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Abstract: Coastal areas serve as a vital interface between the land and sea or ocean and host about
40% of the world’s population, providing significant social, economic, and ecological functions.
Meanwhile, the sea-level rise caused by climate change, along with coastal erosion and accretion,
alters coastal landscapes profoundly, threatening coastal sustainability. For instance, the Mississippi
River Delta in Louisiana is one of the most vulnerable coastal areas. It faces severe long-term land
loss that has disrupted the regional ecosystem balance during the past few decades. There is an
urgent need to understand the land loss mechanism in coastal Louisiana and identify areas prone
to land loss in the future. This study modeled the current and predicted the future land loss and
identified natural–human variables in the Louisiana Coastal Zone (LCZ) using remote sensing and
machine-learning approaches. First, we analyzed the temporal and spatial land loss patterns from
2001 to 2016 in the study area. Second, logistic regression, extreme gradient boosting (XGBoost), and
random forest models with 15 human and natural variables were carried out during each five-year
and the fifteen-year period to delineate the short- and long-term land loss mechanisms. Finally, we
simulated the land-loss probability in 2031 using the optimal model. The results indicate that land
loss patterns in different parts change through time at an overall decelerating speed. The oil and
gas well density and subsidence rate were the most significant land loss drivers during 2001–2016.
The simulation shows that a total area of 180 km2 of land has over a 50% probability of turning to
water from 2016 to 2031. This research offers valuable information for decision-makers and local
communities to prepare for future land cover changes, reduce potential risks, and efficiently manage
the land restoration in coastal Louisiana.

Keywords: land loss; spatial–temporal analysis; coupled natural–human systems; extreme gradient
boosting; random forest; coastal Louisiana

1. Introduction

From the beginning of the 20th century, coastal areas have drawn increasing attention
from scientists and governments because of the growing population in those regions and
the vital ecosystem resources they provide. However, coastal regions confront various
threats from the changing environment, especially the land loss caused by coastal erosion,
eustatic sea-level rise, subsidence, and human activities, e.g., oil and gas exploration [1–3].
According to the long-term global observations of coastal land erosion and accretion, the
total eroded land from 1984 to 2015 is 28,000 km2, twice the surface of gained land [4].

Coastal Louisiana, one of the most vulnerable coastal regions worldwide, offers
various ecosystem services and is of critical economic importance. Louisiana’s wetlands
comprise nearly 40% of the U.S.’s continental wetlands, which serve as habitats for many
species and buffer zones for coastal communities from the frequent natural hazards [5–7].
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Coastal Louisiana also produces more petroleum and natural gas than any other state in the
nation, contains nearly 30% of the commercial fishing landings of the contiguous United
States, and serves as an international harbor for maritime transportation [8–10].

Meanwhile, coastal Louisiana, like many other coastal areas, suffers from statewide
land loss. From 1932 to 2000, southern Louisiana has lost an estimated 4921 km2 of land
to open water [11]. A recent study reveals that the Mississippi Delta in coastal Louisiana
lost wetlands at a speed of 125 km2 per year from 1983 to 2016 [12]. The disappearing
wetlands lessen the available habitats for many vulnerable species and thus affect the
coastal biodiversity. Meanwhile, the decreasing buffer zone increases the risk of residents
and infrastructures from frequent natural hazards. Therefore, understanding and projecting
the land loss process is critical for governments and residents to prepare for the changes
in environmental threats, develop mitigation and protection strategies, and make better
restoration and relocation decisions.

This study analyzed the land cover changes in Louisiana Coastal Zone (LCZ) and
developed a regional land-loss model through statistics and machine-learning algorithms.
The objectives are three-fold: (1) to reveal the short-term and long-term spatial–temporal
variation of land loss patterns in LCZ during 2001–2016; (2) to identify significant land-loss
variables and quantify land loss mechanisms in the study area at two temporal scales; (3) to
predict land loss possibilities in 2031 under different scenarios. The results offer valuable
insights into land loss mechanisms and predictions, which will help decision-makers and
local communities to reduce potential risks from future land cover changes, and efficiently
manage the land restoration and population relocation in coastal Louisiana. The developed
modeling framework could be customized to investigate land loss patterns in other coastal
regions facing similar issues. The knowledge gained from coastal Louisiana could also
inform other vulnerable coastal regions globally to reduce threats and potential damages
from land loss.

This article proceeds as follows. We first briefly review previous investigations into
land loss patterns and mechanisms in coastal Louisiana in Section 2. Sections 3 and 4
detail the methodology of collecting, processing, and analyzing land loss data and relevant
human–environmental variables. The spatial–temporal land loss patterns, mechanisms, and
simulation results are summarized in Section 5. Finally, Section 6 concludes the findings
of the study, discusses the methodological uncertainties, and provides suggestions for
future research.

2. Study Area

Louisiana Coastal Zone is located in southern Louisiana, USA, and is adjacent to
the northern Gulf of Mexico (ca. 88◦45′–93◦54′ W and 28◦51′–30◦29′ N). It encompasses
20 parishes and covers an area of 42,000 km2 (Figure 1). According to the Coastal Protection
and Restoration Authority (CPRA) of Louisiana 2017 Coastal Master Plan, Louisiana is
in the midst of a land loss crisis that has claimed approximately 5179 km2 of land since
the 1930s [13]. A recent study by Couvillion (2017) also shows that the land area in coastal
Louisiana has decreased approximately 5000 km2 from 1932 to 2016 [14]. Because of the
severe land loss, this area has been highly engineered with over 50 restoration and risk
reduction projects since 2017 to rebuild or sustain lands [15].

