland
lower mountain forest
ocotea forest
ocotea forest (disturbed)
podocarpus forest
podocarpus forest (disturbed)
erica forest
helichrysum vegetation
Flight 2015
Flight 2016

Basemap: Google Earth

Figure 1. Study area with sampling plots. Colors of symbols show different land covers, shapes show
the different flight missions from 2015 and 2016. The background image indicates the large-scale
vegetation zones along the elevational gradient (background: Google Maps [51]).
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2. Materials and Methods
2.1. Study Area and Sampling Design

The study area is the southern slopes of Mount Kilimanjaro. In the framework of a
comprehensive research unit, study plots of 50 m × 50 m were established across 12 land
cover zones with five replica plots per zone. The 60 plots describe two ecological gradients:
an elevational gradient from 800 m a.s.l. to 4400 m a.s.l. and a disturbance gradient from
(near) natural to anthropogenic land-cover types within elevation zones (Figure 1 and
Table A1).

2.2. Data and Preprocessing
2.2.1. Diversity Data

On 59 of the 60 study plots, data for estimating the diversity of 17 taxa were available.
Sampling followed standardized approaches as described in detail in Peters et al. [43]
and Peters et al. [52]. For an overview of the taxa and sampling methods, see Table A2.
The species richness data were aggregated (sum of species) to four feeding guilds. See
Tables A3 and A4 for the proportional allocation of species per taxon to feeding guild. As
true bugs, spiders and springtails were not identified to the species level, the entire group
of spiders was assumed to be predators, springtails count as decomposers and true bugs
were ignored when estimating species richness of feeding guilds.

2.2.2. LiDAR Data

The LiDAR data set was acquired during two missions with a Riegl LMS-Q780 sensor
carried by an Airbus Helicopter at an altitude between 850 m and 1750 m above ground
level. The northern (high land) plots were sampled in March 2015 and the southern
(low land) plots in November 2016 (Figure 1). The temporal distance was assumed to
be negligible since both acquisition dates fall into the early rainy season and plots of the
same land-cover type are covered within the same flight campaign except for disturbed
ocotea forests. The LiDAR pulses contain between one and seven returns with a vertical
accuracy of 0.15 m and a horizontal accuracy of 0.20 m (95% confidence interval). The mean
point density is 34 points per square meter but varies due to terrain and flight conditions.
Outliers were removed and points were classified into ground and non-ground following
the standard procedure using the LAStools preprocessing software [53]. Rasterized LiDAR
layers (e.g., digital terrain model (DTM), digital surface model (DSM), and canopy height
model (CHM)) were generated by the open source remote sensing data base (RSDB) at
a resolution of 1 m [54]. The resulting DTM preserves fine details in regions with high
ground point densities and plausible elevation estimates in regions with low ground point
densities (e.g., dense forest).

To derive a set of potential predictor variables from the LiDAR observations, several
indices, which characterize structural properties of the 50 m × 50 m areas, were computed
for each of the plots using the RSDB (see Table 1) [54]. The compiled 97 LiDAR metrics used
included e.g., canopy height metrics (maximum, standard deviation, median, quartiles,
etc.), return number metrics (maximum, standard deviation of different layers, etc.) and
ecological estimates (leaf area index, above-ground biomass and gap fraction, etc.; for the
complete list of variables, see Table 1).
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Table 1. Overview of structural variables characterizing the vegetation and a description on their calculation. Most indices were calculated on the LiDAR (Light
Detection And Ranging) point cloud of each plot (50 m × 50 m); only a few were calculated on 1 m × 1 m cells of the canopy height model (marked: based on CHM).

