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Abstract: The point clouds acquired with a mobile LiDAR scanner (MLS) have high density and
accuracy, which allows one to identify different elements of the road in them, as can be found in many
scientific references, especially in the last decade. This study presents a methodology to characterize
the urban space available for walking, by segmenting point clouds from data acquired with MLS and
automatically generating impedance surfaces to be used in pedestrian accessibility studies. Common
problems in the automatic segmentation of the LiDAR point cloud were corrected, achieving a very
accurate segmentation of the points belonging to the ground. In addition, problems caused by
occlusions caused mainly by parked vehicles and that prevent the availability of LiDAR points in
spaces normally intended for pedestrian circulation, such as sidewalks, were solved in the proposed
methodology. The innovation of this method lies, therefore, in the high definition of the generated
3D model of the pedestrian space to model pedestrian mobility, which allowed us to apply it in the
search for shorter and safer pedestrian paths between the homes and schools of students in urban
areas within the Big-Geomove project. Both the developed algorithms and the LiDAR data used are
freely licensed for their use in further research.

Keywords: LiDAR point cloud; mobile LiDAR system; point cloud segmentation; urban road; urban
mobility; pedestrian accessibility

1. Introduction

City mobility is changing and new urban planning is promoting environments that
favor walking and access to basic public services. The analysis of pedestrian movement
in urban environments has attracted the attention of the scientific community in recent
years. Having environments that favor walking for citizens implies a reduction in the
use of private vehicles, with the consequent positive impact on reducing greenhouse
gas emissions, improving air quality and reducing environmental pollution. In addition,
there are numerous studies evidencing the human health benefits associated with walking
as a physical activity [1–4], enhanced by the increase in natural spaces in cities, to the
detriment of spaces dedicated to private vehicles. However, identifying the most efficient
pedestrian transit zones in terms of comfort and safety is not easy, because it requires
precise knowledge of the geometry of multiple roadway elements, such as sidewalks,
pavement, pedestrian crossings, curbs, slopes, stairs, trees, etc. Consideration must be
given to the need to guarantee pedestrian itineraries for the autonomous transit of people
with different mobility circumstances. For this purpose, it is essential to know the geometric
conditions of the routes in plan and elevation, considering, in a singular way, crossings,
changes in direction, slopes, gradients, urban elements and furniture in the spaces of
displacement, paved surface, signaling, etc. Knowing the quality of the dimensions and
state of conservation of sidewalks for these pedestrian routes can be very useful for public
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space managers, but it requires exhaustive information on the characteristics of roads in
urban areas.

LiDAR (Light Detection And Ranging) scanning, both with airborne and terrestrial
sensors, allows one to characterize the shape of an object or terrain by measuring the time
delay between the emission of a laser pulse and the detection of its reflected signal on
the measured element, achieving representations with high density of three-dimensional
points [5] with sub-meter accuracy, reaching sub-center accuracy in some sensors. The great
advantage of LiDAR, compared to conventional image sensors, is the acquisition of high-
resolution three-dimensional information, which allows one to extract very accurately the
dimensions of objects and structures of interest, as well as identifying anomalies and defects.
Moreover, they are active sensors insensitive to ambient light, which makes them a highly
reliable source of information, with low noise levels compared to other technologies. This
circumstance makes LiDAR a technology of great interest for characterizing the geometry
of many territorial and urban elements.

LiDAR technology has proven its usefulness in multiple fields, such as architecture,
heritage and environment, among others (Refs. [6–10]), thanks to its great capacity to acquire
massive data with geometric and radiometric information simultaneously. However, this
productivity in the acquisition contrasts with the difficulty of its processing, since it requires
extensive technical knowledge and a high computational cost. For this reason, more and
more research has focused on developing efficient algorithms to interpret LiDAR data. The
number of studies related to point-cloud processing and process automation for element
identification in road infrastructures has increased significantly through the use of mobile
LiDAR systems (MLSs), in which the LiDAR sensor is installed on a vehicle and acquires data
while moving [11]. MLS allows data to be captured from close distances, providing points
with small footprint size and high accuracy. The MLS has a navigation system with a GNSS
(Global Navigation Satellite System) receiver and an Inertial Measurement Unit (IMU) that
allows the position of the sensor, its direction and orientation to be known at every moment.
Thanks to this, the MLS manages to capture a three-dimensional and georeferenced point
cloud that accurately characterizes the geometric configuration of transport infrastructures
with longitudinal routes over the territory (streets, roads, highways, highways, railways,
etc.) [11–13].

Some studies have analyzed roads in rural areas, such as [14–16] or [17], which
developed an effective method to generate a Digital Terrain Model (DTM) with high spatial
resolution (0.25 × 0.25 m). Nevertheless, most research has been focused on the study of
roads in urban areas, since the great disparity of elements present on the streets (curbs,
vertical and horizontal signs, manholes, light poles, road pavement cracks, urban furniture,
vehicles, etc.) makes the automation of any point-cloud segmentation process a difficult
task. Having an accurate 3D model of the road surface, as well as an effective method to
identify different road elements, is useful for maintenance studies and inventory of urban
furniture and is essential for urban mobility analyses.

