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Abstract: Double cropping is an important cropping system in China, with more than half of China’s
cropland adopting the practice. Under the background of global climate change, agricultural policies,
and changing farming practices, double-cropping area has changed substantially. However, the
spatial-temporal dynamics of double cropping is poorly understood. A better understanding of these
dynamics is necessary for the northern limit of double cropping (NLDC) to ensure food security in
China and the world and to achieve zero hunger, the second Sustainable Development Goal (SDG).
Here, we developed a phenology-based algorithm to identify double-cropping fields by analyzing
time-series Moderate Resolution Imaging Spectroradiometer (MODIS) images during the period
2000–2020 using the Google Earth Engine (GEE) platform. We then extracted the NLDC using
the kernel density of pixels with double cropping and analyzed the spatial-temporal dynamics of
NLDC using the Fishnet method. We found that our algorithm accurately extracted double-cropping
fields, with overall, user, and producer accuracies and Kappa coefficients of 95.97%, 96.58%, 92.21%,
and 0.91, respectively. Over the past 20 years, the NLDC generally trended southward (the largest
movement was 66.60 km) and eastward (the largest movement was 109.52 km). Our findings provide
the scientific basis for further development and planning of agricultural production in China.

Keywords: mapping; cropping intensity; northern limit; phenology; Google Earth Engine; kernel
density estimation

1. Introduction

Zero Hunger, the second Sustainable Development Goal (SDG) of the United Nations,
calls for doubling the current amount of global agricultural production within the next
three decades, which poses a serious challenge for agricultural production [1]. Additionally,
rapid population growth, accelerating urbanization, and increased demand for non-food
uses (such as biofuels) require a significant increase in food production [2,3]. The expansion
of cropland area and intensifying the use of the existing cropland are two main strategies
to increase grain yield [4,5]. Despite its prominent contribution to increasing grain yield,
cropland expansion is often accompanied by many environmental problems, including
land degradation, greenhouse gas emissions, and agricultural non-point source pollution,
and is considered an unsustainable strategy [1,6]. Therefore, the intensification of existing
croplands has become the focus of food security management.

Cropping intensity is usually defined as the number of cropping cycles per year
(single-/double-/triple-cropping), which is an important indicator to measure the degree
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of intensive cultivation of cropland [4,7]. Increasing the cropping intensity of cropland is
one of the most effective ways to increase grain yields from croplands [8]. Double cropping
refers to planting twice a year on a given area of cropland, and is practiced in more than
half of China’s croplands [9]. The northern limit of double cropping (NLDC), defined as
the northern limit of the spatial distribution of the double-cropping system, is an important
representation of the spatial-temporal dynamics of the double-cropping system. Studies
have shown that crop production in China would benefit from increasing the amount of
cropland covered by double- and triple-cropping systems [10]. Double-cropping data is a
critical input layer for many crop models, which can provide critical support for crop yield
and production prediction as well as food security scenario analysis. The dynamics of the
northern limit of double cropping shown by this study revealed croplands with changes in
cropping intensity (conversion from other cropping patterns to double-cropping patterns
and from double-cropping patterns to other cropping patterns). Moreover, investigation
of cropland where cropping intensity has changed will help policymakers understand the
causes and responses to improve the intensive use of cropland, further increase food pro-
duction, and contribute to SDG. Therefore, understanding the spatial-temporal dynamics
of NLDC is of great significance for assessing food production security [10], closing the
food demand gap [1], and improving ecosystem and human health [11,12].

