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Abstract: With the development of artificial intelligence techniques for geographical knowledge
discovery, simulated terrain generation based on deep-learning algorithms has become one practical
way to construct accurate terrain data. However, it is still necessary to discuss whether the simulated
topographic data contain the characteristics of specific landforms and can support related geograph-
ical studies. Therefore, in this study, a deep learning-based model inspired by previous research
is constructed to generate loess landform data. We analyzed the influence of inputting different
topographic features on terrain generation and evaluated the similarity between the simulated and
reference data. The results show that the deep learning-based model can generate simulated topo-
graphic data that include similar elevation and slope probability distributions to the reference data
of the loess landform. In addition, the generated results may have inaccurate terrain details, which
can be regarded as noise in some cases. This indicates that the selection of input features should
be carefully considered. Finally, the simulated data can subsequently support landform and terrain
research, especially with intelligence algorithms that require large sets of topographic data.

Keywords: digital terrain analysis; deep learning; loess landform; topographic characteristics; ter-
rain features

1. Introduction

Terrain is the fundamental object that significantly influences the geomorphic, hy-
drologic, and ecological processes of the Earth’s surface [1,2]. Various topographic char-
acteristics carried by different surfaces provide information for landform classification,
environmental evolution, terrain analysis, and hydrological analysis [3–6]. The digital
elevation model (DEM) plays an important role in transferring geographical knowledge to
computer-processable information [6]. It achieves a reliable way to represent the surface
and supports the development of sophisticated techniques for geographical research [7–10].
These data, which achieve accurate description of topographic information, are necessary to
support a reasonable understanding of landform evolution processes and the optimization
of algorithms that are influenced by topographic characteristics [11–14]. In addition, the en-
richment of topographic data can support the development of data-driven algorithms, such
as GeoAI, and improve the performance of object detection and scene segmentation [15–18].

Terrain modelling is a technique that focuses on capturing features and constructing
surfaces digitally [19,20]. This technique can achieve the extraction and description of land
surface parameters. Generally, terrain modelling can be classified into two types. The first is
forward terrain modelling, which aims to capture landform features and construct data that
are similar to true surfaces, even in detail [19,21]. These methods also consider the fractal
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and procedural mechanism and aim to automatically generate terrain [22–25]. Another
possible approach to achieve the digital simulation of terrains is terrain generation, which
is also called virtual terrain authoring [26,27]. Unlike forward terrain modelling, terrain
generation is a backward method that portrays fictitious earth surfaces based on existing
topographic features (i.e., ridges and valleys) and knowledge [20,26]. This technique
requires only a small number of input features and supports quick terrain modelling, and
the generated results contain topographic characteristics similar to those of one specific
landform or terrain on Earth [27,28].

In recent years, deep learning (DL) techniques have been widely used for image
classification [29,30], object detection [15,31], texture synthesis [32,33], and image gen-
eration [27,34,35]. Among these methods, conditional generative adversarial networks
(CGANs) [36] have been proven to achieve good performance in geographical
research [26,37,38], including terrain generation [27], due to their strong learning power
and ease of topographic feature control. CGANs were developed based on generative
adversarial networks (GANs) [38], and the adversarial structure provides great power
in mining potential information from images. Meanwhile, CGANs employ an advanced
encoder-decoder architecture to guide the training process and allow users to insert external
conditions [36]. This adjustment improves the ability of CGANs to generate more reliable
results than GANs that use random noise as the input.

However, even though DL-based algorithms aimed at terrain generation have been
proposed, geographical concerns, which have been considered in recent studies [39,40],
should be further emphasized to improve the quality of the generated results. On the one
hand, terrain surfaces are shaped by the interaction of endogenic and exogenic processes
that dominate landforms evolution. The surface morphology often reflects the formation
processes. Without consideration of landform differentiation, the surfaces created by DL-
based methods are vague representations and mixtures of multiple landforms. These data
are hard to apply in geomorphological research that focuses on one specific landform.
On the other hand, the input sketches for CGANs highly rely on users’ knowledge and
experiences. The type, density, location, and relative relationship of input features signifi-
cantly influence the quality of results generated by DL algorithms. Sketch maps should not
be randomly constructed, and further discussion is needed to determine how to reliably
arrange the content of topographic features. To build a realistic terrain that accords with
geographical principles and spatial cognition, the controlling effect of topographic features
should be considered for different landforms.

In this study, we aim to discuss the feasibility of generating valid topographic data
based on DL method and the effect of different terrain features on terrain generation.
Representative topographic features of the loess landform are used in CGAN as input data
to guide the training process. The comparison considering topographic characteristics is
exploited to assess the performance of models trained under different topographic features.