Name Explanation

canopy
maximum canopy height (CH) Maximum canopy height
mean CH Mean canopy height
median CH Median canopy height
percentile of CH 10% Percentile of canopy heights
. . . (in 10% steps) x% Percentile of canopy heights
standard deviation CH Standard Deviation of canopy height
skewness CH Skewness of canopy height Distribution
variance CH Variance of canopy height
curtosis CH Excess Kurtosis of canopy height Distribution
coefficient of variation CH Coefficient of Variation of canopy height
area ratio area ratio of raster pixels (based on CHM) [55]
vegetation structure
Return Density (RD) of different layers Return density of 1 m layer
. . . (1 m steps up to 8 m/29 m) Return density of x meter layer
RD canopy (>5 m) Return density of canopy vegetation layer
RD regeneration (2–5 m) Return density of regeneration vegetation layer
RD understory (<2 m) Return density of understory vegetation layer
RD ground Return density of ground layer
penetration rate (PR) of layers Penetration rate of 1 m layer
. . . (1 m steps up to 8 m/29 m) Penetration rate of x meter layer
PR canopy (>5 m) Penetration rate of canopy vegetation layer
PR regeneration (2–5 m) Penetration rate of regeneration vegetation layer
PR understory (<2 m) Penetration rate of understory vegetation layer
maximum returns highest number of return points per LiDAR laser pulse
mean returns mean of return points per LiDAR laser pulse
standard deviation returns standard deviation of return points per LiDAR laser pulse
median returns median of return points per LiDAR laser pulse
standard deviation first return standard deviation of first return points per plot
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Table 1. Cont.

Name Explanation

vegetation
above ground biomass Aboveground Biomass (6.85 ∗ TCH0.952) (top-of-canopy height (TCH) based on CHM) [56]
foliage height diversity Foliage height diversity (Shannon Index grouped by layers of understory, regeneration and canopy) [19]
leaf area index Leaf-area index, with k = 0.3, h.bin = 1, GR.threshold = 5 (based on CHM) [56]
vegetation coverage (VC) of different layers vegetation coverage in 1 m height (based on CHM)
. . . (for 2, 5, and 10 m) vegetation coverage in x meter height (based on CHM)
gap fraction fraction of clear area above 10 m compared to whole area (to be detected as gap: minimum of 9 cells, based on CHM)
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The land covers in the study area can be grouped into forest and non-forest (see
Figure 1 and Table A1 for details). Due to their complex multi-layered structure, forested
plots appear considerably different to non-forested plots hence the sets of LiDAR variables
for these two types differ slightly. For the current study, this means that, on non-forested
plots, variables describing vegetation layers reached a maximum of 8 m height, and on
forest plots, vegetation height reached a maximum of 29 m (indicated in Table 1). The two
thresholds correspond to variables where at least 50% of the plots had vegetation in this
height. In the following, all modeling approaches were always carried out for forested and
non-forested plots separately, to account for these fundamental differences.

2.3. Predictive Modeling of Diversity

The computations and analyses in this study were performed using the R environment
3.5 in conjunction with the caret package [57,58]. Partial least squares regression (PLSR)
is useful for models in data settings with a smaller number of observations relative to
the number of predictor variables. It can also handle multicolinearity, a situation that
is unavoidable, when using LiDAR-derived variables [59–62]. To reduce the impact of
overfitting caused by correlated variables, a forward feature selection (FFS) implemented
in the CAST package [63] was used, which ensures a more stable variable selection than
recursive feature elimination approaches [64].

To distinguish between effects on species richness predictability based on a pure
elevation gradient versus habitat structure, three different model groups (elevation and its
square only, structural metrics only and structural metrics to predict residuals of elevation
based model) were established. Then, within each of these three groups of models, an
individual prediction model was separately built for each taxon and feeding guild for
forested and non-forested areas. The same combinations of plots for training and testing
were used across all models (Table 2 for overview).

Table 2. Overview of the different models calculated in this study.

Model Name Independent Variables (Predictors) Target Variables (Response)

elevation elevation, elevation 2 species richness
structure structural LiDAR variables species richness
residuals structural LiDAR variables residuals from elevation model
combination sum of elevation model and structural model species richness

In the first group of models, only the elevation and its square were used to predict
species richness (”elevation model”). In the second group of models, only the structural
metrics derived from LiDAR (no elevation) were considered (”structure model”). In the
third group of models, the same structural metrics were used to predict the residuals of the
elevation model (”residual model”). Hence, the predictions of the residual model do not
represent the complete species richness, but only that part which cannot be explained by
the elevation model. Therefore, to be able to compare the results of this model with the
elevation and structure model, the results of the residual model were added to the elevation
model (“combination model”). Even though it is not a separate model in a strict sense, but
only the sum of the elevation model and the residual model, this mixed approach will be
called “combination model” in the following. The pure residual model, on the other hand,
can be used to compare the plain structure dependence of taxa and feeding guilds without
effects of elevation. Prediction results from forested and non-forested areas were assembled
to one error estimation per response variable, to compare the general model performance
of taxa and feeding guilds for the whole study area.