The northern limit of double cropping can be divided into the potential northern limit
of double cropping (PNLDC) and NLDC. PNLDC is determined by selecting appropriate
agricultural climate metrics and thresholds according to the heat required, the minimum
temperature, and the availability of water necessary for the growth according to climate
observation data [5,13]. Over the past few decades, several studies have used various
agricultural climate metrics to analyze the spatial-temporal dynamics of PNLDC. In the
past 50 years (1961–2015), the increase of annual accumulated temperature above 10 ◦C
(AAT10), the advance of the starting dates of temperature above 10 ◦C (SDT10), and the
delay of the ending dates of temperature above 10 ◦C (EDT10) in most parts of China have
resulted in the PNLDC moving 150 km [14]. During the period 1961–2010, mean annual
accumulated temperature above 0◦ (AAT0) in China increased by 64.4 ◦C day per decade,
which caused the PNLDC to move in a northwest direction, especially in northeast China
(Liaoning Province) and north China (Hebei and Shanxi Provinces) [10]. These studies
all reflect the response of cropping intensity to climate change and reveal the northward
shift of PNLDC, but they do not reflect the real regional farming system because PNLDC
is based on the actual local climate conditions, but farmers tend to follow the traditional
pattern (past climate conditions) when planting [8]. Therefore, there are some differences
between PNLDC and NLDC.

Past studies on the northern limit of double cropping have mainly focused on PNLDC,
and thus there are a lack of studies on NLDC, which is determined by using different
classification algorithms and surface reflectance or growth characteristics garnered from
remote sensing data. The spatial distribution of double cropping is the basis of NLDC
mapping. The main method used to obtain the spatial distribution of double cropping by
satellite remote sensing involves using logistic functions to fit time series vegetation indices
(VIs) to determine the growth cycle of crops [15–17]. The phenology method determines
the cropping intensity by calculating the number of peaks in the VI time series data in
one year [18]. However, these studies used traditional methods to extract peak values in
time-series images. The first is the neighborhood comparison method, which directs the
comparison of VIs over a certain length of time to obtain local maxima and eventually the
number of extreme values (cropping intensity) for the whole study period [1,19]. However,
differences in crop type and climate can easily cause differences in crop growth cycle length,
which greatly affects the results. The second method is the double subtraction method,
which finds the maximum value from the discrete time series to extract the cropping
intensity. This method is sensitive to the peaks of the curve, which requires multiple
constraints to remove “fake peaks “ [20]. The third method is the sliding segmentation
method, which treats the extraction of cropping intensity as a nonlinear, nonstationary
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time-series curve mutation feature monitoring problem [21]. The method is able to extract
tillage intensity quickly; however, the results of existing studies are not satisfactory. Overall,
these methods did not take into account the obvious difference of phenology between crops
and natural vegetation and the in-situ knowledge of cropping intensity [4]. Additionally,
these studies mainly focused on monitoring the overall distribution of cropping intensity,
and the quantitative measurement of NLDC and its changes was limited. Therefore, it is
necessary to make full use of crop phenology information to more accurately map NLDC.

The open archives of medium- and high-resolution images offer an unprecedented
opportunity for mapping cropping intensity based on remote sensing images. In earlier
studies, 8 km NOAA [22] and 1 km SPOT [9,23] satellite imagery were used to extract
cropping intensity. However, the accuracy of the products based on these data is subject to
high sub-pixel heterogeneity limitations [24], especially in the smallholder farm landscapes
that are characteristic of China’s farmlands [25]. Several recent studies have attempted
to map large-scale cropping intensity using combined time-series Landsat and Sentinel
images [26,27]. However, the pre-experiments we conducted showed that the long revisit
period for Landsat data made it difficult to ensure a sufficient number of high-quality
images until Sentinel data became available. Therefore, these do not seem to be appropriate
for studying changes in cropping intensity over long time scales due to the limited number
of years available for Sentinel images. Considering the spatial-temporal resolution and
available data, MODIS data is a reliable data source with a high temporal resolution, accept-
able spatial resolution, and a long data record. Furthermore, with the rapid development
of cloud computing platforms such as Google Earth Engine (GEE) [28], the workloads of
downloading and pre-processing of data has been greatly eased, offering an unprecedented
opportunity for large-scale mapping of cropping intensity.

