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Abstract: The method of collecting aerial images or videos by unmanned aerial vehicles (UAVs)
for object search has the advantages of high flexibility and low cost, and has been widely used in
various fields, such as pipeline inspection, disaster rescue, and forest fire prevention. However, in
the case of object search in a wide area, the scanning efficiency and real-time performance of UAV
are often difficult to satisfy at the same time, which may lead to missing the best time to perform
the task. In this paper, we design a wide-area and real-time object search system of UAV based on
deep learning for this problem. The system first solves the problem of area scanning efficiency by
controlling the high-resolution camera in order to collect aerial images with a large field of view.
For real-time requirements, we adopted three strategies to accelerate the system, as follows: design
a parallel system, simplify the object detection algorithm, and use TensorRT on the edge device to
optimize the object detection model. We selected the NVIDIA Jetson AGX Xavier edge device as
the central processor and verified the feasibility and practicability of the system through the actual
application of suspicious vehicle search in the grazing area of the prairie. Experiments have proved
that the parallel design of the system can effectively meet the real-time requirements. For the most
time-consuming image object detection link, with a slight loss of precision, most algorithms can reach
the 400% inference speed of the benchmark in total, after algorithm simplification, and corresponding
model’s deployment by TensorRT.

Keywords: unmanned aerial vehicles (UAVs); wide-area and real-time object search; aerial image;
object detection

1. Introduction

The development of technology in recent years has promoted the popularization
of UAV in object search tasks. For instance, many teams use the UAV to carry out ship
detection [1,2], object tracking [3], and emergency search and rescue [4,5] in the ocean envi-
ronment. In the field of agriculture, the UAV has a wide range of applications, such as weed
recognition [6,7], pest detection [8], and precision pesticide spraying [9], which effectively
promotes the intelligentization of agriculture. Forests are also one of the typical scenarios
of object search, and common applications include fire monitoring and prevention [10,11],
ecological protection [12,13], etc.

In most of these tasks, object search is mainly performed by collecting images or videos
and processing them through a search algorithm. For the real-time object search of UAV
aerial images or videos, the traditional feature extraction algorithms have high computa-
tional complexity and are time consuming, which cannot meet the real-time requirements.
In 2012, with the outstanding performance of the AlexNet [14] deep learning model based
on convolutional neural network (CNN) in the ImageNet [15] image classification competi-
tion, people began to realize the powerful capabilities of CNN in image feature extraction
and analysis. In the object-detection branch, benefitting from the continuous exploration of
deep learning technology in recent years, rich and diverse algorithms have been proposed,
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including RCNN series [16–18], SSD [19], YOLO series [20–23], and excellent practical
application effects have been achieved. The commonly used object detection algorithms
can be roughly divided into two categories. The first category is a regression-based single-
stage algorithm, such as SSD [19], YOLOv4 [23], and RetinaNet [24]; another category is a
two-stage algorithm based on region proposal and regression, such as Faster RCNN [18]
and Cascade RCNN [25]. Generally, the single-stage detection algorithms are efficient,
but the precision is relatively low, while the two-stage algorithms are inefficient but have
higher detection precision. Recently, anchor-free type algorithms, such as FCOS [26] and
ATSS [27], have also emerged in the field of object detection, which has reduced the amount
of calculation that uses anchors. The classification of commonly used object detection
algorithms can be seen in Figure 1.
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post-processing time and costs more to perform. In some time-sensitive task situations, it 
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When performing tasks that require UAV to search for objects in a wide area, two
main issues of “area scanning efficiency” and “real-time detection” need to be considered.
In terms of area scanning efficiency, an effective and easy-to-implement method is to use
the UAV equipped with high-resolution cameras to take images of the ground surface at
mid-to-high altitude. Figure 2 displays the characteristics of the images collected in this
way. As shown in the figure, the aerial images collected at mid-to-high altitude have the
characteristics of a large field of view and small objects. When the UAV’s flight altitude
relative to the ground is 900 m, and the camera is 42.4 megapixels (7952 × 5304 pixels),
while the ground vehicle in the image only accounts for 0.0075% (about 80 × 40 pixels)
of all of the pixels in the entire image. Since the cameras are just mounted on the UAV,
the image data can only be taken out after the UAV has landed and then processed and
filtered through the object detection algorithm. Undoubtedly this method takes much
post-processing time and costs more to perform. In some time-sensitive task situations, it
may also lead to missing the best time for the object search.