To test if the model performance depends on species traits, the correlation of model
performance of each taxa and feeding guild to the respective body size and the mode
of movement were tested. For body size, the Spearman rank correlation coefficient was
calculated. Groups were sorted by body size from large (large mammals with up to 1.7 m
length) to small groups (parasitoid wasps with only a few millimeters). For the test between



Remote Sens. 2022, 14, 786 8 of 24

model performance and flying/non-flying groups of organisms, the Mann–Whitney U-Test
was performed.

Validation Strategy and Model Tuning

Due to the limited number of observation samples per taxonomic group, choosing an
appropriate tuning and testing strategy of the various models was of major importance. As
illustrated in Figure 2, model training and testing consisted of two separate cross validation
cycles. The outer 20-fold-cross validation withholds one random plot of each land-cover
type in every resample. Those samples were held back from model training to qualify them
for estimating the model performance for new locations in the study region. This repeated
approach allows for more stable validation results given the limited number of plots. The
inner cross validation was embedded within the PLSR machine learning approach. It uses
the same method of leaving one plot per land-cover type out in each resample. The inner
cross validation was used for model tuning and variable selection only. Tuning affected
the number of principal components used in the PLSR and varied between one and two.
Feature selection was implemented according to Meyer et al. [64].

For quantifying the predictive performance, the root mean squared error (RMSE) was
computed for each fold of the outer cross validation. Previously, the results from forested
and non-forested areas were combined, to be able to make a general statement per taxon
and feeding guild. Since species richness varied considerably across the taxonomic groups,
the RMSE of each group was normalized with the standard deviation of the species richness
per group of the plots used in each model.

P
   

L 
  O

   
T 

  S

training

testing (1 plot per landuse)

PLSR training
forward feature selection

20-fold cross validation

prediction

2
0

 r
es

am
p

le
s

error
calculation

[RMSE]

Figure 2. The model training (upper right loop) uses a partial least squares regression (PLSR) and
a forward feature selection with a 20-fold cross validation. Validation is carried out by predicting
the values of the testing plots. The division of testing and training plots (outer loop) follows a
repeated stratified sampling approach, with randomly chosen resamples of one plot per land cover
for the testing, leaving the rest of the plots for training. Validation is based on the median root mean
square error (RMSE) of the individual resamples, normalized by the standard deviation of these
RMSE values.

3. Results

The elevation model performs best for 14 out of 17 taxa (Figure 3a and Table 3). On
average, the RMSE/sd values for these 14 taxa are 0.21 lower than in the structural and
0.23 lower than in the combined model. The structural model performs better only for para-
sitoid wasps and the combined model is the best for aculeate wasps and insectivorous bats.

For all three model types, the interquartile range (IQR) of large mammals, springtails,
bees, parasitoid wasps and insectivorous bats is rather small, while syrphid flies, moths,
dung beetles and grasshoppers show large variations of RMSE/sd values. Only large
mammals, millipedes and springtails show a significant superior model performance
for the best model (here elevation) compared to both other models (Tukey test). For an
individual taxon, a median performance of the RMSE/sd of half the standard deviation
or better is only reached for ants, grasshoppers, springtails, bees, parasitoid wasps, other
aculeate wasps and insectivorous bats. Bees reach the best model results across all taxa and
model types with an RMSE/sd of 0.34 (elevation model).
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Figure 3. Modeling performances for each taxon (a) and feeding guild (b) in terms of the root
mean square error normalized by standard deviation (RMSE/sd). Smaller values show a better
model performance. Colors represent the different model types. Taxa are grouped into “elevation”,
“structure” and “combination” depending on which of the three models shows the best median
RMSE/sd. Stars indicate if the best model is significantly better than both of the other models.
Within the groups, taxa and feeding guilds are sorted by descending RMSE/sd. The boxes include
the median and the inter quartile range (IQR) with notches indicating roughly the 95% confidence
interval. Whiskers are extending to ±1.5 times the IQR and points indicate single error values outside
of this range.