2. Materials and Methods
2.1. Study Object and Areas

We selected the loess landform as the study object. The loess landforms are formed by
the deposition of silt with a small amount of silty-sand, which are easily eroded by water,
wind, and glacial activity [41]. In this study, we focused on the topographic characteristics
on landform surface, with the geological features of loess landform not considered. We
collected terrain data from the Loess Plateau, China. The Loess Plateau contains typical
loess landforms and covers an area of 640,000 km2. For loess landforms, especially for
those in the Loess Plateau, due to the stable geological basis, water erosion with different
densities becomes the most important factor that influences the shape of the surface in this
area. Under such a circumstance, the terrain in the Loess Plateau can be abstracted into a
series of simple features. These terrain features are regarded as the basic representation of
the loess landform and can support terrain generation. Meanwhile, these features can be
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regarded as the input data of GAN and provide topographic information to a DL-based
model.

2.2. Data Preparation
2.2.1. DEM Data

A large amount of sample data is generally needed for DL algorithms. DEMs with a
resolution of 5 m provided by the National Administration of Surveying (China) were used
in this study. The complete areas were clipped to small patches of the same size (Figure 1).
Patch size is an important parameter in this step. The memory occupation will increase
rapidly and affect the system performance and training speed when the size is too large. If
the size is too small, the information carried by patches cannot meet the requirement of the
training process, and models may achieve unsatisfactory performances [42]. A patch size of
256 × 256 pixels was selected in this study, and the area of each sample was approximately
1.64 km2 (1.28 km × 1.28 km). The topographic features of loess landforms can be clearly
observed on these patches (Figure 1), and the computation and timing consumption are
also accepted at this scale.
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Figure 1. Example of sample data. (a,b) the location of the Loess Plateau; (c,d) the terrain in the Loess
Plateau (the size of a small patch is 256 × 256 pixels).

2.2.2. Input Terrain Features

We extracted different topographic features from sample DEMs as input conditions
of the training process. For the loess landform, which is significantly influenced by water
erosion, clear ridges and gullies can be observed in the study area, especially in the region
of loess ridges and loess hills [3,43]. These lines compose the basic structure of the loess
landform [44]. Another reason why we choose ridge and gully lines as input conditions is
that lines with different lengths and densities can be extracted by setting various thresholds
in the hydrological algorithm. During this process, the use of different flow accumulation
thresholds can generate networks of ridge and gully lines with different densities [45]. With
a small threshold, the resulting networks are dense and reveal the detailed relief of terrains,
whereas using a large threshold provides a spare network and only shows the skeleton of
the confluence relationship. Experiments based on different datasets can investigate the



Remote Sens. 2022, 14, 1166 4 of 15

effect of line features with different quantitative characteristics on terrain generation. The
reference DEM and extraction results of ridge and valley lines can be found in Figure 2a–f.

In addition, the loess landform can be basically separated into positive and negative
terrains [46,47]. Negative terrains generally have high relief and are formed by intensive
erosion in loess landforms, such as gully erosion. The topographic characteristics of
negative terrain can be generally described by gully lines. However, the information
provided by ridge lines is not enough to express the topographic characteristics of the
positive terrain. The area of positive terrain is usually flat and has a moderate slope.
Feature lines cannot achieve satisfactory performance in generating relatively flat surfaces
with large areas. Therefore, despite the line features, we also extract the area of positive
terrain and use it as one input feature in the training process. The introduction of areas of
positive terrain helps understand the efficiency of surface elements in DL-based algorithms
of terrain generation. Here, we use the method outlined in Xiong et al. (2014b) to extract
positive terrains. The identification method includes calculating the mean value of DEM
through neighborhood statistical analysis, calculating the difference between the original
DEM and the mean of DEM, and finally implementing a binary classification to generate
positive and negative terrain. Areas marked by blue in Figure 2g show the positive terrain
areas.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

[45]. With a small threshold, the resulting networks are dense and reveal the detailed relief 
of terrains, whereas using a large threshold provides a spare network and only shows the 
skeleton of the confluence relationship. Experiments based on different datasets can in-
vestigate the effect of line features with different quantitative characteristics on terrain 
generation. The reference DEM and extraction results of ridge and valley lines can be 
found in Figure 2a–f. 

In addition, the loess landform can be basically separated into positive and negative 
terrains [46,47]. Negative terrains generally have high relief and are formed by intensive 
erosion in loess landforms, such as gully erosion. The topographic characteristics of neg-
ative terrain can be generally described by gully lines. However, the information provided 
by ridge lines is not enough to express the topographic characteristics of the positive ter-
rain. The area of positive terrain is usually flat and has a moderate slope. Feature lines 
cannot achieve satisfactory performance in generating relatively flat surfaces with large 
areas. Therefore, despite the line features, we also extract the area of positive terrain and 
use it as one input feature in the training process. The introduction of areas of positive 
terrain helps understand the efficiency of surface elements in DL-based algorithms of ter-
rain generation. Here, we use the method outlined in Xiong et al. (2014b) to extract posi-
tive terrains. The identification method includes calculating the mean value of DEM 
through neighborhood statistical analysis, calculating the difference between the original 
DEM and the mean of DEM, and finally implementing a binary classification to generate 
positive and negative terrain. Areas marked by blue in Figure 2g show the positive terrain 
areas. 