For the real-time detection issue, there have been many related kinds of research on
the practical application of UAV object search. Some research mainly focus on simplifying
a specific object detection algorithm, making it faster and more suitable for mobile devices
with limited computing power. Zhan W. et al. [28] improved the YOLOv5 object detection
algorithm from four aspects in order to achieve real-time detection of small objects, as
follows: by redesigning the anchor size, adding attention module to the backbone, using
CIOU loss function, and adding the P2 feature level [29] proposes ShuffleDet based on
ShuffleNet [30], and a modified variant of SSD [19] to realize real-time vehicle detection
by UAV. While improving the algorithm, there is also a part of research that describes
the hardware composition and the workflow of the real-time object search system of
UAV [31], which describes a real-time survivor detection system with a pruned object
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detection algorithm in a UAV, proposed in order to reduce the loss of lives caused by
natural disasters. In [32], Chen, L. et al. collected video stream and executed real-time
object detection by carrying a camera, then controlling the UAV to perform corresponding
actions. Other related research includes [33–38].
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Most of the UAV real-time object search systems that are involved in previous re-
search [31,32,36–38] are more suitable for low-altitude and short-endurance flight tasks,
and the equipped equipment is often a small-resolution camera for taking images or videos;
there is little research on real-time systems when the UAV flies at mid-to-high altitude.
While many UAVs can be used in parallel to achieve wide-area coverage, this requires
the addition of multiple UAVs and ground crews, resulting in a significant increase in the
operating costs.

The advantage of searching by collecting aerial images is that a large area is scanned
at one time, which is highly efficient, but it is a challenge to the real-time performance of
the system. In this paper, we have carried out the following points in order to design a
system that satisfies both area scanning efficiency and real-time detection performance:

• We designed a wide-area and real-time object search system of UAV using a high-
resolution camera and NVIDIA Jetson AGX Xavier embedded edge device, and veri-
fied the system’s feasibility in an actual task. With the help of the parallel computing
capabilities of the edge device, the system adopts the idea of parallel modular design to
improve the system’s performance. Based on this design, the system can also flexibly
adapt different types of cameras and objection detection algorithms according to the
task requirements, thereby increasing the versatility and configurability of the system;

• Considering the diversity of the object detection algorithm selection caused by the
diversity of tasks, we adopted some general strategies to simplify the commonly
used object detection algorithms in order to improve the inference speed instead of
optimizing for a specific algorithm. Moreover, the TensorRT deployment method
is used to further accelerate the object detection model on the NVIDIA Jetson AGX
Xavier edge device.

Due to the broad coverage of a single aerial image, accurate positioning of the object in
the image is essential. Otherwise, the object positioning will significantly deviate from the
actual location. In many studies, such as [31,38], there are a lack of descriptions for object
positioning, because the object occupies a large proportion of the image frame at a limited
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altitude, in which it can be approximately considered that the object location is equivalent
to the location of the UAV. Ref. [37] mentioned the study of velocity estimation of the
tracked object, but also no precise coordinate localization. This paper will also introduce
the detailed calculation method to perfect the whole system.

For the selection of object detection algorithms, this paper chooses the mainstream
algorithms that are commonly used in engineering as the benchmark, which have higher
detection precision [32] and chose the lightweight YOLOv3-tiny algorithm, which is fast,
but the detection precision is relatively low and will degrade the system’s overall perfor-
mance. After appropriate acceleration of the selected algorithms, their detection speed has
significantly improved at the expense of a small amount of precision, allowing them to
meet the real-time requirements in the system.

2. System Design and Optimization

The wide-area and real-time object search system comprises software and various
hardware, as depicted in Figure 3. Simply put, if a wide-area object search task needs to
be performed, the UAV will use the camera to scan the area to be searched at a mid-to-
high altitude by taking images. The captured image will immediately be read into the
onboard edge device (we chose the Jetson AGX Xavier, which will be introduced later),
which applies the objection detection algorithm for object search. Then, the detected object
image and corresponding positioning information will be transmitted to the ground control
station (GCS), in real-time, for confirmation. After determining the suspicious object, the
decision will be made as to whether to go to the scene for further inspection, according to
the situation.
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2.1. The Main Hardware of System

Most of the hardware that is used in this system is shelf products, which can be easily
purchased without special customization, which saves the construction cost of the entire
system, to a certain extent.