Remote Sens. 2022, 14, 786 10 of 24

Table 3. Mean ± standard deviation across all plots of observed species richness per plot and
median of the root mean square error normalized by standard deviation of field samples per taxon
and feeding guild ± the standard deviation of model runs. Lower RMSE/sd values mean a better
model performance.

Taxon/Feeding Guild

Species Richness
per Plot

Elevation
Model

Structure
Model

Combined
Model

Residual
Model

Mean
± Standard Deviation Median RMSE/sd ± Standard Deviation

ants 2.7 ± 3.4 0.48 ± 0.29 0.62 ± 0.72 0.69 ± 0.57 1.5 ± 1.3
bees 6.7 ± 5.9 0.34 ± 0.1 0.49 ± 0.17 0.4 ± 0.11 1.5 ± 0.4
birds 16 ± 8.6 0.67 ± 0.25 0.77 ± 0.31 0.8 ± 0.45 1.9 ± 1

dung beetles 5.2 ± 7.7 0.59 ± 0.5 0.77 ± 0.73 0.93 ± 1.3 1.6 ± 2.2
grasshoppers (locusts, crickets) 10 ± 14 0.45 ± 0.54 1 ± 0.41 0.68 ± 0.82 1.1 ± 1.3

insectivorous bats 5.5 ± 3.3 0.48 ± 0.13 0.62 ± 0.18 0.44 ± 0.14 1.4 ± 0.46
large mammals 2.3 ± 1.8 0.91 ± 0.28 1.1 ± 0.24 1.3 ± 0.26 2.2 ± 0.45

millipedes 1.2 ± 1.7 0.77 ± 0.34 1.1 ± 0.48 1 ± 0.43 1.5 ± 0.65
moths 9.6 ± 11 0.62 ± 0.48 0.74 ± 0.69 0.72 ± 0.61 1.2 ± 1

other aculeate wasps 3.2 ± 4 0.55 ± 0.21 0.82 ± 0.26 0.5 ± 0.45 1.2 ± 1.1
other beetles 8.6 ± 4.9 0.92 ± 0.24 0.95 ± 0.27 0.98 ± 0.46 1.7 ± 0.81

parasitoid wasps 16 ± 14 0.58 ± 0.26 0.5 ± 0.18 0.56 ± 0.19 1.1 ± 0.38
snails (slugs) 6.8 ± 5.6 0.58 ± 0.26 0.62 ± 0.31 0.69 ± 0.28 1.5 ± 0.61

spiders 5 ± 2.2 0.86 ± 0.26 1 ± 0.23 1.3 ± 0.39 2.5 ± 0.72
springtails 4.6 ± 2.4 0.43 ± 0.2 0.59 ± 0.27 0.57 ± 0.25 1.4 ± 0.63

syrphid flies 3.5 ± 3.3 0.8 ± 0.47 1 ± 0.55 0.82 ± 0.5 1.2 ± 0.74
true bugs 2.1 ± 2.3 0.57 ± 0.39 0.91 ± 0.37 1.3 ± 1.1 2.4 ± 2.2

decomposer 12 ± 7.8 0.53 ± 0.13 0.62 ± 0.25 0.56 ± 0.38 1.8 ± 1.2
generalist 6.8 ± 3.8 0.61 ± 0.21 0.93 ± 0.57 0.94 ± 0.48 2.2 ± 1.2
herbivore 40 ± 30 0.46 ± 0.23 0.44 ± 0.3 0.45 ± 0.26 1.3 ± 0.77
predator 41 ± 22 0.44 ± 0.22 0.62 ± 0.23 0.48 ± 0.15 1.2 ± 0.37

Regarding feeding guilds, the elevation model performs best for generalists, decom-
posers and predators with an RMSE/sd value that is 0.20 and 0.13 lower on average than
the structural and the combined model, respectively (Figure 3b and Table 3). Only for
generalists and decomposers was the best model (elevation) performing significantly better
than the other two. The structural model performs best for herbivores but only with slight
differences in the RMSE/sd to the combined (0.01) and the elevation model (0.02).