 
Figure 2. Representation of input patches. (a) Reference DEM; (b,c) The extraction of ridge lines 
based on different thresholds; (d–f) the extraction of valley lines on different thresholds; (g) the 
patches combining ridge lines, valley lines, positive terrains, and the corresponding DEM. 

The amount of training data directly affects the performance of CGANs. A large 
number of samples can effectively improve the model performance and reduce the effect 
of overfitting [48,49]. We constructed 4000 sample patches from the original DEMs to train 
the model. Each sample patch contains two parts, one 3-band image, and one DEM. We 
extracted the topographic features and organized them as a 3-band image. Gully lines, 
ridge lines, and positive areas are stored in bands 1, 2, and 3 in the image, respectively 
(Figure 2g). DEM data are also clipped to the same size as the corresponding image. 

2.3. DL-Based Algorithm for Terrain Generation 
In our study, a special CGAN, called Terrain-CGAN, is constructed to generate sim-

ulated terrain. The traditional CGAN, Pix2Pix, and algorithms in the field of computing 
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patches combining ridge lines, valley lines, positive terrains, and the corresponding DEM.

The amount of training data directly affects the performance of CGANs. A large
number of samples can effectively improve the model performance and reduce the effect of
overfitting [48,49]. We constructed 4000 sample patches from the original DEMs to train
the model. Each sample patch contains two parts, one 3-band image, and one DEM. We
extracted the topographic features and organized them as a 3-band image. Gully lines,
ridge lines, and positive areas are stored in bands 1, 2, and 3 in the image, respectively
(Figure 2g). DEM data are also clipped to the same size as the corresponding image.

2.3. DL-Based Algorithm for Terrain Generation

In our study, a special CGAN, called Terrain-CGAN, is constructed to generate sim-
ulated terrain. The traditional CGAN, Pix2Pix, and algorithms in the field of computing
methodologies were used as the basic framework of Terrain-CGAN, and some modifica-
tions were also taken to promote the performance of the generating process.
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2.3.1. Basic Principle of CGAN

CGANs were developed based on GANs and have become some of the most powerful
network structures in the field of terrain generation [27,28]. CGANs can generate specific
results according to predefined requirements and avoid random plausible outputs, unlike
traditional GANs. The typical architecture of CGANs can be separated into two main parts:
the generator and discriminator [36]. The generator uses the encoder-decoder to transform
the input data, commonly including the input image and other conditions, to obtain the
output result. The discriminator is made up of several convolutional layers. This part can
measure the similarity of the input data to the reference data and judge if the input data
are generated by the generator or if the input data are the simulated sample. The overall
loss that influences the CGAN is usually designed as:

LCGAN = eL1 + LG + LD (1)

where e is an empirical scaling parameter, and, L1, LG, and LD are three basic loss func-
tions [36]. The generator is influenced by L1 and LG, while LD influences the discriminator.
This model follows a two-player min-max adversarial game, and eventually, the optimal
CGAN are obtained as follows:

Optimal(G, D) = min
G

min
D

LCGAN (2)

Through this competition, the generator G and discriminator D obtain the capability
to generate realistic data and distinguish generated data from the ground truth data,
respectively [18].

Although the CGAN achieves the supervised framework based on GANs, the typical
structure of the generator part has difficulty generating sufficient connections between
the input conditions and generated results, which may lead to redundant and repetitive
outputs and cause the model to collapse.

2.3.2. Terrain-CGAN

Further development of CGANs has been presented to promote the control efficiency
of the input condition. The Pix2Pix architecture [35] is developed based on CGAN to learn a
function to ‘translate’ the map from an input image to an output image. The most significant
improvement of Pix2Pix net is the changing of the introduction of concatenation, which
helps to retain original feature of input image and utilize the user-defined conditions [35].
The improved architecture has been proven to achieve more satisfactory results compared
with typical CGANs in the field of background masking, image translation [35,50,51], etc.
Therefore, to achieve the detection of correct topographic features from the input condition
and generate the output that conforms to the specific landform, Terrain-CGAN is inspired
by the above architectures and previous studies focusing on terrain generation [27,28].
In Terrain-CGAN (Figure 3), the basic structure of the Pix2Pix network is retained to
achieve the efficient learning of topographic characteristics. The input data of Terrain-
CGAN correspond to the sample unit we constructed in Section 2.2.2. The terrain features,
including ridge lines, gully lines, and areas of positive terrain, are regarded as the input
data to guide the learning process. The corresponding DEM in each sample pair is used as
the target of the generating process, which means that the model is encouraged to construct
a simulated DEM and make it similar to the referenced DEM. At the end of the training
process, the trained model can extract topographic information from the input features and
build a DEM that can express the terrain it learned. We set the learning rate to 0.0002 and
selected Adam as the optimizer in Terrain-CGAN. The final model is completed after 500
epochs, which consumes approximately 8 h.
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2.4. Experiments

