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Abstract: Target detection using radar has important applications in military and civilian fields.
Aimed at targets containing interference, radar polarimetry can facilitate discrimination between
the target and interference. Since existing methods require the utilization of interference signals
without targets in advance, they have a poor effect on interference with variable polarization. To
solve this problem, this paper proposes a novel synchronous method to estimate the parameters
of interference. First, we introduce a definition of the pulse compression signal-to-noise ratio, and
prove that it is the polarization invariant in the virtual polarization adaptation. Then, for signals
containing a target, interference, and noise, we propose a novel synchronous estimation method.
Subsequently, we propose the two-dimensional golden selected method to further optimize the
method with minimum calculation, and prove that the method presented in this paper is convergent
and globally optimal. Finally, we analyze the presented method from three aspects: robustness,
complexity, and applicability; the results of which demonstrate the efficacy of the method presented
in this paper.

Keywords: radar polarimetry; parameter estimation; target detection

1. Introduction

Radar can obtain a target’s distance, speed, azimuth, and other information by trans-
mitting electromagnetic waves and receiving echoes. In a complex environment, factors
such as clutter, overlapping spectrum, and man-made interference can seriously affect the
performance of radar. Among them, jamming interference is a very common and efficient
method. For discrimination of target and interference, scholars have performed significant
research and achieved good results in the time domain, spatial domain, and frequency
domain [1–4]. However, some interfering devices (i.e., eigital radio frequency memory), can
quickly identify radar signals and transmit interference with similar spectrums in the main
lobe.This leads to poor results with existing methods in the time domain, spatial domain,
and frequency domain. Polarization reflects the vector characteristics of an electromagnetic
wave. Thanks to the outstanding contributions of Sinclair, Kennaugh, Huynen, and oth-
ers [5–7], the research on electromagnetic waves has been extended from the time-domain,
spatial-domain, and frequency-domain to the polarization-domain.

1.1. Summary of Relevant Literature

Radar anti-interference methods based on polarization originated in the 1970s, with
the adaptive polarization canceler and multi-notch logic multiplication activation filter.
Subsequently, in order to improve detection performance, the optimization problem was
studied based on the signal interference-to-noise ratio and the power difference of signal
and interference criteria, comprehensively considering the signal and interference power.
For multiple-input multiple-output radar, References [8–10] utilized its waveform diversity
and distributed antennas to achieve spatial diversity, so as to obtain a target’s angle and po-
larization information. However, these methods assume that the target and the interference
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are not in same range cell. For high-frequency surface wave radar, Mao [11] proposed a null
phase-shift polarization filter that can not only suppress interference, but can also avoid the
loss of target information. Subsequently, References [12–15] presented significant work on
the oblique projection polarization filter. For monopulse radar, Wang et al. [16–22] estimated
the parameters of signals containing only interference, and then performed polarization
filtering on the signals containing the target and interference by weight coefficients. For
warning radar, References [23–25] used multiple pulse signals with different azimuths to
establish observation equations, and then estimated the target parameters based on the least
squares. For interference suppression in the main lobe, the above-mentioned references
make certain assumptions, which are as follows.

1. References [11–15] required a prior knowledge of information on the target or the
interference, i.e., a polarization and covariance matrix.

2. References [8,9,16–21,23–25] assumed that the target and the interference were not at
same range cell; i.e., these methods needed secondary data.

In general, the aforementioned methods, i.e., [8,9,16–21,23–25], all utilize the interfer-
ence suppression method under asynchronization (to simplify the representation, here-
inafter it is denoted as ISMA) and have some shortcomings. For example, when the
interference is variable polarization, ISMA cannot achieve better suppression performance
on the current interference, since it needs to estimate the polarization parameters of the
previous interference. Therefore, the main goal of this paper is to suppress jamming in-
terference under synchronization, which belongs to the interference suppression method
under synchronization (to simplify the representation, hereinafter it is denoted as ISMS).
In order to suppress jamming interference based on polarization, it is necessary to ob-
tain the parameters of polarization. Therefore, this paper aims at the estimation of the
polarization parameters, which are significant for suppressing interference. As for the
estimation of the polarization parameters, Reference [26] proposed a method for estimating
five-dimensional polarization-space-time channel parameters, which was applied for the
public network. As for radar detection, Reference [27] analyzed regularized covariance
estimation in compound Gaussian Sea clutter, which was based on synthetic aperture
radar. For the one-dimensional signal of radar, it is well-known that parameter estimation
methods based on eigenvalue decomposition, i.e., the estimation of signal parameters
via rotational invariance techniques (ESPRIT) and multiple signal classification (MUSIC),
all belong to ISMS. Many references have performed meaningful research on parameter
estimation using ISMS.