However, the land loss pace has gradually slowed down, according to a series of
cartographic depictions of Louisiana land cover changes, due to the implementation of
coastal protection policies, wetland building, and restoration projects [16]. Roy et al. [12]
analyzed nearly 4800 Landsat images and found that the land loss rate fell from nearly
90 km2 per year between 1983 and 1986 to no more than 30 km2 per year between 2010
and 2013.
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Related Research

Numerous studies have attempted to model and simulate land loss in coastal Louisiana
using theoretical or data-driven approaches. For instance, Qiang and Lam [17] used artificial
neural networks and cellular automata to model land use/cover changes in southeastern
Louisiana and projected a total of 263 km2 wetland loss from 2006 to 2016. Zou et al. [18]
evaluated the impact of subsidence on land loss in the Lower Mississippi River Basin and
calculated a growing increase in areas vulnerable to land loss from 44.3 km2/year in 2011
to 240.7 km2/year in 2050. Reed et al. [1] modeled wetland losses in coastal Louisiana
under three sea-level rise scenarios. They found that the scenario of a two-meter eustatic
sea-level increase from 1992 to 2011 could trigger a wetland loss of over 10,000 km2 in the
next 50 years. Glick and others used the Sea Level Affecting Marshes Model (SLAMM) to
investigate the impact of sea-level rise rates on Louisiana coastal wetlands. Their results
indicate that potential wetland losses range from 2188.97 km2 under the lowest sea-level-
rise scenario to 5875.27 km2 under the highest sea-level-rise scenario by 2100 [19].

Meanwhile, abundant investigations discussed the potential human activities and en-
vironmental variables contributing to the land loss process. Olea and Coleman [20] verified
that the exploitation of subsurface geologic resources significantly accelerates the land loss
in coastal Louisiana. Lam et al. [21] revealed that land patches with higher fragmentation
tend to have more land loss, and land protection may be most effective by prioritizing areas
with the least fragmented land patches. Matthew and Gottardi [3] integrated 3D seismic
data, well logs, high-resolution topographic mapping, and historical aerial photography to
understand the land loss process. They found that coastal Louisiana’s land loss is more
severe in high-subsidence-rate areas. Abundant literature has demonstrated that sea-level
rise is a significant variable of coastal Louisiana’s land loss [22–25].

Nevertheless, several challenges exist in quantitatively modeling land loss dynamics
and simulating future land cover patterns in vulnerable coastal regions. First, datasets of
the land loss process and driving variables covering the whole coastal area are either un-
available or inconsistent in formats and resolutions [17,18]. There is a need to convert those
diverse datasets into the same scales and formats before integrating them for modeling land
loss patterns. Second, the land loss mechanism in coastal Louisiana is unclear [18,21,26].
Although previous work has tested the linear relationship between land loss and one
or a few variables [3,21,25], the compounding effects of multiple variables on land loss
probability and their non-linear relationships are scarcely studied. Third, the land loss
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mechanisms in the same region might change over time [27]. There is little research model-
ing and comparing the changing spatial dynamics of land loss over different timescales.
Understanding whether the land loss mechanism in coastal Louisiana is consistent through
time necessitates further investigation.

3. Materials
3.1. Land Use and Land Cover Data

Land use and land cover (LULC) data were accessed from the National Land Cover
Database (NLCD) provided by the Multi-Resolution Land Characteristics Consortium
(https://www.mrlc.gov/data, accessed on 15 November 2021). The data were produced
from Landsat 5 Thematic Mapper (TM) and Landsat 8 Enhanced Thematic Mapper Plus
(ETM+) images through field sampling, validation, and standard quality control review
procedures to ensure high classification accuracy and consistency across space and time [28].
We chose the NLCD dataset because it has been demonstrated as a reliable source to analyze
and model LULC changes at regional and national scales [17,29–31].

The spatial resolution of the NLCD dataset is 30 m by 30 m, translating to around
46.8 million pixels in the study area. The original LULC data include 20 land cover cate-
gories in every two or three years from 2001 to 2019 (LULC data in 1992 are also available
in NLCD but not comparable to later editions). LULC data in 2001, 2006, 2011, and 2016
were chosen in this research. The study area contains 15 original LULC types (Table 1). We
categorized the 15 types into six main classes (water, urban, barren, wetland, agricultural
land, and vegetation) based on the Anderson land use/land cover classification system to
investigate the impacts of neighboring land cover types on land loss probabilities [32]. The
six LULC types were further grouped into land and water to model the spatial–temporal
land loss patterns.

Table 1. The original and reclassified NLCD land cover types.