In the reviewed literature, some works focused on the determination of the road
surface were found [18–22]. Among them, it is worth mentioning Gérezo and Antunes’ [23],
in which a two-phased DTM was generated, first by identifying the terrain points and
simplifying the point cloud and, later, by obtaining the DTM by means of the Delaunay
triangulation on the terrain identified points. The authors of [24] proposed to align all the
scan strips, identify the terrain points by applying the filtering method designed by [25]
for Airborne Laser Scanner (ALS) data and generated a DTM. To improve its precision
in areas without data, they proposed to merge their DTM with others of lower spatial
resolution which were obtained using an ALS. Hervieu and Soheilian [26] proposed a
method in which the edges of the road are identified to establish a geometric reference
and subsequently reconstructing the surface. Guan et al. [27] developed an algorithm to
segment the points of the road, grouping them into profiles according to the trajectory of
the vehicle and generating a DTM with them afterwards.
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On the other hand, certain articles have studied methods to efficiently segment differ-
ent road elements that allow a more precise knowledge of the environment to be obtained.
Some focus on the extraction of road markings [28–33], others on curbs [34–36], traffic
signs [37–40], or on the determination of road cracks [41,42], among others.

In this context, research studies such as [43] stand out, in which an algorithm based
on geometry and topology was proposed to classify elements of urban land (roads, pave-
ment, treads, risers and curbs) that have subsequently been used as initial parameters in
pedestrian accessibility studies [44].

The aforementioned research papers show that, among the scientific community, there
is an interest in developing algorithms that automate the process of creating accurate 3D
models based on point clouds acquired with MLSs in urban roads. However, we did
not find, in the reviewed literature, studies that focus on the characterization of sidewalk
metrics, which we consider fundamental in studies of pedestrian accessibility. Certain
works focused on the detection of roadside trees, either by MLS point-cloud segmenta-
tion methods [45,46] or by using deep learning techniques [47,48]. Others, such as [43],
proposed an algorithm based on geometry and topology to classify some urban elements
(roads, pavement, treads, risers and curbs) that have subsequently been used as initial
parameters of an accessibility study [44], but pedestrian accessibility needs a more precise
characterization of sidewalks. It is necessary to detect other types of obstacles, such as
benches, signs, streetlights, etc., as well as characterizing the pedestrian spaces knowing,
with precision, width, slope, free spaces for pedestrians and roughness of the ground to
identify, for example, tiles in bad condition, etc.; all this information was collected in the
3D model that we generated.

In addition, the automatic processing of MLS point clouds entails the solution of certain
common problems that have not been accurately solved yet and of which we highlight two.
The first one is the existence of obstacles in the road, mainly caused by vehicles or urban
furniture that prevent the laser from acquiring data on the back, generating obstructions
and creating areas without information in the point cloud. The second problem is due to the
echoes produced by the laser pulse when it encounters glass surfaces (vehicles, windows
and shop windows, among others) or vegetation, which cause double measurements of the
points and must be eliminated, since they make it difficult to segment the cloud.

This paper proposes a method that made it possible to generate a 3D model of the
urban road automatically, discriminating the points belonging to the terrain from the rest of
the obstacles and simultaneously solving the above three problems. The algorithm works
directly on the raw point cloud, using the Point Data Abstraction Library (PDAL). First, it
removes the echoes, then it segments the cloud into terrain points and no terrain points; it
determines the location of all obstacles, interpolates over the obstructed areas and, finally,
generates a complete 3D model with great precision and spatial resolution. This model is
essential in the latest pedestrian accessibility studies, as has already been demonstrated
in the Big-Geomove project. In this project, we worked on the integration of multiple
data sources for the parameterization of road characteristics in urban environments near
schools. In particular, we worked with massive data sources for the characterization of
roads, such as LiDAR point clouds obtained by mobile scanning devices. This information
was complemented with geolocalized information provided by the students of the schools
through participatory processes. With all the information, pedestrian safety indicators were
elaborated to zone each road space according to its validity as a pedestrian travel zone.
Conditional cumulative cost surface techniques were also applied to calculate optimal
pedestrian routes in urban areas based on the conditioning factors of the zoning defined
by the pedestrian safety indicators. However, for this, it was essential to model, from the
three-dimensional LIDAR point cloud, a 3D surface of the space available for pedestrian
transit. This methodology for obtaining urban road 3D models for pedestrian studies from
LiDAR data is the process described in this article. The developed algorithms and LiDAR
data used in this project are freely licensed and available for use in further research, as
mentioned in this text.

https://cartolab.udc.es/geomove/


Remote Sens. 2022, 14, 1102 4 of 23

In Section 2, the study area, the specifications of the MLS equipment used, the charac-
teristics of the acquired point cloud and the details of the developed algorithm are exposed.
Section 3 describes the obtained results, in areas with a high density of points as well as
in regions with no data. In Section 4, the results are discussed and, in Section 5, the main
conclusions of the paper are drawn.

2. Materials and Methods
2.1. Test Site and Input Data

The proposed method focuses on the analysis of urban roads, which is why four streets
located in the cities of A Coruña and Ferrol (Galicia, Spain) were selected as a case study.
The two streets of A Coruña, Virrey Osorio and Valle Inclán, were passable by vehicles and
were composed of road, curb, pavement and building. In the captured scenes, there were
multiple parked vehicles, which caused obstructions in the acquired point cloud. The two
streets of Ferrol (Galiano and Real) were pedestrian areas, with multiple street furniture
and pedestrians, which added some complexity to the segmentation of the point cloud.
Table 1 describes some metrics of the scenes analyzed.

Table 1. Studied streets metrics.

Street No. Points Length (m) Width (m) Z min (m) Z max (m)

Galiano 97,472,943 296 12 13.48 25.25
Real 105,243,479 391 9 10.49 25.34

Virrey Osorio 48,240,018 467 15 13.03 37.45
Valle Inclán 38,712,115 458 15 14.38 41.27

The equipment used for the acquisition of the point cloud was the Lynx Mobile Mapper
M1 from Optech (Figure 1), composed of two LiDAR sensors that allowed us to perform
the acquisition of up to 500,000 points per second, with a 360° field of view (FOV) (each
scanner). The team also had 4 cameras of 5 Mpx, all of them bore sighted to the LiDAR
sensors, and an Applanix POS LV 520 positioning and navigation system that used Trimble
GNSS receivers.