Our objectives were to (1) map double-cropping fields in the period 2001–2020 using
time-series MODIS images and a phenology-based algorithm; (2) extract NLDC using
Kernel Density Estimation (KDE) based on the generated double-cropping maps; and (3)
analyze the spatial-temporal dynamics of NLDC using the Fishnet method. Our results
shed light on the potential of agricultural production in northern China and provide a
scientific basis for agricultural development planning. The NLDC mapping platform and
resultant data products can be used by different stakeholders, including local government
agencies and farmers.

2. Materials and Methods
2.1. Study Area

We selected eight provinces, including Beijing, Tianjin, Hebei, Shaanxi, Shanxi, Shan-
dong, Henan, and Hubei as the study area, which was based on the extent of the northern
limit of double cropping in previous studies (Figure 1) [10,14]. Cropland area in the study
area accounted for 52.33% (2000), 50.93% (2010), and 48.36% (2020) of the total area, re-
spectively (Figure 1a–c). Double cropping is the main planting system in this region, and
there are few single- and triple-cropping fields in the study area. The main crops include
wheat, corn, and rice. The elevation of the study area is high in the west and low in the
east (Figure 1e), and the climate ranges from a subtropical monsoon climate to a north
temperate continental monsoon climate. The sown area of the study area accounted for
30.33% of China’s total sown area in 2019 (https://data.cnki.net/Yearbook, accessed on
20 October 2021), making it one of the most important grain-producing regions in China.

https://data.cnki.net/Yearbook
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Figure 1. Land cover (a–c) in 2000, 2010, and 2020; the intersection of cropland in 2000, 2010, and 
2020 (d); and topography (e) of the study area. DEM is the abbreviation of digital elevation model. 
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tial resolution of 500m and are labeled as “MODIS/006/MOD09GA” in GEE. This data is 
daily and has been corrected for atmospheric scattering and absorption, atmospheric 
gases, and aerosols. The pre-processing of MOD09GA Version 6 data includes three main 
steps: identifying bad-quality observations, calculating Vis, and constructing VIs time se-
ries. 
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Figure 1. Land cover (a–c) in 2000, 2010, and 2020; the intersection of cropland in 2000, 2010, and
2020 (d); and topography (e) of the study area. DEM is the abbreviation of digital elevation model.

2.2. Datasets and Pre-processing
2.2.1. Satellite Data and Pre-Processing

Considering the cross-annual growth cycle, we used MOD09GA Version 6 data from
T1–T5 (Table 1), which provided surface reflectance from seven spectral bands with a spatial
resolution of 500m and are labeled as “MODIS/006/MOD09GA” in GEE. This data is daily
and has been corrected for atmospheric scattering and absorption, atmospheric gases,
and aerosols. The pre-processing of MOD09GA Version 6 data includes three main steps:
identifying bad-quality observations, calculating Vis, and constructing VIs time series.

Table 1. The range of T1–T5 and the percentage of corresponding >200 good-quality observa-
tions. T1—August 2000 to July 2002, T2—August 2004 to July 2006, T3—August 2009 to July 2011,
T4—August 2014 to July 2016, T5—August 2019 to July 2021.

Year Period Percentage Year Period Percentage Year Period Percentage

2000
T1 89.08%

2009
T3 94.58%

2018
2001 2010 2019

T5 95.38%2002 2011 2020
2003 2012 2021
2004

T2 93%
2013

2005 2014
T4 94.58%2006 2015

2007 2016
2008 2017

The quality of MOD09GA Version 6 data was assessed using the quality control band.
Pixels with cloudy or no observations were masked out. Based on the images after quality
assessment, the good-quality observations were counted at the pixel level during T1–T5.
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The number of good-quality observations for individual pixels varied spatially during
T1–T5 (Figure 2). Approximately 89.08%, 93%, 94.58%, 94.58%, and 95.38% of pixels had
> 200 good-quality observations in the study area during T1–T5, respectively (Table 1).
The numbers of good-quality observations in the northern part of the study area greatly
exceeded those in the southern part, which indicated that the accuracy of this method may
be higher in the northern part of the study area than in the southern part.
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Figure 2. Numbers of good-quality observations at the pixel level during the study period with
(a) 2001, (b) 2005, (c) 2010, (d) 2015 and (e) 2020.