To explore the potential of modeling species richness outside the gradient of Mount
Kilimanjaro, Figure 4 shows a comparison of the plain residual models (RMSE/sd). These
results are independent of the elevation and do not model species richness, but the resid-
uals of the elevation model. Therefore, it is possible to compare the ranking of species
performance as it would be suspected if it was only dependent on structure without a
superimposing elevational gradient. Taxa and feeding guilds are sorted by their median
error estimates which range between 1.1 and 2.5 (Table 3). Smaller values here mean a
closer relationship to structural metrics. Value ranges of model performances within each
group lie within the same magnitude, except for dung beetles which show a high variation.
The RMSE/sd of the residual model shows a ranking of the feeding guilds from predators
(1.2), over herbivores (1.3), to decomposers (1.8) and generalists (2.2). The analysis of the
best subsets of prediction variables could not identify regular patterns (Figures A1–A4).

There is no statistical relationship between model performance and body size of the
assemblages (Table 4). However, there is a difference for the combined and residual model
with a better performance for the flying than for the non-flying taxonomic groups (see
Table 4).
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Figure 4. Modeling performance for the residuals of the elevation model for each taxon (a) or feeding
guild (b) as root mean square error normalized by standard deviation [RMSE/sd]. Taxa (a) and
feeding guilds (b) are sorted by increasing median modeling performance and therefore increasing
influence of vegetation structure on the target variable (which means decreasing median RMSE/sd).
For the description of plot elements, see Figure 3.

Table 4. Results of rank tests comparing the performances of models measured by RMSE/sd (as
shown in Figures 3 and 4) with respect to selected traits (body size, mode of movement) of the taxa.
For the tests between the performance of the models and body size, the Spearman rank correlation
coefficient (r) was used. Body size was sorted from large to small groups. For the test between flying
and non-flying groups of organisms the Mann–Whitney U-Test was used. Significant results, in terms
of the p-value, are marked bold.

Body Size Mode of Movement
r p p

RMSE/sd elevation −0.14 0.58 0.28
RMSE/sd structure −0.13 0.62 0.28

RMSE/sd combination −0.10 0.70 0.011 (flying <non-flying)
RMSE/sd residuals −0.22 0.39 0.006 (flying <non-flying)

4. Discussion

The study evaluated the potential of LiDAR data to predict species richness at Mount
Kilimanjaro. The influence of the respective effects of elevation and vegetation structure on
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species richness were investigated by comparing the model performances of models that
used elevation as the only predictor, models that used LiDAR variables only and models
that used LiDAR variables to predict the residuals of the elevation models.

Generally, performances of the different models varied only slightly within each taxon,
with no significant difference of the best performing model to both other models, except for
three taxa (large mammals, millipedes, springtails). However, there is a trend, indicating
that the elevation model performs best for 14 out of 17 taxa. All taxa which do perform
significantly better with one specific model, belong to that group. In the cases where the
structure or combined model performs best, the performances differ only marginally and
differences are not significant.

As expected, results of the model performances of feeding guilds indicate that her-
bivores are influenced more by structure than generalists and decomposers (Figure 4b).
However, considering the feeding guilds, generalists and decomposers are the only groups
for which the best of the three models (elevation model) is significantly better than the other
two. It is ecologically reasonable that generalists, which obviously use a wide variety of
food, are, at least for feeding reasons, not specifically connected to the vegetation structure.
Opposed to that, for herbivores, structure was suspected to be the most relevant predictor
as they rely solely on vegetation and therefore structure should influence feeding patterns
and the occurrence and diversity of species Even though performances improve slightly
with the structure model, differences were not significant. Decomposers rely on the exis-
tence of organic material. Still, as long as the supply of organic material is given, it seems
reasonable that other environmental factors, which are linked to elevation, would have a
greater impact. In conclusion, prediction results for the feeding guilds show a tendency
of the hypothesized correlation between a lower feeding guild and a higher dependency
on the structure. However, these differences are very small and therefore not convincing.
The model performances of the feeding guilds are generally comparable with the ones of
the individual taxa. Nevertheless, as more field samples are included in the feeding guilds,
sampling uncertainties are partly leveled out by the higher number of sampled individuals.