1. Nehorai and Paldi [28,29] first introduced a six-dimensional vector sensor and pro-
posed a direction estimation method based on the vector cross-product, and then
deduced mean-square angular error and covariance of vector angular error as perfor-
mance measures. Subsequently, Reference [30] analyzed parameter estimation of a
single incident wave in active/passive mode, and then characterized the best possible
accuracy of unbiased estimators using the Cramér–Rao bound. References [31–33] an-
alyzed the identifiability, uniqueness, and beamformer in vector sensors, respectively.
References [34,35] focused on parameter estimation of partially polarized incident
waves, which does not require a priori information about the array system such as
sensor positions. References [36,37] estimated the parameters for signals of completely
polarized waves and incompletely polarized waves. Reference [38] identified and
tracked multiple wideband signals based on Reference [39].

2. Li and Compton [40] first applied the ESPRIT-based method to a six-dimensional
vector sensor, which could achieve angle and polarization parameter estimation. Ref-
erence [41] proposed ESPRIT-based method for angle and polarization parameters
using crossed dipoles. Based on Reference [41], References [42–44] improved the
ESPRIT-based method for different situations. Reference [42] proposed an angle-only
ESPRIT-based method to simplify computations; Reference [43] changed a uniform
linear array to a square array, which can extend the angle estimation to two dimen-
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sions; and Reference [44] focused on the coherent signal and combined the ESPRIT
algorithm with spatial smoothing techniques using a uniform linear array. Refer-
ence [45] proposed a maximum likelihood method for joint DOA and polarization
estimation based on manifold separation, and Reference [46] also used maximum
likelihood estimation to obtain the angle and polarization parameters of partially
polarized waves. Reference [47] compared three estimation methods for polarization
parameters with a prior knowledge of direction. Reference [48] proposed an asymp-
totically statistically efficient method of direction estimation for coherent signals.

3. Zoltowski and Wong [37] first used the vector cross-product DOA estimator in the
ESPRIT-based direction-finding scheme involving multiple vector sensors.
References [37,49,50] all analyzed the sparse array to solve the problem of direction
ambiguity in parameter estimation. Reference [51] extracted five invariants from the
Poynting vector on the basis of Reference [40], thereby simplifying the computation of
parameter estimation. Reference [39] decoupled the angle and polarization parameters
using a vector sensor in order to reduce the four-dimension spectral search of MUSIC
to two dimensions. References [52,53] all used dislocation arrays (i.e., the three dipoles
and the three loops were located separately, instead of being collocated in a point-like
geometry) to solve the coupling problem of electric field sensors and magnetic field
sensors. Reference [54] proposed an optimized root-MUSIC method, which softens
the conditions of the previous antenna-array; that is, the number, orientation, or types
of antennas could vary from array grid point to array grid point.

1.2. Innovative Points of This Paper

In this paper, we propose a novel synchronous method to estimate the parameters of
interference with variable polarization using a single vector sensor. The main innovations
of this paper are as follows.

1. Compared with References [8,9,11–21,23–25], the presented method in this paper only
needs the data collected from the range cell under test, and does not resort to secondary
data or prior knowledge of the target and interference. Therefore, the presented
method can estimate the parameters of interference with variable polarization.

2. As for a single vector using a crossed dipole, the received signals contain three signals:
jamming interference, target echo, and noise. Due to this, the number of signals is
greater than that of the receiving antennas, meaning that the polarization parame-
ters cannot be estimated directly by the ESPRIT-based method [41–44]. Moreover,
References [28–33,37,40–43,49–54] all assumed that incoming signals were uncorre-
lated, and their performance degraded rapidly as the incident signals became highly
correlated. However, the presented method can combine the polarization invariant and
waveform information to solve the above problem.

3. For parameter estimation, we propose the two-dimensional golden selected method
(TDGSM) to further optimize estimation with minimum calculation, and to prove that
the presented method in this paper is convergent and globally optimal.

1.3. Organizational Framework of This Paper

This paper is organized as follows. Section 2 gives the mathematical models of a single
vector sensor. Section 3 proposes a novel synchronous method for estimation. Section 4
analyzes the presented method from three aspects: robustness, complexity, and applicability.
Section 5 performs the mathematical simulation. Section 6 concludes this paper.
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2. Mathematical Model of a Single Vector Sensor

In Cartesian coordinates, let the electric field vector of the k-th incident wave be ek,
and the magnetic field vector be hk; then, the electromagnetic wave [39] can be expressed as

a(θk, φk, γk, ηk)

=

[
ek

hk

]
=



ex(θk, φk, γk, ηk)
ey(θk, φk, γk, ηk)
ez(θk, φk, γk, ηk)
hx(θk, φk, γk, ηk)
hy(θk, φk, γk, ηk)
hz(θk, φk, γk, ηk)