Original Land Cover Anderson’s Land Cover Classification Land/Water Categories

Water Water Water

Developed, Open Space

Urban

Land

Developed, Low Intensity

Developed, Medium Intensity

Developed, High Intensity

Barren Land Barren

Deciduous Forest

Vegetation
Evergreen Forest

Mixed Forest

Shrub/Scrub

Herbaceuous

Hay/Pasture
Agriculture

Cultivated Crop

Woody Wetlands
Wetlands

Emergent Herbaceuous Wetlands

3.2. Human–Environmental Variables

We selected 15 variables to analyze land loss mechanisms in different periods based
on a review of previous literature [17,18,21,33]. These variables could be classified into
three categories: environment, neighborhood conditions, and human activity (Table 2). The
environment variables include elevation, soil type, original land cover, Moran’s I, distance

https://www.mrlc.gov/data
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to water, and subsidence rate. Previous work suggests that land loss is more likely to
happen in lower elevation and higher subsidence rate areas [18,27,34]. Soil type could
affect the subsidence rate and vegetation cover in coastal regions and indirectly impact
the land loss probability [35,36]. It has been confirmed that coastal areas closer to water
have significantly higher subsidence rates and are more vulnerable to the rising sea level,
leading to a greater risk of land loss [37]. The Moran’s I was tested as a critical land loss
variable in Coastal Louisiana at the 51 × 51 window size [21]. Additionally, the original
LULC is an important variable since land loss is more likely to happen in certain land cover
types, e.g., coastal wetlands [12,17].

Variables in neighborhood conditions are the neighborhood effect of different land
use types. Many LULC studies indicate that the land cover change has significantly
positive spatial autocorrelation [38,39]. The LULC change of one land cell in the next
period is closely related to the LULC types of its neighboring cells. Therefore, the numbers
of neighboring water, urban, barren, vegetation, agriculture, and wetland pixels were
included in the experiment.

This study considered the oil and gas well density, distance to urban areas, and
distance to roads as human activity indicators. The extensive exploitation of oil and gas
resources in coastal regions has been confirmed to contribute to the high wetland loss
rate [26,40]. The distance to urban areas and roads represents the level of urbanization [41],
which affects the variation of land loss rates because newly developed urban areas are
prone to be adjacent to existing urban areas and land loss areas tend to be away from urban
areas [17,42].

Table 2. Sources and formats of input variables.

Variables Data Source Original Format

Environment

Elevation SRTM 1 Arc-Second Global from US
Geological Survey

Raster
(30 m × 30 m)

Soil type National Cooperative Soil Survey and
supersedes the State Soil Geographic Polygon

Subsidence rate NOAA’s National Geodetic Survey, recorded
from 1920 Point

Original land cover NOAA Coastal Service Center, updated in
2001, 2006, 2011 and 2016

Raster
(30 m × 30 m)

Moran’s I Same as above Same as above

Distance to water Same as above Same as above

Neighborhood Conditions

Number of water cells

NOAA Coastal Service Center, updated in
2001, 2006, 2011 and 2016

Raster
(30 m × 30 m)

Neighborhood size:
3 × 3 cells

Number of urban cells

Number of barren cells

Number of vegetation cells

Number of agriculture cells

Number of wetland cells

Human Activity

Oil/gas well density Louisiana Department of Natural Resource Point

Distance to road US Census Bureau, updated in 2000, 2006, 2011
and 2016 Polyline

Distance to urban NOAA Coastal Service Center, updated in
2001, 2006, 2011 and 2016

Raster
(30 m × 30 m)

The original input datasets were collected from different resources in diverse formats,
which were then converted to raster layers in the same two-dimensional array of 30-by-
30 m cells for the subsequent analysis. Simple Kriging interpolation and point density
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methods were used to acquire the state-wide subsidence rates and oil/gas well densities.
Euclidean distance was used to calculate the proximity variables. Focal statistics were used
to sum cells by LULC types in a 3 by 3 window to explore the neighborhood effect. The
landscape fragmentation levels were represented as the Moran’s I of the land/water map
at 51 × 51 grid size, as suggested in Lam et al. [21]. Finally, all the selected input variables
were linearly normalized to the range of 0 to 1. Figure 2 shows the preprocessed data layers.

4. Methodology
4.1. Statistical Analysis

Figure 3 shows the overall workflow of this study. The first step was to calculate land
loss and land gain in LCZ at different time periods to reveal their spatial and temporal
patterns. In each year, land areas were assigned “1” and water areas were assigned “0”.
Land changes at four periods, 2001–2006, 2006–2011, 2011–2016, and 2001–2016 were
computed to show the short-term and long-term trends of land–water transitions during
the 15-year period by raster calculation.
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Then land loss and non-loss pixels were sampled for model building. During the
model building process, the value of the land loss pixels was labeled as “1” and the non-loss
pixels, which include unchanged and land gain pixels, were assigned “0”. Most land pixels
tend to stay in their previous states, which means land loss pixels consist of a small portion
of the whole study area. The imbalanced land loss vs. non-loss pixel ratio is unsuitable
for conducting regression analysis and can affect the classification accuracy when building
machine learning models, e.g., random forest models [43]. Therefore, we adopted the
following processing to balance the land loss vs. non-loss pixel ratio. Initially, we created
the histograms of the conditional probability of land loss by each variable to reveal the
non-linear relationships between variables and land loss probabilities. Buffer analysis was
then applied based on the histograms to narrow down the study area to high land loss
probability zones. Finally, we selected all land loss pixels and randomly selected 2.5 times
of the land loss “1” pixels from non-loss “0” pixels in the buffered area for each period.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22 
 

 

4. Methodology 
4.1. Statistical Analysis 

Figure 3 shows the overall workflow of this study. The first step was to calculate land 
loss and land gain in LCZ at different time periods to reveal their spatial and temporal 
patterns. In each year, land areas were assigned “1” and water areas were assigned “0”. 
Land changes at four periods, 2001–2006, 2006–2011, 2011–2016, and 2001–2016 were com-
puted to show the short-term and long-term trends of land–water transitions during the 
15-year period by raster calculation. 