Figure 1. Optech Lynx M1 MLS. (Source: InSitu.)

Table 2 shows the main parameters of the equipment. Detailed technical specifications
can be found in [49]. In [50,51], the characteristics of the equipment are analyzed.
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Table 2. Optech Lynx M1 MLS technical specifications.

Item Specifications

Number of LiDAR sensors 1–2
Camera support Up to 4 cameras with scalable frame areas
Maximum range 200 m, 20%
Range precision 8 mm, 1 σ under test conditions

Absolute accuracy ± 5 cm
Laser measurement rate 75–500 Hz programmable

Measurement per laser pulse Up to 4 simultaneous
Scan frequency 80–200 Hz programmable

Scanner field of view 360◦ without obscurations
Power requirements 12 VDC, 30 A max. draw

Operating temperature from −10 ◦C to 40 ◦C (extended range
available)

Storage temperature from −40 ◦C to +60 ◦C
Relative humidity 0–95% non-condensing
Laser classification IEC/CDRH class 1 eye-safe

Vehicle Full adaptable to any vehicle

Each piece of equipment, made up of two LiDAR sensors, a positioning system and
RGB cameras, acquired the data independently and the information was linked by means
of a GPS (Global Positioning System) time stamp. The result was a cloud with points
every 3 cm (approximate density of 1000 points/m) and with geometric and radiometric
information structured for each point according to P = (X, Y, Z, I, ts, rn , etc.), which indicate
the 3D coordinates, intensity value, time stamp of acquisition of the point, return number,
etc. Figure 2 shows an example of the raw point cloud on Valle Inclán street (A Coruña).
The images from the cameras served, in this paper, as an element of verification of the
gathered results.

Figure 2. LiDAR Point Cloud. Example of Valle Inclán Street.

The point clouds were acquired as initial data for the Big-Geomove project, with
the purpose of knowing the dynamics of school mobility and its relationship with the
technical conditions of the roads used in the area, using high-precision 3D models and
spatial resolution. These models allowed us to study the roads in detail; both transversal
and longitudinal visibility and slope analysis were carried out and obstacles for pedestrians
and wheelchair users, among others, were identified. The gathered information was
subsequently used to conduct a study on urban pedestrian mobility, where the configuration
of the spaces available for traffic was categorized in detail and impedance values for non-
motorized mobility were provided. This information on the presence of obstacles, slopes,
surface roughness, uneven terrain, etc. would not be feasible with another type of starting
data, such as 2D or DTM cartography with larger cell sizes.
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The point clouds used in this project made up a total of 12 km of road and are
currently available as ground truth for researchers under the Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/ (CC BY 4.0) license in https://cartolab.
udc.es/geomove/datos/en/ (CartoLAB/data).

2.2. Algorithm

The algorithm is divided into two phases (Figure 3). The first phase allows one to
eliminate outliers and create a coarse segmentation between terrain points and non-terrain
points. In the second phase, the segmentation is refined and the 3D model is obtained.
The input data are raw point clouds and the resulting outputs are two different files. The
first result is a point cloud divided into non-terrain points and terrain points, collected
in a field called classification, with values of 1 and 2, respectively, according to https:
//www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf (LAS specifications
V. 1.4). The second result is a 3D model in raster format, with a possibility to customize
the spatial resolution according to the requirements of the current project. The algorithm
was developed using PDAL and Geospatial Data Abstraction Library (GDAL) open source
libraries. This can be consulted and downloaded from https://gitlab.com/cartolab (Gitlab-
Cartolab) or used directly in https://www.qgis.org/en/site/ (QGIS) through the https:
//plugins.qgis.org/plugins/pdaltools/ (PDAL Tools) and the https://plugins.qgis.org/
plugins/tags/geomove/ (Geomove plugin) that we developed and implemented in all
versions 3.X.

2.2.1. Debugging and Coarse Segmentation

The three-dimensional point cloud of the MLS scan maintains the https://www.asprs.
org/a/society/committees/standards/LAS_1_4_r13.pdf (LAS specifications V. 1.4) file
format. This is a binary file format that maintains information specific to the LiDAR nature
of the data without being overly complex, so it has become the standard for working
with LiDAR point clouds. The LAS format specifications were developed by the https:
//www.asprs.org/ (American Society for Photogrammetry and Remote Sensing (ASPRS))
from its version 1.0 in 2003 to its most recent version 1.4, Format Specification R15 9 July
2019. One of the values collected by this format is the scan angle range which collects the
angle at which the laser spot is emitted by the system. Since the first uses of LiDAR were
installed on aircraft, this angle is considered to be between +90 and −90 degrees, based
on 0 degrees being NADIR. Although the LiDAR sensors installed in MLSs are capable
of obtaining information at 360 degrees on the vertical plane of the sensor, the scan angle
range values are still kept between +90 and −90 in the LAS format. Since the MLS sensor
is normally installed on top of a light vehicle and our interest is to study the pavement
characteristics where pedestrians can walk, a first filter is applied keeping the points below
the horizontal line of the MLS sensor, with values of the scan angle range between +45 and
−45 (Figure 4).