The Normalized Differential Vegetation Index (NDVI) [29] is highly correlated with
leaf area index and chlorophyll in the canopy and has been widely used to characterize
vegetation greenness. The Land Surface Water Index (LSWI) [30] is extremely sensitive to
vegetation water and soil moisture, especially during crop sowing and harvesting (bare
soil moisture is much lower than crops). The NDVI and LSWI are calculated as:

NDVI =
ρNIR− ρRed
ρNIR+ρRed

(1)

LSWI =
ρNIR− ρSWIR
ρNIR+ρSWIR

(2)

where ρNIR and ρRed represent the near infrared band (841–876 nm) reflectance values
and the red band (620–670 nm) reflectance values, respectively, and ρSWIR represents the
shortwave infrared band (1628–1652 nm) reflectance values.

To reduce the influence of clouds and uneven observations in time, the NDVI time
series and LSWI data were composited at an 8-day interval [31]. The maximum NDVI
value for each pixel was selected from all good-quality observations within an 8-day period
and used to represent the observation value of the 8-day period (Figure 3). LSWI for each
pixel was the average of LSWI for the 8-day period [26]. When there was no good-quality
observation in an 8-day period, we used linear interpolation to fill the gap [32]. Interpolated
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NDVI time series was a line segment connected by continuous single points, and the
existence of residual noise would have interfered with further analysis, so smoothing was
required [27]. We used the Savitzky–Golay filter to smooth NDVI time series with a moving
window of size 9 and a filter order of 2 [17,33]. As LSWI is extremely sensitive to vegetation
water and soil moisture, the LSWI time series were not smoothed.
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2.2.2. Cropland Extent Data

We used the GlobeLand30 2000, GlobeLand30 2010 and GlobeLand30 2020 datasets
developed by the National Center for Basic Geographic Information to divide the range
of farmland fields of interest, while masking out irrelevant pixels (Figure 1a–c) [34]. Glo-
beLand30 2000, GlobeLand30 2010, and GlobeLand30 2020 provide global land cover data
with 30 m spatial resolution in 2000, 2010, and 2020, respectively. These products were
available for free download(http://www.globallandcover.com/, accessed on 30 August
2021). Only pixels that are consistently crop on all GlobeLand30 (2000, 2010, 2020) were
included in our study (Figure 1d).

2.2.3. Ground Reference Datasets

Three ground reference datasets were constructed to validate the algorithm proposed
in this study and evaluate the accuracy of the double-cropping map (Figure 4). First, six
field campaigns were conducted to collect geo-referenced field photos of different cropping
intensities in the study area from March 2020 to June 2020. These field photos included
single-, double-, and triple-cropping fields. Second, plots with similar color and texture to
the location images of the field photos were marked in Google Earth, and corresponding
attributes were added (single-, double-, and triple-cropping). Third, we used a small
unmanned aerial system (sUAS) during the field campaigns to obtain multi-spectral images
of plots for visual interpretation. Based on the obtained ground reference datasets, the
known plot types were digitized as polygons. Using these field photos, the very high spatial
resolution images at Google Earth, and the multispectral sUAS images, 284 (993 pixels)
double-cropping samples and 73 (1964 pixels) non-double-cropping samples were collected
to evaluate the potential and limitations of our double-cropping identification algorithm.

http://www.globallandcover.com/
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2.3. Methods

Figure 5 shows the workflow for identifying double-cropping fields and extracting
NLDC. First, based on the preprocessed MOD09GA Version 6, the double-cropping fields
were extracted by quantifying the annual number of peaks in the NDVI time series, and
the non-cropland pixels were masked by GlobeLand30 data. Second, multi-source ground
reference datasets were used to verify the accuracy of the resultant annual maps. Third,
the KDE was used to extract NLDC based on the obtained double-cropping maps. Finally,
the spatial-temporal dynamics of NLDC in different periods were analyzed using the
Fishnet method.
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Figure 5. Workflow for tracking the spatial-temporal change of the northern limit of double cropping
in China. POIs and ROIs represent the points and rasters of interest respectively.