2.1.1. Jetson AGX Xavier

Jetson AGX Xavier is an embedded AI edge device produced by NVIDIA. The device
is equipped with a Xavier processor with eight 64-bit ARM architecture CPUs, while
the GPU uses NVIDIA Volta architecture with 512 NVIDIA CUDA cores and 64 Tensor
cores. This device provides a peak computing power of up to 32 TOPS and a high-speed
I/O transmission of 750 Gbps. Compared with the previous generation Jetson TX2, the
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performance has improved 20 times. In order to ensure the interaction with external devices
in multiple ways simultaneously, the device integrates peripheral interfaces, such as PCIE,
Gigabit Ethernet, UART serial port, type-c, and HDMI. Table 1 lists the performance
comparison of some processors. We can see that Jetson AGX Xavier has the highest AI
performance, and the memory also reaches 32 GB, which is very beneficial for model
execution and large-volume image processing. Whether or not TensorRT can be used is
also an important indicator because it can accelerate the model and achieve a high addition
to the detection speed.

Table 1. Performance comparison of some processors. TFLOPS stands for tera floating point opera-
tions per second, and TOPS stand for tera operations per second.

Device Type Memory Size Max Power AI Performance TensorRT

Jetson AGX Xavier 32 GB 30 W 32 TOPS Support
Jetson Xavier NX 8 GB 20 W 21 TOPS Support

Jetson TX2 8 GB 15 W 1.33 TFLOPS Support
Atlas 500 8 GB 40 W 22 TOPS /

While having computing power comparable to a workstation, Jetson AGX Xavier also
has a small size of 100 × 100 × 87 mm3 (see Figure 4 for the appearance), which is very
suitable for deployment on mobile platforms, such as UAVs, with limited carrying capacity.
In our system, the device is mainly responsible for controlling the camera, communicating
with the UAV, and detecting and positioning the suspected objects in the image.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 24 
 

 

2.1. The Main Hardware of System 
Most of the hardware that is used in this system is shelf products, which can be easily 

purchased without special customization, which saves the construction cost of the entire 
system, to a certain extent. 

2.1.1. Jetson AGX Xavier 
Jetson AGX Xavier is an embedded AI edge device produced by NVIDIA. The device 

is equipped with a Xavier processor with eight 64-bit ARM architecture CPUs, while the 
GPU uses NVIDIA Volta architecture with 512 NVIDIA CUDA cores and 64 Tensor cores. 
This device provides a peak computing power of up to 32 TOPS and a high-speed I/O 
transmission of 750 Gbps. Compared with the previous generation Jetson TX2, the 
performance has improved 20 times. In order to ensure the interaction with external 
devices in multiple ways simultaneously, the device integrates peripheral interfaces, such 
as PCIE, Gigabit Ethernet, UART serial port, type-c, and HDMI. Table 1 lists the 
performance comparison of some processors. We can see that Jetson AGX Xavier has the 
highest AI performance, and the memory also reaches 32 GB, which is very beneficial for 
model execution and large-volume image processing. Whether or not TensorRT can be 
used is also an important indicator because it can accelerate the model and achieve a high 
addition to the detection speed. 

Table 1. Performance comparison of some processors. TFLOPS stands for tera floating point 
operations per second, and TOPS stand for tera operations per second. 

Device Type Memory Size Max Power AI Performance TensorRT 
Jetson AGX Xavier 32 GB 30 W 32 TOPS Support 
Jetson Xavier NX 8 GB 20 W 21 TOPS Support 

Jetson TX2 8 GB 15 W 1.33 TFLOPS Support 
Atlas 500 8 GB 40 W 22 TOPS / 

While having computing power comparable to a workstation, Jetson AGX Xavier 
also has a small size of 100 × 100 × 87 mm3 (see Figure 4 for the appearance), which is very 
suitable for deployment on mobile platforms, such as UAVs, with limited carrying 
capacity. In our system, the device is mainly responsible for controlling the camera, 
communicating with the UAV, and detecting and positioning the suspected objects in the 
image. 

 
Figure 4. NVIDIA Jetson AGX Xavier edge device, which was selected as the system’s central 
controller. 

2.1.2. Camera 
There are many types of cameras to choose from, but this paper mainly discusses 

high-resolution visible-light cameras. We have tested several common cameras on the 
market, and their appearances are shown in Figure 5. The comparison of these cameras is 
shown in Table 2. 
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2.1.2. Camera

There are many types of cameras to choose from, but this paper mainly discusses
high-resolution visible-light cameras. We have tested several common cameras on the
market, and their appearances are shown in Figure 5. The comparison of these cameras is
shown in Table 2.
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Table 2. Comparison of working performance of different cameras. The “Capture Interval” repre-
sents the average time from when the camera is triggered to when the image is transmitted to the
edge device.