=



cos φk cos θk − sin φk

sin φk cos θk cos φk

− sin φk 0

− sin θk cos φk cos θk

cos θk − sin φk cos θk

0 sin θk


︸ ︷︷ ︸

Θ(θk ,φk)

[
cos γk

sin γkejηk

]
︸ ︷︷ ︸

g(γk ,ηk)

, (1)

where θk is the pitch angle of the incident wave, φk is the azimuth angle of the incident wave,
and Θ(θk, φk) is the angle information of the incident wave. γk is the auxiliary polarization
angle of the incident wave in the range of (0, π/2), ηk is the polarization phase difference of
the incident wave in the range of (−π, π), and g(γk, ηk) is the polarization information of
the incident wave. For example, ηk = 0° symbolizes the linearly-polarized electromagnetic
wave, ηk = 90° and γk = 45° denote the left circularly-polarized electromagnetic wave,
and ηk = −90° and γk = 45° represent the right circularly-polarized electromagnetic wave.

Then, the received signal of the k-th incident wave on the vector sensor [39] is

rk(t) = a(θk, φk, γk, ηk)sk(t), (2)

where sk(t) is the complex envelope of the k-th incident wave.
For K incident waves, the received signals are obtained by Equation (2), as shown in

Equation (3).

Z(t) =
K
∑

k=1
rk(t) + n(t)

=
K
∑

k=1
a(θk, φk, γk, ηk)sk(t) + n(t)

, (3)

where n(t) is the noise of the vector sensor, which obeys the zero-mean Gaussian distribu-
tion.

In this paper, the receiving antenna only has a single vector sensor. As for the signals
containing the target echo, jamming interference, and noise, the received signal Z(t) is
shown in Equation (4).

Z(t) = As(t) + n(t)

= [a(θ1, φ1, γ1, η1), a(θ2, φ2, γ2, η2)]︸ ︷︷ ︸
A

[
s1(t)

s2(t)

]
︸ ︷︷ ︸

s(t)

+n(t) , (4)

where (θ1, φ1, γ1, η1) are the angle and polarization information of the jamming interference,
and s1(t), (θ2, φ2, γ2, η2) are the angle and polarization information of the target echo s2(t).
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In the above mathematical model, this paper makes two assumptions.

Assumption 1. For two incident waves in the main lobe, the spatial angles of incident waves are
approximately the same, i.e., (θ1, φ1) ≈ (θ2, φ2), due to the narrow main-lobe of the high-resolution
radar.

Assumption 2. Θ(θk, φk) usually varies according to different types of receiving antennas. For ex-
ample, References [28,29,38,40,48,53] use a polarized vector-sensor, comprising a spatially collo-
cated six-component vector-sensor that consists of three identical, but orthogonally-oriented electric
dipoles, plus three identical, but orthogonally-oriented magnetic loops. Θ(θk, φk) of a six-component
vector-sensor is shown in Equation (1). On other occasions, References [52,55–57] use a dipole,
tripole, or loop triad, and Θ(θk, φk) is

Θ(θk, φk) =


cos φk cos θk − sin φk

sin φk cos θk cos φk

− sin φk 0

. (5)

Considering the hardware cost and mutual coupling problem of a complicated vector
antenna, References [41–44,46,47] use an electric field vector sensor with a crossed dipole.
When analyzing radar targets in the main lobe, the vector sensor in this paper was selected
as a crossed dipole, and Θ(θk, φk) is

Θ(θk, φk) =

[
cos φk cos θk − sin φk

sin φk cos θk cos φk

]
. (6)

Due to the number of signals being greater than the number of receiving antennas,
the polarization parameters of the jamming interference s1(t) cannot be estimated directly
by ESPRIT-based or MUSIC-based methods.

3. The Polarization Estimation under Synchronization
3.1. Polarization Invariant

In order to realize ISMS in signals containing the target, jamming interference, and noise,
the definition of the pulse compression signal-to-noise ratio (PCSNR) is firstly given and
proven to be a polarization invariant.

Definition 1. After the radar antenna receives the target echoes, it undergoes down-
conversion and pulse compression processing. Then, the target’s peak sidelobe ratio
is defined as the PCSNR.

Theorem 1. Under ideal conditions without interference, the horizontal and vertical receiving
antennas are subjected to virtual polarization adaptation (VPA). Then, the PCSNR under different
receiving parameters remains unchanged, making it the polarization invariant.

Proof of Theorem 1. Suppose that the radar transmitted signal st(t) is a chirp; i.e.,

st(t) = A0rect(t/T) exp{j2π fct + jkct2}, (7)

where A0 is the signal amplitude, T is the pulse time, fc is the signal carrier frequency,
and kc is the chirp frequency.