The algorithm started by eliminating all points outside the road and analyzing only
those that were in a Scan Angle Rank of [−45, 45] from the Nadir, which allowed the cloud
to be simplified by eliminating high areas that were not important for the analysis of the
areas around the road. The points that did not belong to the first echo or return were
also removed from the study. The objective was to work only with the pulses that hit
solid surfaces since those that passed through other surfaces, such as vehicle windows
or vegetation, caused certain problems when creating the segmentation. In this context,
in [52], a method capable of detecting 3D objects using multiple LiDAR returns is exposed.
Then, an Extended Local Minimum Filter (ELM) was applied to the rest of the point cloud.
This filter is an implementation of the method described in [53] and allowed us to filter out
low points as noise. The ELM rasterizes the points into a defined cell size. For each cell,
the lowest point is considered noise if the next lowest point is at a given threshold above
the current point (Figure 5). If it is identified as noise, the difference between the next two
points is also considered, identifying them as noise if necessary and continuing the process

https://creativecommons.org/licenses/by/4.0/
https://cartolab.udc.es/geomove/datos/en/
https://cartolab.udc.es/geomove/datos/en/
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
https://gitlab.com/cartolab
https://www.qgis.org/en/site/
https://plugins.qgis.org/plugins/pdaltools/
https://plugins.qgis.org/plugins/pdaltools/
https://plugins.qgis.org/plugins/tags/geomove/
https://plugins.qgis.org/plugins/tags/geomove/
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
https://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf
https://www.asprs.org/
https://www.asprs.org/
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until a neighboring point within the set threshold is found. At that point the iteration over
the analyzed cell stops and the process continues on the next cell.

Figure 3. Three-dimensional model generation steps.
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Figure 4. Schematic depiction of MLS scanning.

Figure 5. Threshold application in ELM filter [53].

In this implementation of the method, 1 m cells were used, identifying the lowest
point in each of them and comparing the height differences between all the points of the cell
iteratively. If the difference between the analyzed point and its closest adjacent point was
more than 0.25 m, then it was classified as a low point, if not, it maintained its classification
and the process continued until the analysis of all the points in the cell had finished.

Finally, based on [54,55], outliers were identified using a method based on two steps;
the first allowed us to calculate a threshold value and the second to identify outliers. To
calculate the threshold, an average distance from each point to its 30 adjacent points was
estimated. From all these mean distances, a global mean (µ̄) and a standard deviation (σ)
were calculated. Finally, the threshold was calculated using m = 3 as the multiplying factor
of the standard deviation. Once obtained, the distances between points were analyzed
repeatedly. If the distance between them was greater than the established threshold, the
analyzed point was an outlier and it was classified as a non-terrain point.

2.2.2. Fine Segmentation and 3D Model Creation

Two improvements were applied to the segmented cloud, which allowed us to refine
the segmentation in the most difficult regions, such as the transition areas between the
terrain and vertical elements (buildings, vehicles, etc.). A Principal Component Analysis
(PCA) was applied, decomposing each point into its Normal-X, Normal-Y and Normal-Z
eigenvectors in relation to its 30 closest adjacent points. For each point, the value of its
Normal Z was studied. If it was in the range [0, 0.8], it was classified as a non-terrain point
(class 1), since it indicated vertical planes such as building facades, vehicles, obstacles, etc.;
if it was in the interval [0.8, 1], it was kept as a terrain point (class 2). A K-distance analysis
was performed to identify groups of misclassified points, calculating the distance from
each point to its 300 adjacent points. If this distance was less than 0.7 m, both points were
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classified within the same category, but, if it was greater, they were classified in different
categories and the analyzed point was moved to the non-terrain point class. The terrain
points of the resulting cloud were selected and, with them, a 3D model was generated
whose pixel values were the means of the heights of all the points of the terrain point class
contained in that pixel. The chosen pixel size was 5 cm since it was considered an adequate
spatial resolution to be able to accurately typify all the distinctive features of pedestrian
pathways. In our case, it was possible to typify slopes, both transverse and longitudinal,
break lines caused by curbs or traffic islands and obstacles for pedestrians, such as street
lamps, benches, or trees, among others.

Finally, during the data acquisition phase, the presence of multiple vehicles and
urban furniture elements prevented the acquisition of points in certain regions, which
caused obstructions that made it impossible to generate a complete and continuous 3D
model, as it can be seen in Figure 6. For this reason, at the end of the algorithm, the
module https://grass.osgeo.org/grass80/manuals/r.fill.stats.html (r.fill.stats), from the
https://grass.osgeo.org/ (GRASS-GIS) library, was executed, which allowed a height value
to be assigned to each pixel without data, based on the height of its adjacent cells. In
this case, the interpolation mode used was the spatially weighted mean, equivalent to an
Inverse Distance Weighted (IDW) interpolation. To assign the height to each pixel, the 8
closest cells were analyzed.

(a) (b)

Figure 6. Occlusions in Virrey Osorio Street (A Coruña): (a) Google Street View image; (b) point-cloud
occlusion—dark colored areas.

2.3. Three-Dimensional Model Quality Test
2.3.1. Three-Dimensional Model from Real Data

To verify the altimetric accuracy of the 3D model created and to validate the strength
of the method in the areas with real data, the heights obtained were compared with those
of 1000 points of known height, randomly selected from the point cloud using the Bash
https://linux.die.net/man/1/shuf (shuf) tool. First, the mean values and interquartile
ranges for the differences in heights were calculated and, later, a global value of RMSE
(Root-Mean-Square Error) was estimated for each scene.