Camera Type Camera
Weight Megapixels Image Volume Capture Interval

Sony A7R2 625 g 42.4 30.0 MB 3.6 s
Sony A7R3 657 g 42.4 30.0 MB 2.4 s
Sony A7R4 665 g 61.0 47.5 MB 2.8 s
Canon 5DS 930 g 50.6 35.0 MB 2.5 s

The most significant difference between aerial image capture and video capture is
that there is a longer acquisition time interval between each aerial image. An acquisition
delay of 2 to 4 s is acceptable in the actual application, as long as the images can cover the
entire area that is to be searched. It can be seen from Figure 6 that the images taken along
the flying direction of the UAV can cover the ground completely, while ensuring some
overlap. Since the attitude of the UAV changes in real-time during the flight, there are some
misalignments in the images, which can later be corrected by the positioning algorithm.
We selected Sony A7R2 to perform the system verification in the actual task. From the data
of Table 2, it seems that Sony A7R2 is not a good choice, but in fact, it already meets the
working requirements, and our experiments will also prove that, within a certain range,
the normal work of the system has nothing to do with the choice of camera, but the better
the camera, the better the performance of the system.
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2.1.3. UAV

A strong endurance capability is essential for an UAV that conducts wide-area object
searches. In addition, the UAV also needs to have an interface to communicate with the
object search system. In order to meet these requirements, it is more suitable to use a small-
or medium-sized industrial UAV of more than 25 kg, with a certain degree of carrying
capacity. We used a 50 kg vertical take-off and landing (VTOL) hybrid UAV with a flying
speed of 120 km/h as the carrying platform. Figure 7 shows the appearance of this UAV.
The VTOL UAV uses batteries for vertical take-off and landing, and a gasoline engine
provides the cruising power. This type of design significantly reduces the demand for
take-off and landing sites while ensuring long-term cruises.
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2.2. Design of Software System

According to the functions, this section divides the software system into the following
two subsystems for discussion and design: image acquisition and object detection.

2.2.1. Image Acquisition Subsystem

The image acquisition subsystem is mainly responsible for the camera connection
check, camera control, and image transmission and storage. The workflow of this subsystem
is shown in Figure 8. This subsystem focuses on the acquisition of original images and
other useful information and requires efficient collaboration of various hardware. The work
of each step will be explained in detail herein.

• Camera Check. Check the connection status between the camera and the embedded
edge device. Until the device can successfully identify the camera, the subsystem will
enter the next step. Otherwise, it will execute this step in a loop;

• Image Capture. The embedded edge device will control the camera to automatically
capture images after the camera is successfully connected. The camera can capture
images at its own fastest response or capture images according to a preset fixed time;

• Read Image from Camera. Read the currently captured image of the camera and
transfer it to the embedded edge device. For the sake of efficiency, the image will
be read directly from the camera’s memory and then temporarily stored in the edge
device’s memory, without passing through low-speed links, such as the camera SD
card storage;

• Send Data to UAV. The working status of the system is sent to the UAV and then
transmitted to the GCS for real-time monitoring after being forwarded by the UAV;

• Read Data from UAV. Read data from the UAV’s flight control computer (FCC). The
FCC provides geographic coordinates (latitude and longitude), speed, altitude, and
attitude (pitch, roll, and yaw) data for the edge device, and the edge device uses UAV
data to match each aerial image in real-time. This step will also receive system control
commands from GCS forwarded by the UAV, which can modify the camera trigger
frequency, the threshold of the object detection algorithm, etc. online;

• Write to Local Disk. Save the original image in the memory of the embedded edge
device to the local disk and store the corresponding UAV data simultaneously. This
step retains all of the original data, which can be used for subsequent offline analysis;

• Enqueue. A queue is established in the memory of the edge device to be responsible
for transmitting the data of the image acquisition subsystem to the object detection
subsystem. In this step, the original image and corresponding UAV data in the memory
are also put into the queue for processing by the following object detection subsystem.
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2.2.2. Object Detection Subsystem

The object detection subsystem is mainly responsible for image object detection,
suspected object positioning, and real-time transmission to the GCS for display. The
workflow of this subsystem is shown in Figure 9.

• Dequeue. After processing by the image acquisition subsystem, the original image
and the corresponding UAV data have been temporarily stored in the memory queue.
In this step, the temporarily stored data is dequeued in pairs according to the first-in-
first-out principle for subsequent image object detection and suspect object positioning.