We take the horizontal polarization as an example (vertical polarization or dual-
transmitting polarization are both valid) and let the target scattering matrix be
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S = [Shh, Shv; Svh, Svv]. The receiving antenna uses a crossed dipole, and its received
signal containing only the target echo is

Θ(θ, φ)−1Z =

[
Erh

Erv

]
= S

[
st(t− ∆t)

0

]

=

[
Shh Shv

Svh Svv

][
sr(t)

0

] , (8)

where θ and φ are the elevation and azimuth angles, respectively, of the radar’s main-lobe
beam. ∆t=2R/c is the delay time of the target at distance R. sr(t) is the target echo,
as shown below,

sr(t) = A0rect(
t− ∆t

T
) exp{j2π fc(t− ∆t) + jkc(t− ∆t)2}, (9)

After using the VPA of receiving parameter (γ, η), the received signal sVPA(t) is

sVPA(t) =
[
sin γ − cos γejη][ Erh

Erv

]
= (Shh sin γ− Svh cos γejη)sr(t)

= P(γ, η)sr(t)

, (10)

where P(γ, η) = (Shh sin γ− Svh cos γejη).
Then, the baseband signal of sVPA−base(t) is obtained by down-converting with sVPA(t),

as exhibited in Equation (11).

sVPA−base(t) = P(γ, η)rect( t−∆t
T )× exp(− j4π fcR

c ) exp{jkc(t− ∆t)2} . (11)

Subsequently, the baseband signal sVPA−base(t) is subjected to pulse compression
processing. The signal after pulse compression sVPA−pulse(t) is

sVPA−pulse(t) = conv(sVPA−base(t), h(t))

=P(γ, η)T sin c{kcT(t− ∆t)}
, (12)

where conv(a, b) is the convolution operation and h(t) is the matched filter; i.e.,

h(t) = rect(t/T) exp{j2π fct− jkct2}. (13)

Observing Equation (12), P(γ, η) will change in different receiving parameters, which
only affects the amplitude of the signal. However, T sin c{kcT(t− ∆t)} is not related to
(γ, η), which indicates that VPA cannot influence the PCSNR. Therefore, the PCSNR
remains unchanged under different received parameters, making it a polarization invariant
and thus completing the proof of Theorem 1.

3.2. Optimal Polarization of VPA

The signals in Theorem 1 only contain the target echo without interference. Subse-
quently, for signals containing target and jamming interference simultaneously, the follow-
ing theorem is given based on Theorem 1.

Theorem 2. For signals that contain both the target and jamming interference with variable
polarization, the PCSNR is the largest when the parameter VPA corresponds to the polarization of
the jamming interference.
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Proof of Theorem 2. Let the polarization parameters of the jamming interference be (γj, ηj);
then, the interference signal at the radar’s receiving antenna is[

Ejh

Ejv

]
=

[
cos γjsj(t)

sin γje
jη j sj(t)

]
, (14)

where sj(t) is the complex envelope of interference.
Combining Equations (8) with (14), the signals containing jamming interference and

target echo are [
Eh

Ev

]
=

[
Erh

Erv

]
+

[
Ejh

Ejv

]

=

[
Shhsr(t) + cos γjsj(t)

Svhsr(t) + sin γje
jη j sj(t)

] . (15)

Then, the signals with VPA sVPAj(t) are

sVPAj(t) =
[
sin γ − cos γejη][ Eh

Ev

]
= (Shh sin γ− Svh cos γejη)sr(t) + (sin γ cos γj − cos γ sin γje

j(η−ηj))sj(t)

= P(γ, η)sr(t) + Q(γ, η)sj(t)

,

(16)
where Q(γ, η) = sin γ cos γj − cos γ sin γje

j(η−ηj).
Similar to Equations (12) and (13), the signal sVPAj−pulse(t) is obtained by performing

down-conversion and pulse compression processing on sVPAj(t), as displayed in Equation (17).

sVPAj−pulse(t) = P(γ, η)T sin c{kcT(t− ∆t)}+ Q(γ, η) f (sj(t)) , (17)

where f (sj(t)) is obtained by performing down-conversion and pulse compression process-
ing on sj(t). Because the jamming interference sj(t) fails to obtain a matching compression
gain, the power of f (sj(t)) is mainly related to the amplitude of sj(t).

The first part P(γ, η)T sin c{kcT(t− ∆t)} in Equation (17) is the matching compres-
sion of target echoes, which can compress the energy to the target location. The second
part Q(γ, η) f (sj(t)) in Equation (17) is the matching compression of jamming interfer-
ence. Because the jamming interference signal is inconsistent with the matching function,
the matching effect cannot be achieved. As for the signals containing the target, jamming
interference, and noise, the amplitude of interference is usually much higher than that of the
target after pulse compression, resulting in an extremely low PCSNR. Based on Theorem
1 and Equation (17), we know that the PCSNR can be changed abruptly in the vicinity of
(γ = γj, η = −ηj) with VPA, i.e., Q(γ, η) = 0. A simple example in the following can be
used to explain this.