Then land loss and non-loss pixels were sampled for model building. During the 
model building process, the value of the land loss pixels was labeled as “1” and the non-
loss pixels, which include unchanged and land gain pixels, were assigned “0”. Most land 
pixels tend to stay in their previous states, which means land loss pixels consist of a small 
portion of the whole study area. The imbalanced land loss vs. non-loss pixel ratio is un-
suitable for conducting regression analysis and can affect the classification accuracy when 
building machine learning models, e.g., random forest models [43]. Therefore, we adopted 
the following processing to balance the land loss vs. non-loss pixel ratio. Initially, we cre-
ated the histograms of the conditional probability of land loss by each variable to reveal 
the non-linear relationships between variables and land loss probabilities. Buffer analysis 
was then applied based on the histograms to narrow down the study area to high land 
loss probability zones. Finally, we selected all land loss pixels and randomly selected 2.5 
times of the land loss “1” pixels from non-loss “0” pixels in the buffered area for each 
period. 

 
Figure 3. The workflow of this study. 

We calculated Pearson’s correlation coefficients between each pair of the fifteen var-
iables to assess and eliminate multicollinearity. If the correlation coefficient between any 
two variables was greater than 0.6 [44], we selected the variable that has a higher correla-
tion with land loss probabilities for the subsequent land loss modeling and forecasting. 

Figure 3. The workflow of this study.

We calculated Pearson’s correlation coefficients between each pair of the fifteen vari-
ables to assess and eliminate multicollinearity. If the correlation coefficient between any
two variables was greater than 0.6 [44], we selected the variable that has a higher correlation
with land loss probabilities for the subsequent land loss modeling and forecasting. This
method yields twelve variables, including elevation, subsidence rate, distances to urban
and water, numbers of neighboring water, urban, barren, vegetation, and agriculture cells,
Moran’s I, the original land cover type, and oil/gas well density.

4.2. Machine Learning

This research employed three popular supervised classification models, (1) multivari-
able stepwise Logistic Regression (LR) model as a baseline model, (2) eXtreme Gradient
Boosting (XGBoost) model, and (3) Random Forest (RF) model to investigate the com-
pounding effects of environmental conditions and human activities on the land loss in four
time periods.
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LR is a linear regression algorithm with a discrete dependent variable. Compared
with other machine learning algorithms, it could be viewed as a white box model which
is able to establish the linear relationship between variables and the land loss probability.
The land loss probability P(x) is related with variables x by the logit function, as shown in
Equation (1):

P(x) =
1

1 + e−(a+β1x1+β2x2+···+βkxk)
(1)

where α is the constant, βk is the coefficient of independent variable xk, which is the land
loss driving variable in this study. The LR method could reveal the effect of each variable
on land loss through the variable’s estimated coefficient.

RF is a non-linear ensemble classification algorithm that uses decision trees as base
classifiers. Each decision tree is trained using a subset of data randomly sampled from
the whole input dataset and taking a random selection of features rather than using all
features, referred to as the bagging method [45]. The RF algorithm splits the input variables
into independent groupings based on the bagging algorithm and applies the Gini Index
to generate optimized tree structures for classification [46]. The relative importance of
each variable in the RF model could be derived by measuring the classification error ratio
increase in out-of-bag data when the variable value was permuted randomly [47].

XGBoost is an efficient and scalable implementation of a gradient-boosting framework
and has been a popular method in recent years [48]. The principle of XGBoost is to
produce a prediction model in the form of a boosting ensemble of weak classification trees
by a gradient descent that optimizes the loss function [48]. XGBoost has better control
against overfitting by using more regularized model formalizations. It is highly effective in
reducing the computation time and can be applied in classification and regression tasks.
Similar to the RF algorithm, the XGBoost model measures feature importance by calculating
the performance improvement gained from each attribute split point.

To compare the three machine learning models, we need to ensure the consistency of
input variables in model training. Hence, significant variables selected by the stepwise
logistic regression were included in RF and XGBoost analysis. In addition, to conduct RF
and XGBoost analysis, it is necessary to adjust the models’ hyperparameters. A grid search
for model performance optimization was carried out with the 10-fold cross-validation
method based on an accuracy metric.