Here, the experiments are mainly divided into two goals. (1) To investigate the effects
of different topographic features on terrain generation, different data combinations are
constructed and used as the input data to train models. Table 1 shows the information about
these data combinations. We first used a single topographic feature to train our model and
then combined them for model training. (2) Ridge and gully lines with different amounts
are generated and combined to discuss the influence of feature lines. As mentioned in
Section 2.2.2, the length and number of ridge and gully lines can be controlled by setting
different thresholds. We employed 100, 300, 500, 1000, 1500, and 2000, which are commonly
used in digital terrain analysis to extract stream networks, as thresholds and extracted
feature lines based on these thresholds. Values that are greater than 2000 were not applied
in these experiments because extracted feature lines remain stable and exhibit only a little
difference when the threshold is greater than 2000. All topographic lines were combined
with the features of positive terrain and then used as input data for the models. Information
about these experiments can be found in Table 2.

Table 1. Combinations of different terrain features.

Component Terrain Features

Case 1 Single terrain feature Gully lines
Case 2 Ridge lines
Case 3 Multiple terrain features Gully and ridge lines

Case 4 Gully lines, ridge lines, and
positive terrain areas

Table 2. Combinations of features with different extraction thresholds.

Threshold (for the Extraction
of Line Features) Terrain Features

Case A 100

Gully lines, ridge lines, and
positive terrain areas

Case B 300
Case C 500
Case D 1000
Case E 1500
Case F 2000
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2.5. Performance Evaluation

The performance assessment is explored from three perspectives: (1) Visual inspection
is exploited to check if the generated results retain the basic characteristics of the loess
landform, and the distribution of landform units can also be obtained through visual
investigation. (2) Elevation analysis is performed to evaluate the relation between the
generated results and the reference data by drawing a scatter graph and calculating the
Pearson correlation coefficient. In this step, the elevation is normalized into the range
of 0 through 1. (3) The surface slope is selected as the representative terrain derivative
to assess the model performance. Slope is a basic terrain derivative and can efficiently
reflect surface morphological features. The slope histogram is conducted to compare the
difference between the reference data and the simulated results. In addition, the difference
in surface slope between the generated results and the reference data is calculated in this
step to assess whether the generated results achieve similar terrain to the original data.

3. Results
3.1. Results Based on Different Topographic Features

Four Terrain-CGANs were trained using different combinations of topographic fea-
tures, and we compared their performance in four areas. Figure 4 shows that the results
based on the single topographic feature have poor performances in terrain modelling.
The model based on the ridge line cannot correctly build the ridge area, while the results
based on the gully line also generate unsatisfactory terrain relief, even though the model
correctly rebuilds several gullies in the correct spatial location. In addition, the combined
topographic features improved the performance of terrain construction. The figures of
Case 3 reflect more complete and continuous gullies and ridges than the results based on
the single topographic features. Meanwhile, the model with positive terrain significantly
outperformed the other models and constructed correct areas of the positive terrains, which
cannot be observed in the other results. Therefore, it can be concluded that the model
with the combined features of ridge lines, valley lines, and regions of positive terrain
outperformed the other three models tested. The following comparison and analyses are
all based on the combination of these three features.
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We subsequently discuss the influence of topographic features with different densi-
ties. Commonly, high threshold values represent a low density of line features, and low
thresholds mean that there are a range of ridge and gully lines existing in the input samples.
Figure 5 shows that the model with a high density of line features generates more details
than the models trained based on low densities. For example, some very small gullies can
be easily observed in the boundary of the gully areas when the model employs high-density
inputs. However, these details are not always positive features, which means that a part
of the detailed terrain is generated through the inference of Terrain-CGAN and cannot be
observed in the reference data. As shown in the results of Area 3, broken ridges can be
observed in the result of Cases A, B, and C that are trained on the basis of line features with
high density. In general, the results of Cases D, E, and F are better than those of Cases A, B,
and C, and the generated terrain starts to be stable from Case D.
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Figure 5. Results based on the combinations generated by different thresholds. Ref DEM represents
the reference data, and T represents the threshold for extracting stream network.

3.2. Elevation Analysis

In this section, we map the elevation relation between the reference data and the
generated results and calculate the Pearson correlation coefficient (Figure 6). The high
coefficient indicates that the simulated results include topographic characteristics similar to
those of the reference data. The coefficients in Areas 1, 3, and 4 are all greater than 0.8, which
reflects the strong positive correlation between the generated results and the reference data.
In addition, the Pearson coefficient tends to increase with increasing threshold. Cases D,
E, and F generally achieve higher coefficients than Cases A, B, and C, which is consistent
with what we observed in Section 3.1. However, Area 3, which includes broken ridges in
Figure 5, contains unsatisfactorily low correlation coefficients. Complex terrain relief could
be the primary reason for the unexpected deviation from the reference data.
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3.3. Slope Analysis