• Object Detection. Detect suspicious objects in the aerial image. In order to improve
the object detection algorithm’s inference speed and make it better applied on mobile
edge devices, we have simplified the object detection algorithm and used the TensorRT
to accelerate the object detection model. We will describe this part in detail later,
here we are mainly concerned with how to detect aerial images with a large field
of view. For the large field of view and small objects of aerial images, the object
detection algorithm cannot process the entire image at once. In YOLT [39], a method
for detecting small objects in satellite images is proposed, and our system refers to this
method in the embedded edge device. In the inference stage, the image is first divided
into N × N blocks of equal size and guarantees a certain degree of overlap in order to
prevent the object from being split. The choice of N depends on the resolution of the
image and the size of the object that is to be searched. If the object to be searched is
relatively small, a large N should be selected for finer identification; otherwise, a small
value can be selected for N to save the hardware resources. Then, object detection is
performed on each block separately. After the detection is completed, merge all of
the divided small images, as shown in Figure 10, and intercept the suspected object
images and temporarily store them in the memory of the embedded edge device.

• Calculate Object’s Location. The image acquisition subsystem has recorded a geo-
graphic coordinate for each image. However, this coordinate is only the location of
the UAV at the moment the camera is triggered, not the suspected object (Figure 11a).
Moreover, the attitude of the UAV when the camera is triggered will also cause the tilt
and rotation of the image, which increases the complexity of the problem (Figure 11b).
The height and width of each image usually represent the actual distance of hundreds
of meters. If a large attitude accompanies the UAV at this time, the offset of the object
may even reach more than 1 km, which significantly impacts the object’s positioning.
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Figure 11. (a) The situation where the pitch, roll, and yaw are all zero during the flight of the UAV
(basically impossible). The recorded coordinate is the exact center of the captured image; (b) When
the pitch, roll, and yaw are not all zero, the airframe coordinate system does not coincide with the
geodetic coordinate system, and the captured image is deformed.

To this end, we combine the UAV data to map the XY coordinate of the suspected object
in the image to the actual geographic coordinate. Figure 11a depicts the ideal situation,
when pitch, roll, and yaw are all zero. At this time, the UAV’s airframe coordinate system
(xb, yb, zb axis) entirely coincides with the geodetic coordinate system (xg, yg, zg axis), and
the recorded geographic coordinate is the center of the image. It is easy to calculate the
coordinate of the suspected object according to the flying altitude. When the pitch, roll,
and yaw are not all zero, it becomes the situation shown in Figure 11b, and the airframe
coordinate system is misaligned with the geodetic coordinate system. The transformation
matrix can be used to transform the points on the projection plane (white translucent area)
of the airframe coordinate system to the coordinates of the geodetic coordinate system. We
define the pitch angle as θ, the roll angle as ϕ, and the yaw angle as ψ, the transformation
matrix is defined as follows:

B =

 cos θ cos ψ cos θ sin ψ − sin θ
sin θ sin ϕ cos ψ − cos ϕ sin ψ sin θ sin ϕ sin ψ + cos ϕ cos ψ cos θ sin ϕ
sin θ cos ϕ cos ψ + sin ϕ sin ψ sin θ cos ϕ cos ψ − sin ϕ cos ψ cos θ cos ϕ

 (1)

Assuming the flying altitude relative to ground is H, for each point (xb, yb, H) on the
projection plane of the airframe coordinate system, it can be transformed into the following
geodetic coordinate (xg, yg, zg):[

xg yg zg
]
=
[

xb yb H
]
· B (2)
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The coordinate can then be further projected to the true ground in geodetic coordinate
system, and this is the work described in Figure 12. Suppose the final ground coordinate is
(x, y, z), it can be solved according to the following formula:

zg
H =

xg
xzg

H =
yg
y

z = H
(3)
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Figure 12. A schematic diagram of projecting the projection point to the actual position of the
suspected object on the true ground.

After extracting the dependent variable, as follows:

x =
xg
zg

· H

y =
yg
zg

· H
z = H

(4)

• Write to Local Disk. Save the image and the positioning data of the suspected objects
to the local disk for subsequent offline analysis.

• Transmit to the Ground. The suspected object images are further screened accord-
ing to the image size and the score of the detection results to facilitate the real-time
transmission to the GCS through the image transmission device. The image trans-
mission device is a kind of equipment carried by the UAV for long-distance wireless
transmission of images.