In addition, to verify the improvement of the fine segmentation with respect to the
coarse segmentation, we quantified the number of points categorized as ground, both in
the coarse segmentation and in the fine segmentation. This study was carried out on the
entire point cloud in the four analyzed scenes. For each scene, we counted (I) the number
of points of the raw scene; (II) the number of points analyzed, once the outliers had been
filtered and the Scan Angle Rank restriction [−45, 45] from the Nadir had been applied
to eliminate the points belonging to the high areas of the buildings, which were not of
interest in the road analysis; (III) the number of points classified as ground in the coarse
segmentation; (IV) the number of points classified as ground in the fine segmentation;
(V) the percentages of ground–non-ground in respect to the entire raw point cloud and in
respect to the analyzed point cloud.

https://grass.osgeo.org/grass80/manuals/r.fill.stats.html
https://grass.osgeo.org/
https://linux.die.net/man/1/shuf
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This analysis aims to validate (I) the ability of the algorithm to filter and analyze only
the points in the road environment, discriminating them from the rest of the point cloud
and making the model more efficient, and (II) the ability of fine segmentation to work
correctly on point clouds in the transition zones between orthogonal planes, which are
usually the most problematic regions in LiDAR point-cloud segmentations.

2.3.2. Three-Dimensional Model of Occluded Areas

To validate the interpolation method used in shadow areas, new scenes were generated,
including five occlusions in each of them, with sizes between 50 and 2850 pixels, simulating
patterns similar to the real shadow areas, both on the road and on the pavement, with an
arbitrary distribution, as shown in Figure 7.

Subsequently, these new scenes were processed with intentional occlusions. The
heights obtained in the areas without data were compared with those obtained in the
scenes with real data. This comparison was made by calculating the difference between
the two rasters (3D model from real data and interpolated 3D model from intentional
occlusions) and by analyzing the values of pixel count (total number of pixels that made
up the occlusion), mean error (mean value of difference in height), min error and max error
(minimum and maximum height difference values) in each of the occlusion polygons.

Figure 7. Occluded polygons. Example of Valle Inclán Street (A Coruña).

2.4. Obstacle Detection

Being aware of the importance of 3D models in mobility studies and taking into
account that one of the main tasks of the Big-Geomove project was to analyze pedestrian
mobility in urban areas, in addition to obtaining an accurate 3D model of the road, elements
that hindered mobility, for both pedestrian and wheelchair users, were also detected. These
obstacles were incorporated as impedance surfaces in the subsequent accessibility analysis.

For this matter, all the elements found (curbs, benches, lampposts, trees, etc.) were
classified according to their influence on the type of mobility, considering, as obstacles
for pedestrians, all those elements with a relative height from the ground or a difference
in height in respect to their neighbors, called Height Above Ground (HAG), greater than
25 cm and as obstacles for wheelchair users all those that had an HAG of over 5 cm.
Figure 8 shows an example of the pedestrian obstacles detected. Furthermore, certain pixels
identified as obstacles on the road (green circles), probably due to the presence of moving
vehicles at the time of data acquisition, which caused small areas without data on the road,
can also be seen. These areas were treated in the same way as parked vehicles, i.e., by
applying an IDW interpolation on the closest ground points.

The obstacle detection analysis was developed by iteratively calculating, on all the
points previously identified as ground (class 2), the difference in height between each
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analyzed point and its neighbors of the 3D point cloud obtained after the fine segmentation.
The HAG value of each point was stored in a new numerical field as a normalized height
above which the two types of obstacles could be differentiated based on the type of mobility
(pedestrian or wheelchair). Non-ground elements, thus, obstacles generated a space on the
ground plan that was rasterized to create no-pass zones in the possibilities of walking on
the 3D model created. The developed algorithm detected and generated the complete street
ground surface and the surfaces occupied by pedestrian and wheelchair obstacles. This
algorithm was published on https://gitlab.com/cartolab/geomove/geomove_pipelines
(Gitlab/CartoLAB).

Figure 8. Height Above Ground (HAG) of the obstacles segmented as non-ground in the point cloud.

The obstacle raster zones were used together with the created 3D model to gener-
ate different impedance surfaces according to the degree of pedestrian mobility. These
impedance surfaces are used in cost–distance algorithms on Geographic Information Sys-
tems (GISs) [56] to identify optimal pedestrian routes in urban environments (Figure 9).

https://gitlab.com/cartolab/geomove/geomove_pipelines


Remote Sens. 2022, 14, 1102 12 of 23

Figure 9. Example of pedestrian optimal routes calculated in Big-Geomove project.

3. Results
3.1. Debugging and Coarse Segmentation

The algorithm eliminated practically all the outliers and low points in the coarse
segmentation and correctly segmented most of the points in the cloud. However, in
transition zones between the ground and certain vertical planes, errors such as those shown
in Figure 10a were found. Some vehicles or the lower parts of buildings were found to have
been erroneously typified as terrain points, requiring further debugging.

3.2. Fine Segmentation and 3D Model Creation

A PCA analysis identified the transition areas between orthogonal planes and correctly
segmented the point cloud in them. A K-distance analysis improved the segmentation
of groups of points that had been previously assigned to the same category due to their
similar geometric characteristics, but that actually belonged to different objects. Figure 10b
shows how these problem regions were correctly segmented. Ramps were also correctly
identified as ground points and curbs as vertical elements the height difference of which
(between the ground of the sidewalk and that of the road) was taken into account to create
the 3D model of the urban area for pedestrians.
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(a) (b)

(c)

Figure 10. Coarse and fine segmentation results. Example of Valle Inclán St. (A
Coruña): (a) coarse segmentation result; (b) fine segmentation result. Red color shows
non-ground points and gray color shows ground points; (c) RGB image of analyzed area
(Source: https://www.google.com/maps/@43.366274,-8.4161576,3a,90y,330.31h,79.99t/data=!3m6
!1e1!3m4!1sAyO75Lx_z9Omzzho_pMt5w!2e0!7i16384!8i8192 (Google Street View)).