Figure 7 shows the slope of different results. Generally, most results achieved a trend
similar to that of the reference data. In Areas 2 and 4, the results of Terrain-CGAN exhibit
similar fluctuations to the reference data in the range of 30◦ to 50◦. Meanwhile, Table 3
shows that the Terrain-CGAN can generate a small deviation in the mean slope. In addition,
the lowest difference in the mean slope between the generated results and the reference
data usually occurs in Case F with the highest threshold. Even though the terrain generated
by Terrain-CGAN is close to the reference surface, especially in Areas 2 and 4, several
unexpected deviations still exist. For example, in Area 1, Terrain-CGAN fails to construct
the peak on the slope curvature (Figure 7a). We think this error around peaks is acceptable
given that the overall trend constructed by Terrain-CGAN matches the reference data in
most ranges.
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Table 3. The statistics of surface slope. Ref DEM represents the reference data.

Mean Median Standard
Deviation Maximum

Area 1

Ref DEM 30.91 29.69 12.46 82.55
Case A 34.29 35.26 14.29 70.76
Case B 37.61 38.13 14.56 72.45
Case C 36.10 36.34 14.20 73.49
Case D 33.11 32.99 13.03 71.68
Case E 32.68 32.31 12.39 72.38
Case F 33.09 32.63 12.47 73.02

Area 2

Ref DEM 38.90 41.47 20.12 85.15
Case A 39.28 40.73 18.08 77.88
Case B 37.28 38.93 17.44 79.70
Case C 36.83 38.13 17.34 77.07
Case D 35.59 36.59 16.67 75.58
Case E 36.05 36.87 17.08 77.92
Case F 35.41 36.09 16.72 76.09

Area 3

Ref DEM 32.34 32.31 13.64 84.71
Case A 42.22 44.49 17.29 81.61
Case B 41.35 43.21 16.75 77.87
Case C 41.43 43.59 16.61 77.86
Case D 36.41 37.41 14.38 75.08
Case E 36.68 37.79 14.22 75.88
Case F 33.63 34.04 13.21 70.76

Area 4

Ref DEM 32.99 32.51 17.59 86.90
Case A 37.46 38.58 18.59 78.66
Case B 37.50 38.66 18.49 79.79
Case C 38.02 39.14 19.00 79.43
Case D 37.48 38.13 18.60 78.80
Case E 36.79 36.93 18.48 79.36
Case F 35.45 35.06 17.95 78.95

4. Discussion
4.1. Influence of Different Terrain Cues and Feature Combinations

A range of previous research has proven that terrain cues can significantly improve
a model’s performance in generating terrain. However, the question as to which types of
terrain cues should be used and how to combine them to generate reliable terrain still needs
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further discussion. Through our experiments, we suggest that the main landform units
that form targeted terrain should be determined before the launch of the algorithm, and
the characteristics of these units should be regarded as the key features in selecting terrain
cues that are used as the model’s input. In this study, we consider the basic structure of
the loess landform consisting of ridge and gully lines and introduce the positive terrain as
one of the input data to optimize the construction process. The results show that the input
combination including positive terrain significantly helps construct valid terrain, especially
in flat areas with small surface slopes (Figure 8). The topographic frame is also optimized
through the introduction of positive terrain. Therefore, the selection of terrain cues should
consider the differences in landforms and surface morphology. Key terrain cues should
be found and used as the input of the CGAN model to generate high-quality data with
low competition and data costs. In addition, previous research has mainly discussed the
usability of line and point features. In our study, we introduce one surface feature, positive
terrain area, to improve the quality of the generated results. As shown in Figure 4, the
available surface features can be integrated into input data and improve the model’s ability
to restore accurate terrain.
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However, there are still issues that need further discussion. For example, due to the
uncertainty in GAN, the positive terrain areas generated by our method are not as flat as
reference data, and these detailed reliefs could influence the subsequent morphological or
hydrological analysis based on DEMs. In addition, the number of line features should also
be carefully considered in terrain generation. The results show that the best expression of
detailed terrain and the best slope results cannot be simultaneously found in one model,
which suggests that the great expression of the detailed terrain could lead to an unexpected
slope histogram. In some cases, detailed terrains could be considered noise and would
disturb the terrain analyses. Therefore, before the launch of terrain generation algorithm,
we should construct a bridge between the purposes of applications or studies and the
determination of terrain features for model training. In other words, we should determine
which information is the most important part for research and then choose a suitable model
and training dataset to generate reliable terrain data. Finally, relative studies focusing
on other landforms can also benefit from our method, but it is critical to determine the
input topographic features. In the Loess Plateau, water erosion is the most important factor
that influences landform evolution and is much more significant than other factors, which
makes it valid to abstract terrain based on simple lines and areas. However, for other
landforms with more than one dominant geomorphological factor, we suggest that the
present framework is available but the input features must be adjusted according to the
dominant factors.