4.3. Accuracy Analysis

The numbers of pixels for training models were determined by the land loss area and
different in each period: 915,864 in 2001–2006, 611,696 in 2006–2011, 401,262 in 2011–2016,
and 901,117 in 2001–2016. In each period, 70% of the pixels was selected for model training,
and the remaining 30% was used for cross validation. The Area Under Curve (AUC) value,
classification accuracy, precision, recall, and F1 score were used to evaluate the effectiveness
of LR, RF and XGBoost models (Equations (2)–(6)). AUC measures the area under the
receiver operating characteristic (ROC) curve. An area of 1 represents a perfect test, and
0.5 means a random test [49]. Accuracy is the ratio of correct classifications to all instances.
Precision is the fraction of correctly identified land loss pixels (True Positive, TP) among all
modeled land loss pixels (TP and False Positive, FP), while recall is the fraction of TP pixels
among all actual land loss pixels (TP and False Negative, FN). F1 score is the harmonic
mean of recall and precision. Precision, recall, and F1 score are demonstrated as preferred
measures to evaluate the performance of models developed from uneven datasets [50].

AUC =
∑t0∈D0 ∑t1∈D1 1[ f (t0) < f (t1)]

|D0|∗|D1|
(2)
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where 1[ f (t0) < f (t1)] denotes an indicator function which returns 1 if f (t0) < f (t1) and 0
otherwise; D0 is the set of negative examples, and D1 is the set of positive examples.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score = 2∗ Precision ∗ Recall
Precision + Recall

(6)

5. Results
5.1. Spatial and Temporal Patterns of Land Change

Figure 4a shows the temporal changes in total land and water areas in the study area in
the four years. The land area was 100 and 200 km2 more than the water area in LCZ in 2001
and 2016. An opposite pattern was observed in 2006 and 2011: that the land area was nearly
100 km2 less than the water area. The land loss crisis was more severe during 2001–2006,
with a net land loss area of over 100 km2. On the contrary, net land gains were detected
during the other two 5-year periods (Figure 4b). Over fifteen years, LCZ’s land loss area
was more than 200 km2, while the land gain area was nearly 300 km2. The land/water
fluctuation was further investigated by quantitatively analyzing the land/water transitions
of the same pixel over different periods. Among 923,596 pixels that experienced at least one
land/water transition from 2001 to 2016, 28.02 and 33.09% of them went through land loss
and land gain and remained as water and land, respectively. Another 24.68% went through
a land–water–land transition, while 9.49% underwent a water–land–water conversion. The
remaining 4.72% of pixels shifted their statuses from land to water or water to land every
five years.
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Figure 4. Land – water transitions in LCZ from 2001 to 2016. (a) Land and water area. (b) Land loss
and land gain.

Since the changed land/water area occupied a small part of the study area in each
period, geographically visualizing land loss and land gain is challenging. Therefore, the
Aggregated Change Index (ACI) representing the ratio of land loss pixels within the
neighborhood of a 50-pixel radius circle was applied to each pixel to make the changed
pixels more visible [17]. ACI values range from −1 to 1, where a negative value represents
a 100% land gain, and a positive value indicates a 100% land loss in the buffered circle of
each pixel.
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The ACI values in different periods reveal the spatial–temporal land loss and land
gain patterns (Figure 5). In 2001–2006, land loss in LCZ was much more severe in the
central and eastern coastal regions. The land loss crisis slowed down from 2006 to 2011,
and land loss areas were mainly in the western and central LCZ. From 2011 to 2016, LCZ
went through a statewide coastal land gain with local land loss observed along the western
coastline. In the long-term period (2001–2016), land loss areas mainly concentrated in the
Mississippi Delta, the middle of the Terrebonne Basin, and western regions, while land
gain was detected in southeast coastal regions. The statewide patterns are consistent with
the study conducted by Roy et al. [12] comparing land loss speeds between 1983–1999 and
1999–2016 in Atchafalaya-Vermillion and Barataria, which found decelerating land loss in
the two basins.
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5.2. The Relationship between Land Loss and Selected Variables

Figure 6 displays the conditional probability distributions of land loss by the 15 vari-
ables during every five years and the whole period, unraveling different variables’ distinct
impacts on the land loss probability. Because land loss pixels consist of a small portion of
the whole study area, the conditional probability was multiplied by 1000. The relationships
between the land loss probability and elevation, distance to water, subsidence, and oil/gas
well density is generally monotonic in all three short-term and whole periods. The land loss
probability is higher in areas with lower elevation. The land loss process primarily took
place in areas within 250 m from the water, and the probability decreases exponentially
with the increase in the distance to water areas. Areas with faster subsidence speed and
greater oil/gas well density also present higher land loss probability.
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Nonlinear relationships between land loss probability and a few variables were ob-
served. Although areas distant from urban and roads had the highest land loss probability
from 2001 to 2016, regions closer to urban or roads also showed high land loss probability.
Fragmentation plays a positive role in the land loss process, but conditional probability
reveals that land pixels with the Moran’s I index between 0.5–0.7 are more likely to become
water in LCZ.

Categorical land characteristics also affect the land loss probability. Land loss is more
likely to happen if the soil type is clay or organic material. Barren land had a significantly
higher land loss rate than other land cover types during the fifteen years. Land loss pixels
had more barren/wetlands pixels and fewer urban/water pixels in their surroundings. The
neighborhood effect of vegetation does not consistently impact the land loss probability.

The conditional probability analysis indicates that the majority of land loss happened
in regions where the elevation was lower than 10 m and the distance to water was closer
than 250 m in the fifteen years. Therefore, we defined those areas (elevation ≤ 10 m and
distance to water ≤ 250 m) as High Land-loss Probability (HLP) zones and conducted the
land loss modeling and simulation within the HLP zones.