Example 1. Radar transmits horizontal polarization and uses a crossed dipole as receiving an-
tenna: A0 = 2, fc = 1.2 × 109, T = 2.5 × 10−5, kc = 1.6 × 1012, the scattering matrix
S = [1.2 0.4j; 0.8j 1.1]. For the jamming interference between the current pulse, its polarization
information is (γj = 63◦, ηj = 46◦), its ISR is 30 dB, and its frequency is 1.22× 109.

With the continuous change of VPA (γ, η), the simulation results of the PCSNR are
presented in Figure 1. Observing Figure 1, we can see that the PCSNR is at a maximum
value at (γ = 63◦, η = −46◦). As (γ, η) changes to both ends, the PCSNR decreases
sharply; thus, (γ = γj, η = −ηj) is the maximum point. In summary, for signals containing
both jamming interference and the target, the PCSNR is the largest when the parameter of
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VPA corresponds to the polarization of jamming interference; that is, γ = γj and η = −ηj.
Therefore, the proof of Theorem 2 is completed.

Figure 1. PCSNR of signals under different received polarization.

3.3. Two-Dimensional Golden Section Method

For the signals containing both interference and target, it can be known that the
PCSNR at (γ = γj, η = −ηj) is the maximum point. Observing Equation (17), it is
difficult to find the maximum point mathematically, so the numerical method is considered.
If the accuracy of the polarization estimation is requested within 1◦, it needs calculating
360× 90 = 32, 400 times by traversing (0◦ ≤ γ ≤ 90◦, −180◦ ≤ η ≤ 180◦). In order to
speed up the calculation process, this subsection proposes the TDGSM to estimate the
parameters of interference.

Based on Theorems 1 and 2, the estimation of interference can be described as a
mathematical question; i.e., the PCSNR at (γ = γj, η = −ηj) is unchanged and maximal,
which is in accordance with the two-dimensional convex function. For the two-dimensional
convex function in Figure 1, we propose the TDGSM, which can quickly search for the
optimal solution in the interval. Its mathematical model is

max
(γ, η)∈D

fPCSNR(γ, η)

sub. D =
{
(γ, η)| 00 ≤ γ ≤ 900,−1800 ≤ η ≤ 1800

} , (18)

where fPCSNR(γ, η) is the PCSNR of the signal under VPA with the parameter of (γ, η).
With a parameter of (γ, η), we can obtain the signal after down-conversion and pulse
compression with Equation (17); i.e., SVPAj−pulse(t). If the peak amplitude of SVPAj−pulse(t)
is Fpeak and the strongest side lobe is Fside, the fPCSNR(γ, η) is given; i.e., fPCSNR(γ, η) =
Fpeak/Fside.

In the area of D, the vertical and horizontal directions are divided by 0.382 and 0.618,
respectively, thus generating nine smaller areas, as shown in Figure 2. Subsequently,
we calculate the PCSNR of every area’s center and select the area where the PCSNR is
maximum in nine areas. Then, the selected area is re-divided into nine areas and the above
process is iterated until the diameter of the area is smaller than the required accuracy.
The steps of the TDGSM are as follows.



Remote Sens. 2022, 14, 1137 9 of 20

Figure 2. The divided areas in the TDGSM.

1. Randomly select a point (γ1, η1) in the area of D; calculate f ∗PCSNR = fPCSNR(γ
1, η1)

and k = 1.
2. Let the minimum be γmin 1 = 0◦ and maximum be γmax 1 = 90◦ for the interval, The

two golden section points of γ are

γβ1 = 0.382(γmax 1 − γmin 1) + γmin 1

γϕ1 = 0.618(γmax 1 − γmin 1) + γmin 1
. (19)

Let the minimum be ηmin 1 = −180◦ and maximum be ηmax 1 = 180◦ for the interval.
The two golden section points of η are

ηβ1 = 0.382(ηmax 1 − ηmin 1) + ηmin 1

ηϕ1 = 0.618(ηmax 1 − ηmin 1) + ηmin 1
. (20)

The area of D is divided into nine areas by γβ1 , γϕ1 , ηβ1 , and ηϕ1 ; i.e., D1
i , i = 1, ..., 9,

as shown in Figure 2. The center of D1
i is (γ1

i , η1
i ), the diameter of D1

i is d1
i , and k = 1.