4.2. Applications of Terrain-CGAN

The output of the Terrain-CGAN can be the representation of the true surface and the
‘virtual’ simulated terrain [27]. The second type of data contain similar characteristics to one
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specific landform, but they do not belong to any place on Earth. Simulated topographic data
can be widely applied in constructing virtual scenes, simulating landform evolution, and
supporting the development of intelligent geographical algorithms. As shown in Figure 9,
ridge and gully lines, which represent different development stages of loess landforms,
are used as the input of our model to construct terrain data, and the generated results
successfully reconstruct the process of vertical and lateral erosion. Landform development
can be remerged based on low data and computing consumption. In addition, previous
studies have proven that terrain data benefit landform classification, object detection,
and geography-related research [16,52–55]. The fine-tuned model can quickly generate
topographic data with simple input data and support related studies, especially DL-based
algorithms that require a large amount of input data.
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5. Conclusions

A DL-based algorithm called Terrain-CGAN inspired by a previous study was con-
structed to generate topographic data of the loess landforms based on topographic feature
lines and areas, including ridge lines, gully lines, and areas of positive terrain. The positive
terrain area, which is a special unit existing in loess landform areas, significantly improved
the accuracy of simulated results. The fine-trained model can quickly generate a large
amount of data that contain similar elevation and slope characteristics with loess landform.

The topographic data generated by our method has the potential to be used in geo-
graphic studies that need topographic data. Experiments based on simulation data are
common in geographic research. The simulation data conforming to the characteristics of
specific landforms can support studies such as simulating landform evolution. In addition,
the proposed framework could be transferred to other landform areas.
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7. Drăguţ, L.; Blaschke, T. Automated classification of landform elements using object-based image analysis. Geomorphology 2006, 81,
330–344. [CrossRef]

8. Hu, G.; Dai, W.; Li, S.; Xiong, L.; Tang, G.; Strobl, J. Quantification of terrain plan concavity and convexity using aspect vectors
from digital elevation models. Geomorphology 2021, 375, 107553. [CrossRef]

9. Székely, B.; Karátson, D. DEM-based morphometry as a tool for reconstructing primary volcanic landforms: Examples from the
Börzsöny Mountains, Hungary. Geomorphology 2004, 63, 25–37. [CrossRef]

10. Székely, B.; Zámolyi, A.; Draganits, E.; Briese, C. Geomorphic expression of neotectonic activity in a low relief area in an Airborne
Laser Scanning DTM: A case study of the Little Hungarian Plain (Pannonian Basin). Tectonophysics 2009, 474, 353–366. [CrossRef]

11. Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021,
31, 456–476. [CrossRef]

12. Yang, X.; Na, J.; Tang, G.; Wang, T.; Zhu, A. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess
hilly area in China. Front. Earth Sci. 2019, 13, 151–168. [CrossRef]

13. Zhao, W.; Duan, S.-B.; Li, A.; Yin, G. A practical method for reducing terrain effect on land surface temperature using random
forest regression. Remote Sens. Environ. 2019, 221, 635–649. [CrossRef]

14. Lv, G.; Xiong, L.; Chen, M.; Tang, G.; Sheng, Y.; Liu, X.; Song, Z.; Lu, Y.; Yu, Z.; Zhang, K. Chinese progress in geomorphometry. J.
Geogr. Sci. 2017, 27, 1389–1412. [CrossRef]

15. Li, W.; Hsu, C.-Y. Automated terrain feature identification from remote sensing imagery: A deep learning approach. Int. J. Geogr.
Inf. Sci. 2020, 34, 637–660. [CrossRef]

16. Hsu, C.-Y.; Li, W.; Wang, S. Knowledge-Driven GeoAI: Integrating Spatial Knowledge into Multi-Scale Deep Learning for Mars
Crater Detection. Remote Sens. 2021, 13, 2116. [CrossRef]

17. Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially explicit artificial intelligence techniques for geographic
knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–636. [CrossRef]

18. Li, S.; Hu, G.; Cheng, X.; Xiong, L.; Tang, G.; Strobl, J. Integrating topographic knowledge into deep learning for the void-filling of
digital elevation models. Remote Sens. Environ. 2022, 269, 112818. [CrossRef]

19. Wilson, J.P. Digital terrain modeling. Geomorphology 2012, 137, 107–121. [CrossRef]
20. Galin, E.; Guérin, E.; Peytavie, A.; Cordonnier, G.; Cani, M.P.; Benes, B.; Gain, J. A review of digital terrain modeling. Comput.

Graph. Forum 2019, 38, 553–577. [CrossRef]
21. Zhou, Q.; Zhu, A.X. The recent advancement in digital terrain analysis and modeling. Int. J. Geogr. Inf. Sci. 2013, 27, 1269–1271.

[CrossRef]
22. Génevaux, J.-D.; Galin, É.; Guérin, E.; Peytavie, A.; Benes, B. Terrain generation using procedural models based on hydrology.