2.3.1. Annual Double-Cropping Map

NDVI time series data is the most commonly used data to characterize the complete
phenological cycle of crops and is widely used to identify the spatial patterns of crop
planting intensity [17,35]. The phenological stage of crops includes sowing, seedling
emergence, heading, maturity, and harvest, which is reflected in the NDVI time series as
a “rise-peak-fall” process (Figure 6). This process occurs twice a year in double-cropping
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fields (except for the fake peak phenomenon of some crops) [36]. Before sowing and after
harvesting, the surface of the cropland is mainly crop residue or bare soil. Therefore, the
LSWI value of cropland pixels is usually very low during this period, which can be used as
a signal of the beginning and end of the growth cycle [37].
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The peak detection method was used to detect the peak (maximum value of adjacent
NDVI) and trough (minimum value of adjacent NDVI) in the NDVI time series. Previous
studies have shown that the peak growth for crops occurs when NDVI > 0.5, and a fake peak
value does not meet this condition [26,36]. Therefore, this condition was used to eliminate
fake peaks in the crop growth cycle. According to the difference in soil moisture content
from northern to southern China, the LSWI of bare soil varies from 0 to 0.2 [18,37,38].
Therefore, the dynamic threshold method (Equations (3) and (4)) was used to identify the
bare soil in the trough period [26]. When bare soil was identified in the two trough periods
adjacent to the peak, the peak is marked as an effective peak, that is, it corresponds to a
cropping cycle.

TP = LSWImin + (LSWImax − LSWImin)× 0.15 (3)

TLSWI =


0 , TP < 0

TP , 0 ≤ TP ≤ 0.2
0.2 , TP > 0.2

(4)

where TP is the potential LSWI threshold and TLSWI is the final LSWI threshold that is used
to identify the bare soil signals. LSWImin and LSWImax are the minimum and maximum
LSWI values for each period.

Based on the above rules, the number of annual effective peaks was counted for the
individual pixels, and the double-cropping maps of 2001, 2005, 2010, 2015, and 2020 were
generated, respectively. The steps of the algorithm are shown in Figure 7.
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2.3.2. Accuracy Assessment of the Resultant Annual Maps

As the double-cropping maps of different years were obtained from the same algo-
rithm, the classification accuracies of these maps are comparable. Additionally, obtaining
samples from earlier years is difficult. Therefore, only the 2020 double-cropping map was
assessed. The ground reference datasets obtained in Section 2.2.3 and the double-cropping
map (2020) generated by our study were used to construct a confusion matrix to evaluate
the potential of the proposed algorithm. The assessment metrics include overall accuracy
(OA), user accuracy (UA), producer accuracy (PA), and Kappa coefficient [39].

2.3.3. Extraction of the NLDC

KDE is a nonparametric statistical method for estimating the probability density
in geospatial and geographic information analysis [40,41]. KDE can perform a smooth
estimation by probability density function according to the location information of sampling
points, making the visualization of discontinuous points smoother [42,43]. The KDE was
used to extract NLDC, which is defined as follows:

fh(x) =
1

nh ∑n
i=1 K

(
x − xi

h

)
(5)

where fh(x) is the probability density estimator, n is the number of double-cropping points,
h(h > 0) is a user-defined smoothing parameter or bandwidth, K is a user-defined non-
negative kernel function, x is a coordinate vector of estimated points, and xi is a coordinate
vector of sample points.