As can be seen in the green boxes that are highlighted in Figure 10a, corresponding
to the coarse segmentation, the points located in transition zones between orthogonal
planes, such as the transitions between ground and vehicles or buildings, had segmentation
problems. In Figure 10b, it can be verified that the fine segmentation allowed the algorithm
to segment the points of the cloud in these transition zones and even define the location
of the curbs and differentiate them from the building access ramps (according to their Nz
component), which had not been considered in the coarse segmentation.

Finally, Figure 11 shows an example of the 3D models resulting from the segmented
clouds for each of the analyzed scenes. In it, the initial point clouds, the models created
with the occlusions due to lack of data and the interpolated models, completely generated
in spite of the occluded areas, can be observed. In these final models, the boundary lines
between the roadways and pavement, as well as the transitions of the slopes between
perpendicular streets, are also clearly discernible.

https://www.google.com/maps/@43.366274,-8.4161576,3a,90y,330.31h,79.99t/data=!3m6!1e1!3m4!1sAyO75Lx_z9Omzzho_pMt5w!2e0!7i16384!8i8192
https://www.google.com/maps/@43.366274,-8.4161576,3a,90y,330.31h,79.99t/data=!3m6!1e1!3m4!1sAyO75Lx_z9Omzzho_pMt5w!2e0!7i16384!8i8192
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11. Example of 3D model results. Blue colors in 3D model indicate lower elevations, red colors
indicate higher elevations: (a) Valle Inclán St., raw point cloud; (b) Valle Inclán St., 3D model with
occlusions; (c) Valle Inclán St., interpolated 3D model; (d) Virrey Osorio St., raw point cloud; (e) Virrey
Osorio St., 3D model with occlusions; (f) Virrey Osorio St., interpolated 3D model (In Figure 11f, there is
a gap between contours 33.5 and 34 m. This happened because the r.fill.stats interpolation algorithm
uses a parameter called Distance Threshold for interpolation that allows one to number the cells to be
interpolated. The larger the space without real data, the larger this number has to be to complete the
interpolation, but the accuracy of the interpolation worsens. In this work, values lower than 18 were
used for all the scenes, which we considered appropriate to achieve a compromise between completing
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the areas without data and obtaining accurately interpolated cells. In this specific case, with a hole of
6.95 × 4.22 m (Figure 11e), we considered that it would not have been appropriate to complete it,
because the interpolated values in the center of the hole could be quite imprecise. In any case, if the
accuracy of the work to be conducted is not a problem, it could be completed simply by increasing
the value of the parameter indicated.); (g) Real St., raw point cloud; (h) Real St., 3D model with
occlusions; (i) Real St., interpolated 3D model; (j) Galiano St., raw point cloud; (k) Galiano St., 3D
model with occlusions; (l) Galiano St., interpolated 3D model.

3.3. Segmentation Quality Test

In order to evaluate the point-cloud segmentation method, a subset of Valle Inclán
street was analyzed. The selected subset was a point cloud of 2,506,108 points located in the
center of the scene that had a representative layout of the analyzed streets which included
ground, trees, facades, vertical signs, vegetation, cars and people (Figure 12). The resulted
fine segmentation was compared with a manually segmentation (Figure 13). The following
performance metrics are defined:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Fscore = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

where TP, FP and FN are the number of true positives, false positives and false negatives
(Table 3). The results of precision, recall and F-score performance metrics are shown in
Table 4.

Table 3. Segmentation criterion results.

True Positives False Positives False Negatives Analyzed Points

2,498,449 3289 4370 2,506,108

Table 4. Precision, recall and F-score for analysis of the segmentation quality.

Precision (%) Recall (%) F-Score (%)

99.87 99.82 99.85

The results of the precision, recall and F-score analysis show very high values, which
demonstrates the efficiency of the method in MLS point clouds with similar characteristics
to those of this work.

As can be seen in Figure 13, most of the false positives were located in the transition
zones between orthogonal planes, either near the buildings, such as the group of points
in the upper left part of the image, or in the lower part of the vehicles. False negatives
appeared mainly on sidewalks in the proximity of occlusion areas. On the other hand,
almost no false negatives were located on the road.
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Figure 12. Fine segmentation Valle Inclán street subset for quality segmentation analysis. Green
points are ground. Blue points are non-ground.

Figure 13. TP, FP and FN visualization. Red color points are FP, blue colors are FN and gray–black
colors are TP. FP and FN oversized for better viewing.

3.4. Three-Dimensional Model Quality Test
3.4.1. Three-Dimensional Model from Real Data

As it can be seen in Figure 14, the height difference values between the 3D model and
the 1000 random points are mostly between −20 and 20 mm. Only two outliers were found
in Galiano Street (Ferrol), where the height of the model was lower than that of the random
points 190 and 100 mm. The RMSE values were also lower than 10 mm in three of the four
scenes analyzed and only rising to 12 mm in Galiano Street (Ferrol).

3.4.2. Three-Dimensional Model of Occluded Areas

As it can be observed in Table 5, in the polygons of both pedestrian streets Real and
Galiano (Ferrol), the mean errors of each polygon remained below 4 mm and the maximum
errors below 10 mm in all cases. In the two streets with vehicular circulation, the mean
differences were also lower than 4 mm in six of the ten analyzed polygons; however, in the
four remaining polygons, these values rose to 19 mm (in two polygons), 26 mm and 33 mm.
Of these four errors in the interpolation, two of them were made in polygons located in
transition areas between the pavement and the road (polygon 2 of Valle Inclán street in
A Coruña, with 19 mm and polygon 5 of Virrey Osorio street, also in A Coruña, with 33
mm) and another on an access ramp to a private car park (polygon 5 of Valle Inclán street,
with a 26 mm error). In the case of maximum errors, the range was established between
−68 mm and 146 mm, also corresponding to polygon 5 of Valle Inclán street. The rest of
the polygons kept their maximum errors in the interval [−65 mm, 83 mm].
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Figure 14. Height differences between 3D model and 1000 sample points.