ACM Trans. Graph. (TOG) 2013, 32, 1–13. [CrossRef]
23. Raffe, W.L.; Zambetta, F.; Li, X. A survey of procedural terrain generation techniques using evolutionary algorithms. In

Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.
24. Rose, T.J.; Bakaoukas, A.G. Algorithms and approaches for procedural terrain generation-a brief review of current techniques.

In Proceedings of the 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES),
Barcelona, Spain, 7–9 September 2016; pp. 1–2.

https://figshare.com/s/250d23bf899daf05c674
http://doi.org/10.1080/13658816.2015.1131828
http://doi.org/10.1016/j.geomorph.2010.09.029
http://doi.org/10.1016/j.geomorph.2020.107045
http://doi.org/10.1016/j.geomorph.2020.107127
http://doi.org/10.1016/j.rse.2007.08.025
http://doi.org/10.1080/13658816.2021.1933493
http://doi.org/10.1016/j.geomorph.2006.04.013
http://doi.org/10.1016/j.geomorph.2020.107553
http://doi.org/10.1016/j.geomorph.2004.03.008
http://doi.org/10.1016/j.tecto.2008.11.024
http://doi.org/10.1007/s11442-021-1853-9
http://doi.org/10.1007/s11707-018-0700-5
http://doi.org/10.1016/j.rse.2018.12.008
http://doi.org/10.1007/s11442-017-1442-0
http://doi.org/10.1080/13658816.2018.1542697
http://doi.org/10.3390/rs13112116
http://doi.org/10.1080/13658816.2019.1684500
http://doi.org/10.1016/j.rse.2021.112818
http://doi.org/10.1016/j.geomorph.2011.03.012
http://doi.org/10.1111/cgf.13657
http://doi.org/10.1080/13658816.2013.794281
http://doi.org/10.1145/2461912.2461996


Remote Sens. 2022, 14, 1166 14 of 15

25. Smelik, R.M.; De Kraker, K.J.; Tutenel, T.; Bidarra, R.; Groenewegen, S.A. A survey of procedural methods for terrain modelling.
In Proceedings of the CASA Workshop on 3D Advanced Media In Gaming And Simulation (3AMIGAS), Amsterdam, The
Netherlands, 16 June 2009; pp. 25–34.

26. Cordonnier, G.; Galin, E.; Gain, J.; Benes, B.; Guérin, E.; Peytavie, A.; Cani, M.-P. Authoring landscapes by combining ecosystem
and terrain erosion simulation. ACM Trans. Graph. (TOG) 2017, 36, 1–12. [CrossRef]

27. Guérin, É.; Digne, J.; Galin, E.; Peytavie, A.; Wolf, C.; Benes, B.; Martinez, B. Interactive example-based terrain authoring with
conditional generative adversarial networks. Acm Trans. Graph. (TOG) 2017, 36, 1–13. [CrossRef]

28. Zhu, D.; Cheng, X.; Zhang, F.; Yao, X.; Gao, Y.; Liu, Y. Spatial interpolation using conditional generative adversarial neural
networks. Int. J. Geogr. Inf. Sci. 2020, 34, 735–758. [CrossRef]

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2012; pp. 1097–1105.

30. Zhong, Y.; Zhu, Q.; Zhang, L. Scene classification based on the multifeature fusion probabilistic topic model for high spatial
resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6207–6222. [CrossRef]

31. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

32. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.J.; Wierstra, D. DRAW: A recurrent neural network for image generation. Comput.
Sci. 2015, 37, 1462–1471.

33. Gatys, L.A.; Ecker, A.S.; Bethge, M. Texture Synthesis Using Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2015,
70, 262–270.

34. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423.

35. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

36. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
37. Dachsbacher, C.; Meyer, M.; Stamminger, M. Height-Field Synthesis by Non-Parametric Sampling. In Vision, Modeling and

Visualization 2005; University of Erlangen-Nuremberg: Erlangen, Germany, 2005; pp. 297–302.
38. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13
December 2014; pp. 2672–2680.

39. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing:
Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [CrossRef]

40. Li, T.; Shen, H.; Yuan, Q.; Zhang, L. Geographically and temporally weighted neural networks for satellite-based mapping of
ground-level PM2.5. ISPRS J. Photogramm. Remote Sens. 2020, 167, 178–188. [CrossRef]

41. Fu, B. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 1989, 5, 76–82. [CrossRef]
42. Li, S.; Xiong, L.; Hu, G.; Dang, W.; Tang, G.; Strobl, J. Extracting check dam areas from high-resolution imagery based on the

integration of object-based image analysis and deep learning. Land Degrad. Dev. 2021, 32, 2303–2317. [CrossRef]
43. Xiong, L.-Y.; Tang, G.-A.; Li, F.-Y.; Yuan, B.-Y.; Lu, Z.-C. Modeling the evolution of loess-covered landforms in the Loess Plateau of

China using a DEM of underground bedrock surface. Geomorphology 2014, 209, 18–26. [CrossRef]
44. Xiong, L.; Tang, G.; Yuan, B.; Lu, Z.; Li, F.; Zhang, l. Geomorphological inheritance for loess landform evolution in a severe soil

erosion region of Loess Plateau of China based on digital elevation models. Sci. China Earth Sci. 2014, 57, 1944–1952. [CrossRef]
45. Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system

analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600.
46. Zhou, Y.; Yang, X.; Xiao, C.; Zhang, Y.; Luo, M. Positive and negative terrains on northern Shaanxi Loess Plateau. J. Geogr. Sci.