5.3. Model Comparision

After conducting the stepwise logistic regression analysis, the same set of 11 out of
the 12 variables was found significant in each short and long-term land loss model. Those
variables include elevation, oil/gas well density, Moran’s I, subsidence rate, numbers of
neighboring urban, barren, vegetation, agriculture and water cells, and distances to water
and urban areas. Those 11 variables were utilized in both RF and XGBoost analysis to
ensure the consistency of driving factors in three machine learning models. Table 3 shows
the RF and XGBoost hyperparameter ranges and the optimized values detected by the grid
search while considering computational costs. The optimal RF models were derived by
tuning four model parameters, including the number of trees (n_estimators), the number
of features at each node (max_feature), the minimum number of samples required to split
a node (min_samples_split), and a statistical method for estimating a quantity from a
data sample (bootstrap). Results show that RF models with 800 trees, auto max_feature,
2 min_samples_split and false bootstrap achieved the best performance in land loss classifi-
cation. Four parameters in the XGBoost algorithm were adjusted, including the maximum
number of iterations (nrounds), learning rate (eta), regularization control (gamma), and
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the minimum number of instances required in a child node (min_child_weight), and the
optimized values are 400, 0.3, 0, and 1.

Table 3. The RF and XGBoost grid search hyperparameters.

Model Parameter Range Optimum Value

RF

n_estimators 400 to 1200 800
max_feature [Auto, SQRT, Log2] Auto

min_samples_split [2, 4, 8] 2
Bootstrap [True, False] FALSE

XGBoost

Nrounds 100 to 500 400
Eta 0 to 1 0.3

Gamma 0 to 1 0
min_child_weight 0 to 10 1

The performance of the optimal LR, XGBoost, and RF models is summarized in Table 4.
The AUC values of the four RF models range from 0.92–0.95, which are much higher than
the AUC values of the four LR models (0.70–0.75) and the four XGBoost models (0.85–0.87).
The accuracy, precision, recall, and F1-score of the LR models are 0.70–0.75, 0.62–0.69,
0.20–0.32, and 0.30–0.44, respectively, while XGBoost and RF models yield similar values of
accuracy (0.88–0.91), precision (0.83–0.88), recall (0.72–0.79) and F1-score (0.77–0.82).

Table 4. Accuracy estimation for LR, XGBoost, and RF models.

2001–2006 2006–2011 2011–2016 2001–2016

LR XGBoost RF LR XGBoost RF LR XGBoost RF LR XGBoost RF

AUC 0.73 0.86 0.93 0.70 0.87 0.95 0.72 0.85 0.92 0.75 0.87 0.95
Accuracy 0.76 0.89 0.89 0.75 0.90 0.90 0.75 0.89 0.88 0.76 0.91 0.91
Precision 0.69 0.84 0.85 0.62 0.86 0.86 0.64 0.84 0.83 0.63 0.88 0.88

Recall 0.32 0.77 0.75 0.31 0.79 0.78 0.25 0.76 0.72 0.20 0.75 0.74
F1-score 0.44 0.80 0.80 0.41 0.82 0.82 0.36 0.80 0.77 0.30 0.80 0.80

The low recall values indicate that the trained LR models tend to classify more pixels
as non-loss pixels and cannot fully identify land loss pixels. Considering all five evaluation
matrices, the LR model trained in 2001–2006 performed the best, while the long-term LR
model in 2001–2016 had the worst performance. The limited performance of the linear LR
models is expected as the conditional land loss probability analysis in the previous section
has demonstrated the non-linear relationships between land loss and a few driving factors.

The performance of the XGBoost and the RF models was relatively consistent in all
four periods. The long-term land loss model had the highest AUC, accuracy, and precision
among all four models. Comparing the five accuracy estimations shows that land loss
models trained by RF algorithms outperformed models derived from LR and XGBoost in
successfully recognizing most land loss pixels and avoiding identifying non-loss pixels
as land loss ones. The long-term land loss model derived from the RF algorithm had the
highest AUC, accuracy, and precision among all four models.

5.4. Models Explanation

The coefficients of the LR model for each time period are listed in Table 5, suggesting
consistent linear effects of variables on land loss in four time periods. Elevation, the distance
to water, and the neighborhood effect of urban areas negatively affected both short-term
and long-term land loss processes in LCZ. Simultaneously, the subsidence rate and the
neighborhood effects of barren, water, vegetation, and agriculture areas positively impacted
the land loss probability.
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Table 5. Coefficients of the multi-variate LR model.

2001–2006 2006–2011 2011–2016 2001–2016

Elevation −4.63 −5.07 −6.19 −4.30
Number of urban cells −4.10 −4.73 −2.68 −3.71
Distance to water area −2.55 −1.98 −1.56 −2.42
Oil/gas well density +0.27 −1.68 −1.76 −1.14

Distance to urban area +0.28 −2.56 −3.17 −0.28
Moran’s I +0.19 +0.26 −0.27 +0.61

Number of vegetation cells +0.79 +1.29 +2.65 +1.05
Number of water cells +1.27 +1.57 +1.78 +1.06

Number of agriculture cells +1.15 +0.88 +0.73 +1.55
Subsidence rate +1.76 +4.37 +1.28 +2.16

Number of barren cells +4.34 +3.11 +4.87 +4.15

Note: all variables in each period are significant at the p-value of 0.001.