3. If min
i=1,...,9

dk
i ≤ d0 where d0 is the required accuracy, stop the calculation and go to

Step 6; otherwise, go to Step 4.
4. Calculate the PCSNR of nine golden section points. If the maximum of fPCSNR(γ

k
i , ηk

i )
is greater than f ∗PCSNR, i.e., i = j, let (γmin k+1, γmax k+1) and (ηmin k+1, ηmax k+1) is
in the range of Dk

j , (γk+1, ηk+1) = (γk
j , ηk

j ), f ∗PCSNR = fPCSNR(γ
k
j , ηk

j ), go to Step 5;
otherwise, go to Step 6.

5. Let k = k + 1, return to Step 2.
6. The estimated parameter is (γk, ηk) and the iteration is stopped.

Through the TDGSM, the parameter estimation of interference can be completed in an
iterative loop. If the estimation accuracy of the polarization parameters is controlled within
1◦, the iteration amount ∑ is in the range of (∑min, ∑max), as shown in Equation (21).

360◦ × 0.382∑max ≤ 1◦

360◦ × 0.236∑min ≤ 1◦
, (21)

where ∑max denotes that the selected area always belongs to D1, D3, D7, and D9 in Figure 2;
∑min represents that the selected area always belongs to D5.

From Equation (21), the range of the iteration amount is 5 ≤ ∑ ≤ 7; thus, the total
calculation is in the range of (45, 63). Compared to 360× 90 = 32, 400 times by traversing
(0◦ ≤ γ ≤ 90◦, −180◦ ≤ η ≤ 180◦), the TDGSM in this paper significantly reduces the
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amount of calculation. Subsequently, we further analyze the characteristic of TDGSM
as follows.

Theorem 3. The estimation of the TDGSM is not only convergent, but also globally optimal.

Proof of Theorem 3. Initially, we randomly select a point (γ1, η1) in the area of D and cal-
culate f ∗PCSNR = fPCSNR(γ

1, η1). Then, the maximum PCSNR fPCSNR(γ
k
i , ηk

i ) in nine areas
is compared with f ∗PCSNR in each iteration. If fPCSNR(γ

k
i , ηk

i ) is greater than f ∗PCSNR, we
replace the fPCSNR(γ

k+1
i , ηk+1

i ) and (γk+1, ηk+1), so that fPCSNR(γ
k+1
i , ηk+1

i ) is greater
than f ∗PCSNR. Based on the above conclusion, the estimation of the TDGSM must converge;
therefore, there is an upper bound f ∗PCSNR.

Assuming that the estimation of the TDGSM is not globally optimal, there is a point
(γ0, η0) in D where fPCSNR(γ

0, η0) is greater than f ∗PCSNR. Based on the continuity
function, there must be a field U near this point (γ0, η0) to satisfy the requirement that
all points in the field be greater than f ∗PCSNR. However, note that in the iterative process,
the diameters of areas, i.e., d1, .., d9, will tend towards 0, so there must be an area that
falls completely within the field U. Since all PCSNRs in the area are less than f ∗PCSNR, this
conclusion contradicts the above result that all points in the field U are greater than f ∗PCSNR.
To sum up, the above assumption does not hold, so the estimation of TDGSM is globally
optimal, thus completing the proof of Theorem 3.

4. Performance Analysis

In this section, three aspects—robustness, complexity, and applicability—are analyzed
to investigate the performance of the presented method.

4.1. Robustness Analysis of Different SNRs

Because noise can create polarization measurement errors, we discuss the influence
of noise on the presented method, comparing it with that of the ISMA in Reference [58].
In order to obtain a better robustness analysis, we explain this in the following example.

Example 2. Radar transmits horizontal polarization and uses a crossed dipole as receiving antenna:
A0 = 2, fc = 1.2 × 109, T = 2.5 × 10−5, kc = 1.6 × 1012, scattering matrix
S = [1.2 0.4j; 0.8j 1.1]. For the jamming interference between current pulses, the polarization
parameters are (γj = 32◦, ηj = 63◦), the amplitude is 103, f j = 1.22× 109, and the signal-
to-interference ratio (SIR) is −40 dB. For the noise, we assume that the horizontal and vertical
receiving antennas obey the zero-mean Gaussian distribution.

For the signals that contain target, jamming interference, and noise simultaneously,
we let the signal-to-noise ratio (SNR) change in [−20 dB, 0 dB]. For different SNRs, we
randomly select (γj, ηj) in their range and perform a Monte Carlo simulation 100 times.
Figure 3 displays the correct rate of ISMA and the presented method under the assumption
that the estimation of (γj, ηj) is the correct estimate when the estimated error satisfies
(∆γ ≤ 2◦, ∆η ≤ 2◦). Observing Figure 3, we can see that the correct rate of ISMA decreases
if the SNR decreases, whereas the correct rate of the presented method remains unchanged.
Especially when the noise is large (e.g., the SNR is less than −12 dB), the estimated
probability of the presented method is much better than ISMA. There is a main reason
for this phenomenon; i.e., ISMA processes the pre-pulse compression data, while the
presented method processes the post-pulse compression data. When comparing the target
with the jamming interference after the pulse compression, the influence of the SNR in
[−20 dB, 0 dB] is extremely small. Therefore, the presented method has better robustness
when compared with ISMA.
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Figure 3. Estimated probability of the two methods under different CSRs.