2.2.3. Optimization of Software System

From the above discussion of the two subsystems, it can be seen that there are many
steps to go through from the acquisition of the image to the transmission of the detection
results from the ground. If only the processing method of sequential execution is adopted,
the system is not efficient enough. Benefitting from the parallel computing capabilities of
the Jetson AGX Xavier, the two subsystems can further divide into several modules for
multi-thread parallel processing in order to improve the running performance. Using this
parallel pipeline work strategy, although the total processing time of a single image remains
unchanged, the system’s overall efficiency has been greatly improved.

The whole software system can be divided into six modules to run in parallel, as
shown in Figure 13. For the image acquisition subsystem, the Image Acquisition module
contains three steps of Camera Check, Image Capture, and Read Image from Camera;
the Communicate with UAV module contains two steps of Read Data from UAV and
Send Data to UAV; and the Store Original Image module contains two steps of Write
to Local Disk and Enqueue. For the object detection subsystem, the Object Detection
module contains two steps of Dequeue and Object Detection; the Store Detect Results
module contains two steps of Calculate Object’s Location and Write to Local Disk; and
the Results Real-time Transmit module contains one step of Transmit to the Ground.
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has finished running and the data is handed over to the next module, it will be executed in a
loop immediately.

2.3. Object Detection Algorithm
2.3.1. Algorithm Simplification

Since the system needs to be applied to a mobile edge device with limited computing
power, the speed of the object detection algorithm is the critical bottleneck of the system’s
performance. Given the characteristics of aerial images, we have carried out some general
simplification strategies for different commonly used algorithms in order to weigh the
precision and efficiency of object detection. We simplified the algorithms from the following
three aspects:

• Remove High-level Feature Maps. High-level feature maps have a larger receptive
field. Since the objects in the aerial image are mainly medium-sized (pixel size is
between 322 and 962, COCO metrics), a situation in which the object occupies a large
area of the image will hardly appear, so we try to remove some high-level feature maps.
When the feature pyramid network (FPN) [40] is used as the neck of the model, only
three low-level feature maps are retained, as shown in Figure 14. We also discussed
the popular YOLOv5 algorithm with a different structure. The YOLOv5 algorithm has
three detection heads with a stride of 8, 16, and 32 respectively, and the head of a stride
32 (P5) is removed for experimentation. The smaller S model (YOLOv5s) was selected
as the benchmark, and the simplified version of YOLOv5s are shown in Figure 15.

• Reduce the Channels of the Intermediate Layer. The FPN’s [40] output channels and
the feature map channels of classification, regression, and region proposal network [18]
(RPN, if it exists) are adjusted from 256 to 128. For YOLOv5s, we directly change the
“width_multiple” parameter from 0.50 to 0.30 to reduce the channels. This simplified
method can effectively reduce the number of parameters of the algorithm.

• A Lightweight Backbone. Using a lightweight backbone also helps to reduce the
model’s size and increase the inference speed. We tried to replace ResNet50 [41]
with ResNet18, and YOLOv5s can directly modify “depth_multiple” to control the
depth of the model. This paper has also performed an experiment with replacing
CPSDarkNet53 in YOLOv5s with MobileNetV2 [42] directly.

2.3.2. TensorRT

It is often inefficient to use the deep learning framework for model deployment
in actual applications directly. Instead, deploying object detection models trained on
mainstream frameworks on the NVIDIA GPU through TensorRT can significantly improve
inference speed, often at least one time faster than the original. TensorRT is a deep learning
inference optimizer that transforms the trained model through a series of optimization
techniques in order to enable it to run with higher performance on the NVIDIA GPU of a
specific platform. Specifically, TensorRT has the following two main optimization strategies:

• Lower Data Precision. For most of the deep learning frameworks in training, the
tensors in the network use 32-bit floating-point precision (FP32). Since the backpropa-
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gation is not required during the inference process, TensorRT supports FP16 and INT8
quantization to reduce data precision appropriately. Table 3 lists the value ranges of
the different data types. Lower data precision represents lower memory usage and
smaller model size.

• Reconstruction and Optimization of Network. For NVIDIA GPUs, TensorRT dra-
matically reduces the number of compute unified device architecture (CUDA) cores by
merging layers, horizontally or vertically, as depicted in Figure 16. Horizontal merging
can integrate the convolution, bias, and activation layers into one structure, while
vertical merging can integrate the layers with the same structure but with different
weights into a wider layer.
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Table 3. Value ranges of different data types.