This study further aimed at comparing the general potential of LiDAR-derived vari-
ables for the prediction of the structurally dependent proportion of species richness for
different taxa and feeding guilds. For this comparison, the elevation corrected residual
model provides the relevant information (Figure 4). In line with the discussion about the
best model type, generalists and decomposers seem to be the group not tightly connected
to habitat structure, whereas herbivores seem to depend more on vegetation structure
(Figure 3a). Along with the other models, there is no notable difference in the overall
performances between taxa and feeding guilds for the residual models.

A comparison between the model types allows for drawing conclusions about the influ-
ence of elevation and structure as relevant predictors for biodiversity. In their study at Mount
Kilimanjaro about diversity gradients at different levels of aggregation, Peters et al. [43]
already showed that mean annual temperature is the most important variable to predict
animal species richness in the region. In the present study, some taxa are significantly
more influenced by elevation than by properties of the structure itself, but generally, me-
dian performances between models differ only slightly. The residual model attempts to
illuminate patterns within the remaining structural properties that are not attributable to
the strong gradient in the study area. However, only samples from four to five replica
plots per land-cover type have been available for model training which limits the perfor-
mance. This might promote over-fitted models for structural properties leading to larger
prediction errors when applied to unknown locations, whereas the elevation model is able
to find a general pattern within all plots as they are well distributed along the elevation
gradient (Figure 1). Still, even a slightly worse structural or combined model compared to
the elevation model validates the general usability of LiDAR data for predicting species
richness, even though the effort of LiDAR missions then seems questionable. In the variable
selection of the LiDAR metrics, no patterns emerge (Figures A1–A4). Neither individual
variables nor variable groups (Table 1) appear in clear patterns across models. The LiDAR
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variables were calculated for individual plots (50 m × 50 m). For some taxa, it might be
beneficial to account for the structure of a larger spatial environment. Therefore, in future
studies, it could be tested whether variable cell sizes of the LiDAR metrics can improve
prediction models.

The hypothesized positive correlation between body size and the modeling perfor-
mance is not supported by the data. However, the mode of movement significantly corre-
lates with the prediction performance in the combined and the residual models. Especially
in the residual model, flying taxa outperform the others. The six taxa with the smallest
median error are species with the ability to fly. Only the flying taxa bees and birds (Rank
9 and 14 out of 17) lie within the worse performing half of taxa, showing the generally
poorer performance of non-flying taxa. The comparably poor performance of predicting
birds with structural metrics alone is rather surprising, as birds are the most studied taxo-
nomic group in species–habitat structure relationships [65] and there are many studies that
demonstrate promising correlations of bird diversity and different structural features (e.g.,
Müller et al. [35], Smart et al. [66], Vogeler et al. [67] or see the detailed review of Davies
and Asner [68]).

The results of this study are based on 59 plots. Even though the total number of study
sites seem to be sufficient for modeling purposes, compared to similar studies, the different
land-cover types that follow the elevation gradient, in addition to the necessary division
into forest and non-forest areas for modeling, limit the number of repetitions. Hence, model
building has to be carefully adjusted to the limited number of plots. The possibility of
also using land-cover type as a categorical predictor variable was discarded due to the
low number of replicates. However, land cover is indirectly included in the model by the
natural orientation of land cover along the elevational gradient at Mt. Kilimanjaro.

In general, it is not easy to evaluate the results in the context of other studies, since
a comparison of the results can only provide indications of the success of the modeling.
This is because the studies were conducted in different landscapes, for different taxa, but
most importantly, with different measures of biodiversity. Species richness, beta diversity,
and other metrics are related but not identical. In previous studies, the role of elevation is
handled in different ways. The studies of Müller and Brandl [14] and Vierling et al. [69],
for example, analyze the influence of LiDAR-derived variables compared to other abiotic
and biotic variables for the prediction of spider species distribution and forest beetle
assemblages. Results show a comparable or even much better performance of LiDAR
variables to ground based measures [69]. As the variable elevation is a by-product of LiDAR
point clouds, these studies included elevation in the group of LiDAR-derived variables,
with elevation being a rather important variable. However, elevation changes within the
study area are limited to about 800 meters with a rather homogeneous forest cover.