4.2. Complexity Analysis

When comparing with the signal processing of radar, the presented method in this
paper only adds to the operation of VPA, as exhibited below in Equation (22).

sVPA(t) =
[
sin γ − cos γejη

][ Eh

Ev

]
. (22)

After the VPA, the number of compared operations in the range of (45, 63) are carried
out on the PCSNR. Because the presented method needs to repeat the 45 to 63 calculations,
the computation is greater than in ISMA. On the other hand, the presented method in this
paper only processes echoes within the distance window, and the signal length is much
shorter than the original echoes in ISMA, which can simplify the calculation. We tested the
time requirements of the two methods on the same device, with a computational platform
with a i7− 10510U CPU quad-core and 16 Gb of memory. The CPU time for ISMA is
0.0040 s, while the CPU time for the presented method in this paper is 0.0128 s, which is
about 3.2 times that of ISMA.

4.3. Applicability Analysis

In the proof of Theorem 2, we assume that the amplitude of jamming interference is
much higher than that of target echo after pulse compression. For the signals containing
both jamming interference and the target, the PCSNR is the largest when the parameter of
VPA correspond to the polarization of jamming interference; that is, γ = γj and η = −ηj.
However, due to the influence of interference in other received parameters, the main lobe
of the target may rise or the side lobe may decrease, which would lead to that the PCSNR of
target increasing. Therefore, the PCSNR of the target echo with VPA of γ = γj and η = −ηj
may no longer be the maximum value when the amplitude of the jamming interference
gradually decreases. To further explain this phenomenon, we also give an example in the
following, the parameters of which are the same as in Example 1, except for the difference
in the amplitude of jamming interference.

Example 3. Radar transmits horizontal polarization and uses a crossed dipole as receiving an-
tenna: A0 = 2, fc = 1.2 × 109, T = 2.5 × 10−5, kc = 1.6 × 1012, the scattering matrix
S = [1.2 0.4j; 0.8j 1.1]. For the jamming interference between the current pulse, polarization is
(γj = 35◦, ηj = 75◦) and amplitude is 2, f j = 1.22× 109.
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When the parameter of VPA corresponds to the polarization of jamming interference,
i.e., (γ = γj, η = −ηj), the target echoes after pulse compression are similar to those in
Figure 4. In this case, the PCSNR is 13.29 dB. However, when the parameter of VPA is
(γ = 39◦, η = −78◦), the PCSNR is 14.34 dB in the nonideal VPA. The target echoes after
pulse compression are displayed in Figure 5. Therefore, the PCSNR of target echoes is no
longer a maximum value under the interference condition, which is affected by different
ISRs. In order to further analyze the minimum requirement for ISR contained in Theorem
2, Monte Carlo simulation was performed for different ISRs. We give another example to
explain this point.
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Figure 4. PCSNR at an ideal VPA parameter.
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Figure 5. PCSNR at a nonideal VPA parameter.

Example 4. Radar transmits horizontal polarization and uses a crossed dipole as receiv-
ing antenna: A0=2, fc=1.2 × 109, T=2.5 × 10−5, kc=1.6 × 1012, the scattering matrix
S = [1.2 0.4j; 0.8j 1.1]. For the jamming interference between the current pulse, f J = 1.22× 109.

For different ISRs, we randomly select (γj, ηj) 100 times in the range
(0◦ ≤ γj ≤ 90◦, −180◦ ≤ ηj ≤ 180◦), and estimate its polarization by TDGSM. By calculat-
ing the estimated probability under different ISRs, we can obtain the minimum requirement
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for ISR in Theorem 2, as displayed in Figure 6. Combining Example 4 with Figure 6, the pre-
sented method can be affected by the amplitude of jamming interference. When the
amplitude of the interference signal makes Theorem 2 hold, it is suitable for the method
presented in this paper. However, when the jamming interference energy is low, the estima-
tion error of the presented method will increase. From a numerical analysis in Figure 6, we
see that when the ISR is greater than 28.75 dB, the estimated probability of the presented
method is higher than 0.99. As ISR increases, the estimated probability approaches 1. If
Equations (12) and (13) are directly performed on the received signal, the target can be
detected when the ISR is in the range of [0 dB, 15.4 dB]. In summary, the presented method
in this paper is applicable when the ISR is in the range of [0 dB, 15.4 dB] and [28.75 dB,
∞ dB].
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Figure 6. Estimated probability under different ISRs.