The oil/gas well density, Moran’s I, and the distance to urban areas have contradicting
effects on the land loss probability in different periods, possibly due to collinearity between
variables. Hence, we conducted the single variable LR for these three variables and
summarized the results in Table 6 to figure out the impact of the three variables on the
land loss probability. The effects of oil/gas well density and Moran’s I on land loss were
constantly positive in each short-term period, indicating that land loss is more likely to
happen in more fragmented areas with higher oil and gas explorations. However, the
relationship between land loss probability and the distance to urban areas changed over
time. Land loss probability was higher in areas away from urban areas in 2001–2006.
However, during 2006–2011 and 2011–2016, land loss probability was higher in areas closer
to urban areas.

Table 6. Coefficients of the single variable LR model.

2001–2006 2006–2011 2011–2016 2001–2016

Oil/well gas density +1.66 +0.98 +0.13 +0.46
Moran’s I +1.25 +0.50 +0.15 +1.14

Distances to urban +2.21 −0.08 −0.55 +1.49
Note: all variables in each period are significant at the p-value of 0.001.

Figure 7 shows the relative importance of the same set of factors computed from
XGBoost and RF models. Oil and gas well density and subsidence rate were the two most
important variables in all XGBoost and RF models. The Moran’s I, distances to urban and
water, and elevation were also significant variables with high importance scores. The effects
of neighboring barren, water, urban, agriculture, and vegetation coverages were minimal
on both short-term and long-term land loss processes based on XGBoost and RF models.

5.5. Land Loss Simulation and Prediction

We adopted the optimal RF-trained land loss model from 2001 to 2016 to simulate
the land loss patterns from 2001 to 2016 and from 2016 to 2031 in the buffered HLP zone
since RF models outperformed LR and XGBoost models. Because the number of the error
pixels is too small to be visible in the study area, an aggregated error index (AEI) using
the same concept as the ACI was introduced and applied. AEI ranges from 0 to 1, where 0
means no simulation error and 1 indicates that all neighboring pixels are falsely predicted.
Figure 8 shows the spatial pattern of the AEI based on the actual and simulated land loss in
2016. The maximum AEI value was 0.3, revealing that the RF simulated land loss is highly
consistent with the actual land loss. Areas with relatively higher classification errors were
in the western coastline, Mississippi River Delta, Terrebonne Basin, and along the eastern
shore of Lake Pontchartrain.
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Table 7 lists the predicted land loss pixel numbers and areas in 2031 by probabilities at
ten-percent intervals. The spatial patterns of simulated land loss in 2016–2031 are displayed
in Figure 9. We defined and considered two scenarios in this study, moderate and severe.
The moderate scenario predicts that land pixels with a land loss probability greater than
50% will convert to water in 2031. The severe scenario classifies land pixels with a land loss
probability of over 25% as land loss pixels. Under the moderate scenario, a total area of
173.19 km2 in the buffered zones is projected to be lost from 2016 to 2031. The predicted
land loss was located in the central and southeastern LCZ, especially in zones (a), (b), and
(c) in Figure 9. Under the severe scenario, coastal areas in Terrebonne Basin, Barataria Basin,
and Mississippi Delta would experience severe land loss, and the total forecasted land loss
area was 2656.74 km2.
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Table 7. Statistics of land loss pixels and areas in the HLP zone.

Probability of Land Loss The Number of Pixels Area (km2)

0–10% 4,662,297 4196.07
10–20% 3,036,637 2732.97
20–30% 2,195,063 1975.56
30–40% 1,318,586 1186.73
40–50% 436,932 393.24
50–60% 127,998 115.20
60–70% 52,131 46.92
70–80% 11,735 10.56
80–90% 556 0.50

90–100% 8 0.01
Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 9. Simulated land loss patterns in LCZ from 2016 to 2031 under moderate and severe scenar-
ios. (a) Timbalier Island in Terrebonne Basin. (b) Mississippi River Delta Basin. (c) Breton National 
Wildlife Refuge in Pontchartrain Basin. 

6. Discussion and Conclusions 
This article investigated the spatial and temporal patterns of land loss in LCZ and 

analyzed the short-term and long-term land loss drivers and mechanisms. The objectives 
are threefold: (1) to examine the land loss patterns in LCZ from 2001 to 2016, (2) to quantify 
the land loss predictors in different periods, and (3) to simulate the future land loss. LR, 
XGBoost, and RF models were trained to understand the compounding effects of multi-
category variables on the land loss process in LCZ. Finally, we simulated the land loss 
probability in LCZ from 2016 to 2031. The study demonstrated that overall land loss in 
LCZ decelerated since 2006 with more land gain than land loss along the Louisiana coast-
line. However, land loss/gain rate varies in different areas. Compared to the Mississippi 
River Delta, which experienced a significant land gain since 2006, there was an increasing 
land loss risk in western LCZ. The performance of XGBoost and RF models is better than 
that of LR models in both short- and long-term land loss modeling. The optimal land loss 
model is the long-term RF model in 2001–2016 with an F1-score of 0.82. Both the XGBoost 
and RF models reveal that oil/gas well density, subsidence rate, distance to urban and 
water areas, and Moran’s I had constant high impacts on the short- and long-term land 

Figure 9. Simulated land loss patterns in LCZ from 2016 to 2031 under moderate and severe scenarios.
(a) Timbalier Island in Terrebonne Basin. (b) Mississippi River Delta Basin. (c) Breton National
Wildlife Refuge in Pontchartrain Basin.