Bandwidth is an important output parameter in the KDE method, which determines
the quality of the KDE [44]. Small bandwidth values will lead to sharp estimates, and the
density curve will be too abrupt and scattered, while large bandwidth values will lead
to an excessively smooth density curve. Therefore, the appropriate bandwidth value is
particularly important for the resultant maps. Three different bandwidths (5 km, 10 km,
and 15 km) were compared and analyzed for kernel density values (Figure 8). The 5 km
bandwidth curve was too fragmented to reflect the situation of the core fields of double
cropping, while the 15 km bandwidth curve was too smooth to ignore the distribution of
the double-cropping sparse fields and non-double-cropping fields. Therefore, the optimal
bandwidth for NLDC extraction was determined to be 10km in this study.
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The NLDC extraction process can be summarized into three steps, which were finalized
using ArcGIS. First, the raster cells of double cropping obtained in Section 2.3.1 were
converted into point features as input parameters for KDE. Second, the density map
of double cropping was obtained according to KDE and optimal bandwidth (10 km).
Finally, the percentage-based method was used to determine the kernel density estimation
threshold of the 95th percentile [45], and the NLDC was extracted using the contour tool.

2.3.4. Spatial-Temporal Dynamics of the NLDC

The Fishnet method determines the direction and distance of limit movement based on
the attributes of the intersection point between the limit and the fishnet [41,46]. To analyze
the movement characteristics of NLDC in different directions and periods, a 5 km × 5 km
fishnet was generated over the study area, and the intersection points of NLDC and the
fishnet in different periods were recorded. When the difference between the latitude
coordinates of the current and latter periods was positive (negative), it meant that the
NLDC is moving south (north). When the difference between the longitude coordinates of
the current and latter periods was positive (negative), it meant that the NLDC was moving
west (east). If the difference between the coordinates of the intersection of the two periods
was 0, then the NLDC did not move. Equation (6) was used to detect the movement in
T1–T5.

D f p−lp = L f p − Llp (6)

where f p is the former period, lp is the latter period, D f p−lp is the distance of the NLDC
moved, L f p is the coordinate of the intersection point in the former period, and Llp is the
coordinate of the intersection point in the latter period.

3. Results
3.1. Accuracy Assessment of Double-Cropping Maps

The obtained 284 (993 pixels) double-cropping sample polygons and 73 (1864 pixels)
non-double-cropping sample polygons were used to construct the confusion matrix, as
shown in Table 2. The OA, UA, and PA of the 2020 double-cropping map were 95.97%,
96.58%, and 92.21%, respectively, which indicated high classification accuracy. The Kappa
coefficient of 0.91 indicated that the classification results were consistent with the ground
reference datasets.
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Table 2. Results of accuracy assessment for double cropping in 2020.

Error Matrix (Pixels) Accuracy (%)

Class Double Others Total UA PA OA Kappa

Double 959 81 1040 96.58 92.21
95.97 0.91

Others 34 1783 1817 95.65 98.13

Total 993 1864 2857 / / / /

3.2. Maps of Double Cropping

As described in Section 2.3.1, the number of effective peaks of cropland pixels was
determined by analyzing MOD09GA NDVI and LSWI time series in the T1–T5 period.
Double-cropping maps for 2001, 2005, 2010, 2015, and 2020 were generated using the
farmland pixels with a double peak (Figure 9). Generally, the area of double-cropping fields
fluctuated up and down in the period T1–T5. In 2001, 2005, 2010, 2015, and 2020, 70.17%,
76.89%, 69.33%, 78.27%, and 66.15%, respectively, of the croplands were double-cropping
fields (Table 3). The spatial distribution of double cropping was strongly consistent with
topographic characteristics. Hebei Province, Henan Province, and Shandong Province have
flat terrain and were where the double-cropping fields were mainly distributed, which
accounted for more than half of the double-cropping fields in the study area.
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Table 3. Area statistics of double-cropping map in 2001, 2005, 2010, 2015, and 2020.