5. Simulation

The Section 4 analyzes the presented method from three aspects: robustness, complex-
ity, and applicability. In this section, the numerical results are analyzed for specific cases
where the target belongs to the distributed type and the polarization of the interference
is changing.

Example 5. The parameters of radar, target, interference, and noise are as follows.

1. Radar transmits horizontal polarization and uses a crossed dipole as receiving an-
tenna. Its signal amplitude is A0 = 2, carrier frequency fc = 1.2× 109, pulse width
T = 2.5× 10−5, bandwidth B = 40× 106, pulse repetition period PRI = 2× 103, and
pulse number N= 16.

2. The distance between the distributed target, the window’s center, and target’s relative
RCS are [90 m 2; 95 m 1.2; 105 m, 1]. The speed of light c = 3× 108, and the scattering
matrix S = [1.2 0.4j; 0.8j 1.1].

3. The jammer’s carrier frequency f J=1.2× 109, ISR = 34 dB. The polarization param-
eter of the jammer is changing between different pulses. In order to observe the
accuracy of estimation in different pulses, we fix the auxiliary polarization angle
γj = 36◦ and randomly select the polarization phase difference ηj in different pulses,
as exhibited in Table 1.

4. Assume that the noise in the crossed dipole follows the Gaussian distribution and
SNR = 0 dB.

Taking the 16th pulse containing target, interference, and noise as an example, we
perform down-conversion, filtering, and pulse compression on the horizontal received
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signal, as shown in Figure 7. We can see that the target signal after pulse compression is
very weak, due to the influence of jamming interference under the same frequency and the
main lobe as radar, which seriously affect the subsequent target detection.

Table 1. The polarization phase difference of interference in different pulses.

Num. Polarization
Phase Difference Num. Polarization

Phase Difference Num. Polarization
Phase Difference

1 22◦ 7 77◦ 13 40◦

2 54◦ 8 27◦ 14 56◦

3 52◦ 9 47◦ 15 71◦

4 13◦ 10 18◦ 16 77◦

5 10◦ 11 60◦

6 40◦ 12 20◦

Figure 7. Pulse compression results of the horizontal received signal.

Subsequently, we utilize the presented method to continuously estimate the param-
eters of interference between 16 pulses, which is shown in Figure 8. Observing Figure 8,
the presented method can estimate the parameters well, and the accuracy is within 1◦ when
the polarization of interference is continuously variable and randomly selected. Taking
the 16th pulse as an example, the pulse compression result of VPA with the parameters
(36◦, −77◦) s shown in Figure 9 when simply performing interference suppression with
conjugate reception polarization. In Figure 9, we can see that the target’s PCSNR is 12.74 dB,
which is higher than that of the horizontal received signal in Figure 7 after the accurately
estimation of interference and conjugate polarization reception.

We then compared the presented method and ISMA in terms of estimation accuracy,
which also further verified the conclusion in Section 4.

Example 6. The simulation parameters are the same as those in Example 5, i.e., radar,
target, and interference. We compare the estimation accuracy of both the methods under
different SNRs—SNR1 = −10 dB, SNR2 = −20 dB—as shown in Figures 10 and 11.
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Figure 8. The estimation result of SPPEM.

Figure 9. Pulse compression result received by conjugate polarization.
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Figure 10. The estimation of the two methods under SNR1 = −10 dB.

Figure 11. The estimation of these two methods under SNR2 = −20 dB.

Observing Figures 10 and 11, we can find that as SNR decreases, the error of ISMA
increases. In addition, the presented method remains unchanged within the SNR of
[−20 dB, 0 dB], which is consistent with the results in Section 4.1.

Example 7. The simulation parameters are the same as those in Example 5, i.e., radar,
target, and interference. We compare the estimation accuracy of both the methods under
different ISRs—ISR1 = 28 dB, JSR1 = 40 dB—as shown in Figures 12 and 13.
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Figure 12. The estimation of the two methods under ISR1 = 28 dB.

Figure 13. The estimation of these two methods under ISR2 = 40 dB.

Observing Figures 10, 12, and 13, we can find that the error of ISMA increases as the
ISR decreases. When the ISR is greater than 28 dB, the estimated probability of the presented
method is higher than 0.99, which verifies the results in Section 4.3.

6. Conclusions

For signals containing target, interference, and noise, this paper proposes a novel
synchronous estimation method for interference with different polarizations. First, we
introduced the polarization invariant, i.e., the PCSNR. Then, an estimation method was



Remote Sens. 2022, 14, 1137 18 of 20

proposed based on two theorems of the polarization invariant. Subsequently, we proposed
the TDGSM to further optimize this method with minimum calculation, and proved that the
method presented in this paper is convergent and globally optimal. Finally, the presented
method was analyzed in terms of three aspects: robustness, complexity, and applicability.
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