Data Type Number of Bytes Dynamic Range

FP32 4 −3.4 × 1038~3.4 × 1038

FP16 2 −65,504~65,504
INT8 1 −128~127
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Figure 16. (a) The original network structure; (b) The network structure after reconstruction and
optimization by TensorRT.

2.3.3. Data Augmentation

Some data augmentation methods that do not affect the inference speed are used to
expand the existing training dataset in order to enhance the adaptability of the actual scene,
according to the features of the aerial images that are collected by the UAV. As listed in
Figure 17, the data augmentation methods adopted are as follows:

• Blur. Small objects in high-resolution aerial images collected by UAV will be blurred
to some extent.

• Ghosting. Since the camera is mounted on a UAV that is flying at high speed, some of
the captured images may show ghosting.

• Lighting. Depending on the date and weather when the task is being performed, the
lighting conditions will vary.
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3. Experiments

We trained and validated the simplified object detection algorithms for vehicle detec-
tion in aerial images and applied the entire wide-area and real-time object search system to
a practical engineering task.

3.1. Simplification of Object Detection Algorithms
3.1.1. Dataset

We chose VisDrone2021-DET aerial images as the dataset. The VisDrone [43] dataset
is collected and released by researchers in the Lab of Machine Learning and Data Mining,
Tianjin University, China. All of the data are captured by drones at different locations and
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heights and consists of more than 400 video clips with 265,228 frames and 10,209 static
images. VisDrone2021-DET is a dataset used by the VisDrone team for the image object
detection challenge. The challenge used all 10,209 static images, of which 6471 were used
for training, 548 were used for validating, and 3190 were used for testing. Figure 18 shows
some of the images in the dataset. There are ten types of objects in the dataset, including
the following: pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and
tricycle, and our training was only conducted for the three categories of car, van, and truck.
In addition to the original dataset, we also used the methods described in the previous
chapter for data augmentation.
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3.1.2. Benchmarks

We selected six common object detection algorithms as the benchmarks, including
YOLOv5s, and Faster RCNN, Cascade RCNN, RetinaNet, FCOS, ATSS whose backbone is
ResNet50 and neck is FPN.

3.1.3. Configuration

The training of all of our models was performed on a 2080 Ti graphics card with 11 GB
of video memory. In order to facilitate the comparison of the results, we uniformly did not
use the pre-trained model during training. The training epochs of the models were set to
20, and the batch size was eight. For YOLOv5s, the image size was 800 during training
and testing, and the OneCycleLR learning rate policy was used, in which lr0 was 0.01 and
lrf was 0.2, warmup was performed in the first three epochs. For other models, the image
sizes were all set to 800 × 600, the initial learning rate was 0.005, the momentum was 0.9,
and the weight decay was 0.0001. The learning rate warmup was performed in the first
500 iterations, and then the training was maintained at a fixed learning rate. When learning
14–18 epochs, the learning rate will be 1/10 of the original value. In the last two epochs, it
was reduced to 1/100 of the original learning rate.

3.1.4. Metrics

We used the following six metrics to evaluate the performance of the model: mean
average precision (mAP), mAP decline relative to the benchmark, trainable parameters,
floating point operations (FLOPs), frames per second on the Jetson AGX Xavier embedded
edge device (FPS), and FPS improving rate.

3.1.5. Results

The results of our experiments are shown in Table 4. For the algorithms using the
ResNet-FPN structure, removing the high-level feature maps and reducing the number
of channels in the intermediate layers had little effect on the model’s mAP, and the mAP
decline was within 1%. However, after replacing ResNet50 with ResNet18, the mAP loss
was generally higher, reaching a maximum of 3.6%. The three simplification methods all
improved the inference speed to varying degrees. For the YOLOv5s algorithm, removing
the detection head of P5 basically did not affect the mAP, and the speed improvement was
also very slight. Although reducing the “width_multiple” and “depth_multiple” param-
eters improved the detect FPS, they also sacrifice some mAP. MobileNetV2 replacement
caused a large loss of mAP, which is not a good idea.
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Table 4. Comparison results of various simplified methods of object detection algorithms. In this
table, R50/R18 stands for ResNet50/ResNet18, and S1 represents the simplification of removing
high-level feature maps on the model, only retaining the three low-level feature maps of the FPN.
S2 represents the simplification of changing the number of channels of all intermediate layers, from
256 to 128. For the structure of YOLOv5s, Y1 means that the detection head with a stride of 32 (P5)
is not used for detection, Y2 represents reducing the “width_multiple” from 0.50 of YOLOv5s to
0.30, and Y3 represents reducing the “depth_multiple” from 0.33 of YOLOv5s to 0.099. MobileNetV2
means that the backbone of YOLOv5s is replaced. The input size of YOLOv5s is 800, and the size of
other models are 800 × 600. The calculation of FPS considers the time consumed by the preprocessing
and postprocessing procedures.