Double-Cropping
Fields/km2 2001 2005 2010 2015 2020

Beijing 777.72 895.74 637.8750 506.82 300.99
Tianjin 764.4 1614.34 1759.37 1746.27 1504.95
Hebei 24,122.97 24,552.58 29,010.59 32,788.19 21,388.05

Shaanxi 12,431.18 13,241.76 11,633.79 14,450.15 11,903.73
Shanxi 2817.24 2971.20 4078.79 7779.98 6765.53

Shandong 44,237.51 53,377.09 44,768.53 51,512.28 34,426.19
Henan 71,661.99 75,854.59 68,087.11 60,217.61 63,979.69
Hubei 20,417.76 22,722.65 21,717.67 26,691.77 27,090.54

Total area 177,154.46 206,402.33 191,464.90 195,108.64 166,909.70
Percentage of total

farmland area 70.17% 76.89% 69.33% 78.27% 66.15%

3.3. Spatial-Temporal Dynamics of the NLDC

The NLDC is visualized as described in Section 2.3.3 (Figure 10). The NLDC traversed
Beijing, Tianjin, Shaanxi, Shanxi, Hebei, and Henan provinces, and generally had a negative
trend from the eastern high latitude to the western low latitude. In terms of the moving
regions, the NLDC had an obvious trend in Beijing, Tianjin, Shanxi, and Hebei provinces.
In terms of the years of the movement, the NLDC movement trend was obvious between
2010–2015 and 2015–2020.
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The method described in Section 2.3.4 was used to quantify the north-south and east-
west movement of the NLDC (Figures 11 and 12). In the north-south direction, the NLDC
fluctuated southward during the periods 2001–2005, 2005–2010, and 2010–2015, and there
was a slight northward movement during the period 2015–2020 (Figure 11). During the
periods 2001–2005, 2005–2010, and 2010–2015, the NLDC moved south by an average of
1.20 km, 0.30 km, and 6.83 km, respectively. The southward movement mainly occurred in
Beijing, Hebei, and Henan provinces, with a maximum shift of 41.15 km, 51.33 km, and
66.60 km, respectively. During the period 2015–2020, the NLDC moved 6.35 km northward
on average, mainly in Henan Province, with a maximum of 55.60 km.
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In the east-west direction, the NLDC fluctuated eastward during the periods 2001–2005,
2010–2015, and 2015–2020, and there was a slight westward movement during the period
2005–2010 (Figure 12). During the periods 2001–2005, 2010–2015, and 2015–2020, the NLDC
moved 5.78 km, 0.44 km, and 18.96 km, respectively, eastward, on average. The eastward
movement mainly occurred in Hebei Province, with the farthest movement of 109.52 km.
During the period 2005–2010, the NLDC moved westward by 3.67 km on average, mainly
in Hebei Province, with a maximum of 52.12 km.

4. Discussion
4.1. Annual Map of Double-Cropping Croplands over Large Spatial Domains

The increasing public availability of satellite data archives and free access to cloud-
based geospatial computing platforms such as the Google Earth Engine (GEE) provide un-
precedented opportunities to determine cropping intensity over large scales. Several studies
have tried to identify the cropping intensity using the peak detection method [26,47,48].
However, most existing efforts have focused on only one specific small region or one
specific year, which would limit the application of cropping intensity maps due to the
fact that the ability of the method to migrate in spatial-temporal terms has not yet been
examined. Additionally, knowledge regarding the multi-year dynamics of the northern
limit of cropping intensity is still poor.

Here, we used multi-year MODIS data as well as a phenology-based algorithm to
generate double-cropping maps for the major grain producing regions in China. Specifically,
each crop growth cycle was identified using the simple principle that bare soil must be
present before sowing and after harvesting, which can be determined by the LSWI.