The studies of Zellweger et al. [39] and Rechsteiner et al. [37] are situated in a more
mountainous terrain (>1200 m elevation difference); however, the LiDAR derived variables
are limited to structural ones and elevation is not used as a predictor, although elevation
is intrinsically included in structural variables at least along elevational vegetation zones.
With similar complex terrain (around 4000 m elevation difference), Zellweger et al. [70]
used structural as well as topographic and climate variables. Even though elevation was
not used directly, climatic variables (including temperature) showed the highest importance
for modeling beta-diversity of birds and butterflies, even exceeding results when vegetation
structure was included in the models. This seems consistent with the results of the present
study, given that elevation is a main proxy for temperature [71]. Overall, all these studies
show clearly that the elevation gradient might be able to explain a major part of structural
variables. An observation in a similar sense is made by Acebes et al. [65] in their review
of 173 papers. They find, especially for forested areas, that, while canopy height is most
commonly used as a LiDAR metric to model species-habitat structure, canopy cover and
terrain topography performed better overall when they where used.

The study of Müller et al. [72] covers an elevation gradient of around 800 m and does
only take vertical profile metrics derived from LiDAR data into account. They could show
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that canopy arthropod diversity is driven by different structural features in the vegetation.
Using a similar number of study plots as in our study, but exclusively in spruce forest, the
overall vegetation structure is much more homogeneous than at Mt. Kilimanjaro. Thus,
finer differences are likely to be masked by the large variability in vegetation structure
in the models. The same is true for the study of Schooler and Zald [73], who analyzed
the predictability of small mammals diversity in temperate mixed forest and found that it
could be predicted by LiDAR derived structural metrics.

Therefore, when using LiDAR data, non-structural properties (e.g., elevation, tem-
perature, or other abiotic variables—depending on the study area) should be investigated
separately to avoid false conclusions concerning the effect of LiDAR-derived vegetation
structure. Those abiotic conditions are relevant for modeling and therefore models from
one study area are not necessarily representative in other areas [38]. Using a separate
residual model shows great potential to avoid spurious correlation that leads to erroneous
predictions when the model is applied to new locations.

At Mount Kilimanjaro, with its substantial elevation gradient, the utilization of LiDAR
data does not significantly improve modeling results. A larger sampling size per land cover
is required to further improve the robustness of conclusions drawn for the selection of
models. To approach the long-term goal of comprehensive mapping of EBVs like species
occurrence or taxonomic diversity with the use of remotely sensed data, areas with a less
complex land-cover gradient in homogenous landscapes need to be addressed in future
studies to understand the influence of structure better.

To provide comparable results, further studies need to be conducted on multi-taxon
approaches with field surveys and data sets of similar granularity. Study areas with
different terrain complexities should be considered. In doing so, a solid base for valuable
model-building strategies can be generated and can assist the research community in
quantifying EBVs in the future.
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Appendix A

Table A1. Overview of land-cover types with elevation range of their occurrence, the number of plots
in each land cover and the basic ecosystem category (forest or non-forest).

Land Cover Elevation [m a.s.l] Number of Plots Ecosystem

maize plantation 866–1009 5 non-forest
savanna 871–1153 5 non-forest
coffe plantation 1124–1648 5 non-forest
homegarden 1169–1788 5 non-forest
grassland 1303–1748 5 non-forest
lower mountain forest 1560–2040 5 forest
ocotea forest 2120–2750 5 forest
ocotea forest (disturbed) 2220–2560 5 forest
podocarpus forest 2720–2970 5 forest
podocarpus forest (disturbed) 2770–3060 5 forest
erica forest 3500–3880 5 forest
helichrysum vegetation 3880–4390 4 non-forest

https://github.com/envima/Kili_src
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Table A2. General sampling methods as well as some details and the calculation of the species richness of the biodiversity data. Further details on the sampling
approaches can be found in Peters et al. [43] and Peters et al. [52]. If not indicated otherwise, the species richness is calculated as the total (cumulative) number of
species per study site (equal sampling effort for all sites).