Table 5. Occluded areas’ validation results.

Street Occlusion Pixel Count Mean Error
(mm)

Min Error
(mm)

Max Error
(mm)

Valle Inclán 1 2404 3 −51 58
Valle Inclán 2 1694 19 −36 83
Valle Inclán 3 685 2 −16 14
Valle Inclán 4 1435 4 −21 19
Valle Inclán 5 537 26 −21 75

Virrey Osorio 1 1931 3 −30 40
Virrey Osorio 2 1604 3 −31 46
Virrey Osorio 3 2850 1 −65 56
Virrey Osorio 4 1332 19 −25 34
Virrey Osorio 5 1010 33 −68 146

Real 1 78 −1 −2 1
Real 2 77 0 −2 2
Real 3 82 0 −2 2
Real 4 524 −3 −10 6
Real 5 50 0 −1 1

Galiano 1 306 3 −2 7
Galiano 2 155 −1 −3 2
Galiano 3 172 4 0 6
Galiano 4 168 1 −3 5
Galiano 5 129 2 −1 3

In the fine segmentation verification analysis, as can be seen in Table 6, the difference
between the percentage values of ground from the total points of the raw data and the
percentage of ground from the analyzed points were substantial, reaching almost double
in some scenes. This fact verified the ability of the algorithm to simplify and purge the
uninteresting points of the raw point cloud and work only with the necessary points,
optimizing data processing. In the case of the two pedestrian streets (Galiano and Real),
the scenes had only 30.66% and 33.64% ground in respect to the total points, respectively,
and, once the initial filters were applied, the percentages rose to 54.84 and 60.80%.

The number of ground points was lower in the fine segmentation than in the coarse
segmentation in all the analyzed scenes. This fact shows that the PCA and K-distance
analyses correctly segmented the point clouds in the conflicting regions, of transition
between orthogonal planes.
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The fine segmentation offered significant purification percentages, eliminating more
than 5% of points that did not belong to the soil. This allowed us to better define the model
representing the pedestrian walking surface.

Finally, the fact that the percentage of ground was greater in the streets that could
be traversed by vehicles than in the pedestrian streets indicates the presence of a greater
number of conflictive zones in the pedestrian streets, due to the constant presence of street
furniture, such as benches, planters, etc., in addition to the greater presence of nearby
buildings, directly located on the main road. In these cases, fine segmentation offered more
relevant improvement percentages, with improvements of more than 20% of the points
defining the ground.

Table 6. Fine segmentation validation.

Street Galiano Real Virrey Osorio Valle Inclán

No. points of raw scene 97,472,943 105,243,479 48,240,018 38,712,115
No. debugged points 54,497,047 58,223,758 28,873,479 35,561,091
No. ground points in coarse segmentation 39,167,982 41,042,579 21,470,400 24,947,120
No. ground points in fine segmentation 29,889,691 35,401,819 20,395,362 23,652,141
Difference (coarse–fine) 9,278,291 5,640,760 1,075,038 1,294,979
% Variation 23.69 13.74 5.01 5.19
% Ground points from analyzed points 54.85 60.80 70.64 66.51
% Ground points from raw point cloud 30.66 33.64 42.28 61.10

3.5. Processing Time

Table 7 shows the processing times that were used to obtain the 3D model from the
raw point cloud, itemized by task. In this study, our team had an Intel® Core™ i7-4702MQ
CPU @ 2.20 GHz 4 core processor with 12 GB of RAM and the operating system was Linux
Ubuntu 18.04 64-Bit.

Table 7. Scene processing time.

Task Galiano St. Real St. Virrey Osorio
St. Valle Inclán St.

Initial debug 00:17:41 00:19:21 00:11:52 00:09:31
Nz processing 00:32:44 00:35:44 00:18:59 00:15:40

K-distance 01:52:46 02:09:16 01:21:04 01:11:29
HAG processing 00:03:53 00:04:24 00:02:24 00:02:00
3D model export 00:00:20 00:00:26 00:00:16 00:00:15

Total time 02:47:24 03:09:11 01:54:35 01:38:55

4. Discussion

The work carried out in this research study made it possible to create an efficient
method to discriminate the points belonging to urban roads from the remaining elements
in the analyzed scenes, from a raw LiDAR point cloud with the following information
per point: P = (X, Y, Z, I, ts, rn, etc.). Two final products were generated, a segmented point
cloud in *.las format and two 3D model in raster format, one with the road surface without
interpolation and the other with interpolated shadow areas, generating a continuous model
(digital surface model).

The proposed method differs from others such as [27], since our algorithm was able to
analyze all the points of the acquired cloud and even group multiple scenes, regardless of
the number of trajectories used by the vehicle to gather data, which significantly sped up
the process.

The results of the fine segmentation show very high precision, recall and F-score
values. These metrics were compared with those of other similar studies such as [57–59]
and the results obtained are similar and even better, which demonstrates the ability of the
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algorithm to correctly segment the MLS point clouds with similar characteristics used in
this study.

As expected, most of the false positives were located in the transition zones between
orthogonal planes, near the buildings, such as in the case of cars, and false negatives were
located on sidewalks, which are usually the most difficult areas to segment due to the
existence of shadow areas in MLS data.