4.2. Analysis of Driving Factors for Shifts of the NLDC

Our analysis indicated that the NLDC showed a general trend of moving south and
east during the period 2001–2020 in northern China. However, this does not seem to
be consistent with climate change trends. Generally, the limit moves northward during
warm and wet periods, and southward during cold and dry periods [49]. Growing season
temperatures have increased significantly over the past few decades [50,51], while, more
and more arid areas are getting wetter [52,53]. This makes it possible to implement double-
cropping systems at higher latitudes, indicating that the climatic resource conditions
suitable for double cropping are gradually expanding northwards. The resulting advance of
SDT10 and delay of EDT10 were both the main factors that affected the spatial distribution
of potential cropping systems [13,14,54], but these do not apply to the NLDC.

The interaction of human activities and climate change provides insights into the
movement of the NLDC. Particularly, human activities play a major role in the formation
and change of NLDC. For example, the out-migration of agricultural labor [55,56]. As a
result of rural-to-urban population migration, the double-cropping system of cropland de-
creased along with cropland abandonment, especially in low-quality croplands in the hilly
rural and mountainous regions [55,57]. It is difficult to implement mechanized operations
in mountainous and hilly terrain [58,59]. Additionally, the aging of the agricultural labor
force would have an impact on maintaining the present double-cropping system [56].

A series of agricultural stimulation policies since the start of the 21st century have
also helped drive the movement of NLDC, including the elimination of the agricultural
tax, increased agricultural subsidies, and increased grain price [4,57]. Since 2002, China
has carried out agricultural tax reform in Hebei, Shandong, Henan, and Hubei provinces,
which to some extent increased farmers’ production enthusiasm [60] and caused the NLDC
to move slightly westward after 2005. Due to the lack of groundwater and rainfall in
winter, since 2014, Hebei Province has implemented a policy of “one cropping for fallow,
one cropping for rainfed”. As a result, a large number of croplands have changed from
double cropping to the single cropping of soybeans, peanuts, and cotton [26]. Therefore,
The NLDC of Hebei province moved obviously eastward after 2015. Additionally, the
Grain for Green Project (GGP) has converted a large amount of cropland to woodland and
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grassland since 1999, with Shaanxi and Hebei being the main provinces where this policy
was implemented [61].

The NLDC movement in Beijing and Tianjin may be attributed to socioeconomic fac-
tors [59,62]. In the past 20 years, the cropland abandonment process was spatial-temporally
coupled with urbanization, and urbanization has been found to be the main cause of farm-
land abandonment in suburban fields, especially high-quality cropland [57]. Shaanxi and
Shanxi provinces are inland of northwest China, where the climate is dry and ecosystems
are fragile. Therefore, water resources and cropland quality are the main factors affecting
NLDC movement.

4.3. Uncertainties

Several issues of our analysis must be given attention. First, the errors present in the
double-cropping maps would affect the NLDC extraction, including data errors introduced
by the MODIS dataset [63,64], the cropland extent dataset, and algorithm errors introduced
by differences in vegetation type and climate. Second, we used the kernel density estimation
threshold of 95th percentile to extract the NLDC, due to the relatively large area of double-
cropping fields that we mainly focused on. There are still very few sporadic fields of double
cropping that remain uncovered.

5. Conclusions

The northern limit of double cropping (NLDC) was firstly introduced as a critical
indicator of agricultural shifts in China. It is crucial to understand the spatial-temporal
shifts of the NLDC in order to develop adaptation strategies and ensure food security
in China. Time-series NLDC maps were used to evaluate the spatial-temporal dynamics
of double cropping in Northeast China. Here, we used MOD09GA Version 6 data to
construct crop growth time series curves that reflected the phenology and growth cycles.
We extracted double-cropping fields by determining the number of effective peaks of the
time series. The total accuracy of our double-cropping maps was 95.97%, and the Kappa
coefficient was 0.91. A novel method was proposed to divide the northern limit of double
cropping, which provided a new empirical research method for the study of crop planting
limits. Our results showed that the movement of the NLDC trended south and east. The
NLDC contributes to the understanding of adaptation and feedback within agricultural
production systems, which is essential to ensure sustainable and equitable development of
food systems in the future.
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