Taxon General Sampling Method Sampling Specifics Species Richness Calculation

ants plastic tubes with diverse set of resource baits on the
ground 2 h at times of peak ant activity

bees pan traps in different vegetation heights 48 h with 3 sampling rounds

birds audiovisual point counts 15 min before sunrise, completed before 9 am

dung beetles baited pitfall trap 72 h sampling time

grass hoppers sightings and two rounds of sweep net sampling
non-forested ares: repeatedly 1.5 h walking on parallel
tracks, forested areas: 1.5 h shaking understory
vegetation

sampling effort per site was adjusted to measure
asymptotic species richness

insectivorous bats acoustic monitoring (point stop method) every corner of plot visited for 5 min averaging species richness values of single surveys

large mammals camera trap, analysis of dung remains 5 camera trapsper site, 70 trap-days per site number of all non-domestic mammal species recorded
on study site

millipedes pitfall traps and sightings sightings: 2 h

moths light traps 20 min with 4 sampling rounds on obstacle-free
branch in 1.5–2 m height averaging species richness values of single surveys

other aculeate wasps pan traps in different vegetation heights 48 h with 3 sampling rounds

other beetles pitfall traps 7 days sampling time with a total of 5 sampling rounds

parasitoid wasps pan traps in different vegetation heights 48 h with 3 sampling rounds

snails sightings (large taxa) and collection of leaf litter (small
taxa)

sightings: four rounds of fixed time surveys of 30 min,
collection: 1 litre leaf litter

spiders pitfall traps 7 days sampling time

springtails pitfall traps 7 days sampling time

syrphid flies pan traps in different vegetation heights 48 h with 3 sampling rounds total (cumulative) number of species richness with
varying number of samples among study sites

true bugs sweep net sampling 100 sweeps along two 50 m transects



Remote Sens. 2022, 14, 786 17 of 24

Table A3. Fractional breakdown of feeding guilds. The numbers for each taxon represent the relative
contribution to the species richness of a given feeding guild. Therefore, each column adds up to a
total of 1. Taxa are listed in alphabetic order. True bugs were not identified to the species level and
are therefore not included.

Decomposer Generalist Herbivore Predator

ants 0 0.24 0.02 0.02
bees 0 0 0.14 0
birds 0 0.24 0.08 0.1
dung beetles 0.41 0 0 0
grasshoppers 0 0.03 0.17 0.01
insectivorous bats 0 0 0 0.02
large mammals 0 0.11 0.01 0
millipedes 0.16 0 0 0
moths 0 0 0.47 0
other aculeate wasps 0 0 0 0.12
other beetles 0.24 0.37 0.07 0.17
parasitoid wasps 0 0 0 0.51
snails 0.08 0.02 0.03 0.02
syrphid flies 0.11 0 0 0.02

Table A4. Fractional breakdown of taxa. The numbers for each feeding guild represent the relative
contribution of species richness to a given taxon. Therefore, each row adds up to a total of 1. Taxa
are listed in alphabetic order. True bugs were not identified to the species level and are therefore not
included.

Decomposer Generalist Herbivore Predator

ants 0 0.47 0.24 0.29
bees 0 0 1 0
birds 0 0.18 0.31 0.51
dung beetles 1 0 0 0
grasshoppers 0 0.03 0.9 0.08
insectivorous bats 0 0 0 1
large mammals 0 0.52 0.33 0.15
millipedes 1 0 0 0
moths 0 0 1 0
other aculeate wasps 0 0 0 1
other beetles 0.13 0.17 0.17 0.53
parasitoid wasps 0 0 0 1
snails 0.24 0.05 0.41 0.31
syrphid flies 0.44 0 0.09 0.47
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Figure A1. Variable selection for the structure model of each taxon in forest. Colors show how often
variables were included during 20-fold cross-validation. Structural variables are sorted by the total
number of times they where selected. See Woellauer et al. [54] for variable details.
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Figure A2. Variable selection for structural variables for the residual model and combined model
of each taxa in forest. Colors show how often variables were included during 20-fold cross-
validation. Structural variables are sorted by the total number of times they where selected. See
Woellauer et al. [54] for variable details.
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Figure A3. Variable selection for the structure model of each taxon in non-forest. Colors show how
often variables were included during 20-fold cross-validation. Structural variables are sorted by the
total number of times they where selected. See Woellauer et al. [54] for variable details.
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Figure A4. Variable selection for structural variables for the residual model and combined model
of each taxa in non-forest. Colors show how often variables were included during 20-fold cross-
validation. Structural variables are sorted by the total number of times they where selected. See
Woellauer et al. [54] for variable details.
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