Remote Sens. 2022, 14, 896 17 of 20

6. Discussion and Conclusions

This article investigated the spatial and temporal patterns of land loss in LCZ and
analyzed the short-term and long-term land loss drivers and mechanisms. The objectives
are threefold: (1) to examine the land loss patterns in LCZ from 2001 to 2016, (2) to quantify
the land loss predictors in different periods, and (3) to simulate the future land loss. LR,
XGBoost, and RF models were trained to understand the compounding effects of multi-
category variables on the land loss process in LCZ. Finally, we simulated the land loss
probability in LCZ from 2016 to 2031. The study demonstrated that overall land loss in LCZ
decelerated since 2006 with more land gain than land loss along the Louisiana coastline.
However, land loss/gain rate varies in different areas. Compared to the Mississippi River
Delta, which experienced a significant land gain since 2006, there was an increasing land
loss risk in western LCZ. The performance of XGBoost and RF models is better than that of
LR models in both short- and long-term land loss modeling. The optimal land loss model
is the long-term RF model in 2001–2016 with an F1-score of 0.82. Both the XGBoost and RF
models reveal that oil/gas well density, subsidence rate, distance to urban and water areas,
and Moran’s I had constant high impacts on the short- and long-term land loss in coastal
Louisiana during 2001–2016. The simulation result shows that a total of 173 km2 areas have
an over 50% of land loss probability in 2016–2031.

This study generates valuable knowledge about the land loss crisis in coastal Louisiana.
Contrary to the previous land loss simulations, which projected around 5000 km2 land
loss over the next 50 years [1,13,51], our results demonstrate that there were more land
gains than land losses in recent years along the Louisiana coastline, especially since 2006.
Simulation results further indicate that no more than 200 km2 of land will become water
in LCZ during 2016–2031. This trend is confirmed in the latest 2019 LULC data obtained
from the NLCD. We calculated the land loss areas and annual rates during 2016–2019 and
compared them with the previous three 5-year periods (Figure 10). The yearly land loss
speed in 2016–2019 was slower than the rates in 2001–2006 and 2006–2011, and greater
than the speed in 2011–2016. The following reasons could explain the decelerated land
loss in LCZ. First, because of recent land protection and restoration activities, the land loss
rate was slowed down [15]. Second, natural disasters such as Hurricanes Katrina (2005)
and Isaac (2012) might play a beneficial role in coastal wetland restoration by delivering
more sediments to coastal regions that raise soil elevations and stimulate organic matter
production [52].
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According to the LR result in different periods, elevation, the distance to water, and the
neighborhood effect of urban cells have adverse impacts on the land loss in LCZ. This result
is reasonable because land erosion tends to occur in areas with a lower altitude and that are
closer to water. The neighborhood effect of urban cells has physical resistance to land loss
and plays a beneficial role in land gain because of urbanization [53,54]. The neighborhood
effects of other land cover types, including barren, water, vegetation, and agriculture cells,
positively affect the land loss process in LCZ. The subsidence rate, Moran’s I, and oil/gas
well density have a positive effect on LCZ land loss. Based on RF and XGBoost models in
different periods, oil/gas well density, subsidence rate, distance to water and urban areas,
and Moran’s I are the most significant features predicting the land loss process.

In addition to providing local knowledge for decision-makers and communities in
coastal Louisiana, this research also offers valuable insights on (1) approaches to incorporate
human impacts in environmental modeling, (2) a framework to analyze, model, and
simulate LULC changes, and (3) performance evaluations of different regression and
machine learning algorithms in land loss modeling, which could benefit large-scale (e.g.,
national or global) studies. Researchers could utilize this work to identify critical land loss
drivers, select and customize machine learning algorithms, and simulate land loss or other
landscape dynamics at a larger scale.

While this study has successfully revealed the short- and long-term spatial dynamics
of land loss in LCZ and predicted its future land loss pattern to inform land restoration
planning, there are several limitations that require further investigation. First, some critical
variables, e.g., subsidence rates and elevations, were not updated in the modeling because
datasets documenting those variables in different years are unavailable. This limitation
can be resolved by developing physical or data-driven models of the critical variables and
using the modeled variables in different years to simulate the land loss process. Second,
uncertainties in the LULC data exist due to the image classification uncertainty [31], which
might influence the modeling results. Multi-source data, such as LiDAR data, more
sampling data, and high-resolution remote sensing data could be applied in future research
to generate more accurate and reliable LULC data products. Third, the current land
loss model does not consider different sea-level rise or climate change scenarios and
might underestimate future land changes. Fourth, this study categorized the study area
into land loss and no land loss classes and overlooked the land gain in modeling and
simulations. Further studies could include both land loss and land gain processes in
analyzing coastal land cover change. Finally, other machine learning models, such as
artificial neural networks and deep learning, could be included to determine the optimal
model for land loss predictions in future research.
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