2010, 20, 64–76. [CrossRef]
47. Xiong, L.; Tang, G.; Yan, S.; Zhu, S.; Sun, Y. Landform-oriented flow-routing algorithm for the dual-structure loess terrain based

on digital elevation models. Hydrol. Process. 2014, 28, 1756–1766. [CrossRef]
48. Li, W.; Zhou, B.; Hsu, C.-Y.; Li, Y.; Ren, F. Recognizing terrain features on terrestrial surface using a deep learning model: An

example with crater detection. In Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic
Knowledge Discovery, Los Angeles, CA, USA, 7–10 November 2017; pp. 33–36.

49. Zhang, W.; Witharana, C.; Liljedahl, A.K.; Kanevskiy, M. Deep convolutional neural networks for automated characterization of
arctic ice-wedge polygons in very high spatial resolution aerial imagery. Remote Sens. 2018, 10, 1487. [CrossRef]

50. Dietrich-Sussner, R.; Davari, A.; Seehaus, T.; Braun, M.; Christlein, V.; Maier, A.; Riess, C. Synthetic Glacier SAR Image Generation
from Arbitrary Masks Using Pix2Pix Algorithm. arXiv 2021, arXiv:2101.03252.

51. Armanious, K.; Jiang, C.; Fischer, M.; Küstner, T.; Hepp, T.; Nikolaou, K.; Gatidis, S.; Yang, B. MedGAN: Medical image translation
using GANs. Comput. Med. Imaging Graph. 2020, 79, 101684. [CrossRef] [PubMed]

52. Qin, C.-Z.; Bao, L.-L.; Zhu, A.X.; Wang, R.-X.; Hu, X.-M. Uncertainty due to DEM error in landslide susceptibility mapping. Int. J.
Geogr. Inf. Sci. 2013, 27, 1364–1380. [CrossRef]

53. Dai, W.; Na, J.; Huang, N.; Hu, G.; Yang, X.; Tang, G.; Xiong, L.; Li, F. Integrated edge detection and terrain analysis for agricultural
terrace delineation from remote sensing images. Int. J. Geogr. Inf. Sci. 2020, 34, 484–503. [CrossRef]

http://doi.org/10.1145/3072959.3073667
http://doi.org/10.1145/3130800.3130804
http://doi.org/10.1080/13658816.2019.1599122
http://doi.org/10.1109/TGRS.2015.2435801
http://doi.org/10.1016/j.isprsjprs.2019.11.023
http://doi.org/10.1016/j.rse.2020.111716
http://doi.org/10.1016/j.isprsjprs.2020.06.019
http://doi.org/10.1111/j.1475-2743.1989.tb00765.x
http://doi.org/10.1002/ldr.3908
http://doi.org/10.1016/j.geomorph.2013.12.009
http://doi.org/10.1007/s11430-014-4833-4
http://doi.org/10.1007/s11442-010-0064-6
http://doi.org/10.1002/hyp.9719
http://doi.org/10.3390/rs10091487
http://doi.org/10.1016/j.compmedimag.2019.101684
http://www.ncbi.nlm.nih.gov/pubmed/31812132
http://doi.org/10.1080/13658816.2013.770515
http://doi.org/10.1080/13658816.2019.1650363


Remote Sens. 2022, 14, 1166 15 of 15

54. Gerçek, D.; Toprak, V.; Strobl, J. Object-based classification of landforms based on their local geometry and geomorphometric
context. Int. J. Geogr. Inf. Sci. 2011, 25, 1011–1023. [CrossRef]

55. Penfound, E.; Vaz, E. Analysis of Wetland Landcover Change in Great Lakes Urban Areas Using Self-Organizing Maps. Remote
Sens. 2021, 13, 4960. [CrossRef]

http://doi.org/10.1080/13658816.2011.558845
http://doi.org/10.3390/rs13244960

	Introduction 
	Materials and Methods 
	Study Object and Areas 
	Data Preparation 
	DEM Data 
	Input Terrain Features 

	DL-Based Algorithm for Terrain Generation 
	Basic Principle of CGAN 
	Terrain-CGAN 

	Experiments 
	Performance Evaluation 

	Results 
	Results Based on Different Topographic Features 
	Elevation Analysis 
	Slope Analysis 

	Discussion 
	Influence of Different Terrain Cues and Feature Combinations 
	Applications of Terrain-CGAN 

	Conclusions 
	References