As this segmentation was intended to be used to generate impedance surfaces for
an accessibility analysis and the 3D models used in these task must have high spatial
resolution and precision in the segmentation, we decided to prepare the algorithm to avoid
false positives even though we had to increase the number of false negatives, because these
are easily solvable with the interpolation method used later.

Likewise, the vertical parts of the curbs were intentionally segmented as non-floor
because, in the accessibility analysis, they are obstacles that both pedestrians with mobility
problems and wheelchair users must overcome.

The validation of the 3D model algorithm was developed in two phases, one for
the areas with real data and the other for regions without data, in which the algorithm
interpolated with the values of the adjacent points to generate a continuous model. The
results show that the method was more efficient when the density of points in the scene
was high, obtaining mean errors close to 0 and maximum errors of 20 mm, as it can be seen
in Section 3.4. On the contrary, it had limitations in regions without data, in which it was
necessary to interpolate to generate a continuous model. In these areas, the mean errors
were between 1 and 33 mm and the maximum errors between −68 and 146 mm. These
errors corresponded to transition regions between pavements and roadways, showing that
the interpolation method was not able to accurately locate the break lines and it joined
adjacent points diagonally, making it a problem to identify curbs. This explains the obtained
errors being lower in the two pedestrian streets (Real and Galiano) than in those passable
by vehicles, since the occluded areas were smaller and required less interpolation. In the
same way, the results are also better in flat areas, such as the center of the streets, than in
transition areas between the pavement and the road.

Although the objective of this paper is not to reconstruct the lines of the curbs, the
eigenvectors of each point were obtained with precision and the planes in which they
were found were also defined. This knowledge opens a line of research in which we are
currently working with the intention of reconstructing curb lines, even in areas without
data, with which procedures for the automatic generation of differentiated 3D models
could be applied for pavements and driveways. In the same way, as in the method by [24],
the fusion of our model with others obtained from ALSs, even with lower spatial resolution,
could be an affordable solution to improve precision in these conflictive areas.

It was also proved that the algorithm generated the models in processing times, as
it can be seen in Table 7. No differentiating data was found in terms of processing times
for scenes with a greater number of shadow areas, different slopes or the presence of road
elements. Processing times depend solely on the performance of the computer equipment
used and the amount of RAM available at the time of the analysis—in our case, a computer
with 12 GB of RAM, which took approximately 3 h to process 100,000,000 points.

During the bibliographic review process, no similar free-licensed methods that allow
one to obtain 3D models automatically were found. All the algorithms found had a
proprietary license, so it was decided to implement the algorithm as a Plug-in in all versions
of QGIS 3.X. In the same way, both the algorithm and the MLS data were published under
the Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/ (CC BY
4.0) license in https://gitlab.com/cartolab (Gitlab-Cartolab) and https://cartolab.udc.es/
geomove/datos/en (Geomove/data), respectively, which offers an interesting data bank to
be used in other investigations as ground truth. A screenshot of the Geomove LiDAR data
download website can be seen in Figure 15.

https://creativecommons.org/licenses/by/4.0/
https://gitlab.com/cartolab
https://cartolab.udc.es/geomove/datos/en
https://cartolab.udc.es/geomove/datos/en


Remote Sens. 2022, 14, 1102 20 of 23

Figure 15. LiDAR Geomove data download website.

5. Conclusions

Mobile LiDAR technology has proven to be an accurate and fast tool to obtain dense
point clouds from urban roads without interrupting the usual pace of the city. For this paper,
12 km of urban roads were scanned and the proposed algorithm efficiently discriminated
the point cloud acquired by the MLS, differentiating the points of the road from the rest
of the urban elements and allowing us to automatically generate a 3D model of the road
surfaces in due processing times. All existing elements over 25 cm in height on the road
were considered as non-ground areas, thus impossible to be crossed by pedestrians. The
rest of the road space was rasterized as a digital surface model with a cell resolution of
5 cm, taking advantage of the high density of points provided by the LiDAR sensor. This
made it possible to accurately differentiate any small defect in the pavement that would
make it more or less comfortable for a pedestrian to walk on. The average difference in the
values of the dimensions of the 3D model created with respect to the values of the LiDAR
point cloud did not exceed 20 mm, which achieves a high accuracy in the modeling of
walkable surfaces. We could detect holes or defects in the pavements, as we can see in the
sinkhole of 10–15 cm identified in Figure 11i.

The main problem with MLS point clouds in urban environments is the presence of
occlusions (lack of data). The presence of vehicles parked on the side of the road and similar
obstacles, such as containers or bus shelters, among others, prevent the laser beam from
hitting the road. To fill in these areas without data, an interpolation method was used on
the closest points to generate a complete and continuous model of the entire road surface.
The accuracy achieved in this interpolation showed an average errors of less than 1 cm in
most of the occluded areas, without exceeding 33 mm as the highest average difference.
Only in situations where there were curbs a maximum difference of less than 15 cm was
reached in some cases. In any case, this model proved to be efficient for urban mobility
studies and, more specifically, in the Big-Geomove project, which used this modeled base
surface to identify safe pedestrian routes in the urban areas analyzed. For this purpose,
in addition to this model, different obstacles that impeded or hindered circulation, both
for pedestrians and wheelchair users, such as curbs, lamppost, benches, stairs, etc., were
detected. With these obstacles, different impedance surfaces were generated, which made
it possible to identify the optimal pedestrian routes in urban areas, through the application
of accumulated cost surface techniques.

As a continuation of this work, a line of research was opened with the main objective of
developing a method to reconstruct curb lines. Having this line accurately available would
allow differentiated 3D models for sidewalks and roadways to be generated, avoiding
interpolation errors of occluded zones in the transition spaces between them.
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