Model mAP mAP Decline Parameters FLOPs FPS

Faster-RCNN-R50-FPN 43.3% / 41.12 M 104.59 G 4.06
Faster-RCNN-R50-FPN (S1) 42.8% 0.5% 40.01 M 103.70 G 4.17
Faster-RCNN-R50-FPN (S2) 43.0% 0.3% 31.99 M 60.89 G 5.53
Faster-RCNN-R18-FPN 41.2% 2.1% 28.12 M 79.66 G 5.18

Cascade-RCNN-R50-FPN 45.4% / 68.93 M 132.39 G 3.01
Cascade-RCNN-R50-FPN (S1) 45.2% 0.2% 67.81 M 131.50 G 3.09
Cascade-RCNN-R50-FPN (S2) 45.2% 0.2% 46.95 M 75.85 G 4.16
Cascade-RCNN-R18-FPN 44.4% 1.0% 55.93 M 107.46 G 3.51

RetinaNet-R50-FPN 35.0% / 36.10 M 96.34 G 4.66
RetinaNet-R50-FPN (S1) 34.9% 0.1% 32.04 M 95.50 G 4.93
RetinaNet-R50-FPN (S2) 34.2% 0.8% 27.92 M 54.71 G 5.89
RetinaNet-R18-FPN 32.1% 2.9% 19.61 M 72.42 G 6.12

FCOS-R50-FPN 41.1% / 31.84 M 92.69 G 4.88
FCOS-R50-FPN (S1) 40.7% 0.4% 30.13 M 91.56 G 5.17
FCOS-R50-FPN (S2) 40.2% 0.9% 25.62 M 51.75 G 6.39
FCOS-R18-FPN 37.5% 3.6% 18.93 M 71.47 G 6.49

ATSS-R50-FPN 46.2% / 31.89 M 94.92 G 4.73
ATSS-R50-FPN (S1) 46.0% 0.2% 30.18 M 93.79 G 4.97
ATSS-R50-FPN (S2) 45.7% 0.5% 25.67 M 53.98 G 5.96
ATSS-R18-FPN 43.2% 3.0% 18.94 M 71.47 G 6.16

YOLOv5s 44.0% / 7.05 M 12.75 G 11.39
YOLOv5s (Y1) 43.9% 0.1% 5.27 M 11.64 G 11.66
YOLOv5s (Y2) 40.7% 3.3% 2.69 M 5.21 G 13.76
YOLOv5s (Y3) 42.8% 1.2% 6.64 M 11.11 G 13.18
YOLOv5s (MobileNetV2) 35.2% 8.8% 4.54 M 7.66 G 13.43

We integrated all of the simplification strategies in order to perform a comprehensive
experiment and the results are shown in Table 5. After our simplification, most of the
algorithms can achieve an efficiency improvement of more than 90%, with a slight loss of
mAP. It can be seen from the table that the speed improvement of simplifying the YOLOv5s
algorithm is relatively small, which may be due to YOLOv5 itself having already integrated
so many optimization strategies.

3.2. TensorRT Acceleration Experiments

TensorRT will reconstruct the network structure by default. In addition, it also has a
quantization strategy, which can convert the original model into two low-precision models
of FP16 and INT8. FP16 and INT8 have only two and one bytes, respectively, and some
information may be lost when they are used to represent a 4-byte FP32 value. The loss
caused by the conversion to different precision models is shown in Table 6.
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Table 5. The final result of object detection algorithm simplification. ALL means that the algorithm
uses all of the simplification strategies mentioned in Table 3, and Y1 + Y2 + Y3 means that only the
simplification strategy of a specific sign is used.

Model mAP mAP Decline Parameters FLOPs FPS Improving
Rate

Faster-RCNN-R50-FPN 43.3% / 41.12 M 104.59 G 4.06
100.0%Faster-RCNN (ALL) 40.3% 3.0% 19.15 M 37.15 G 8.12

Cascade-RCNN-R50-FPN 45.4% / 68.93 M 132.39 G 3.01
91.0%Cascade-RCNN (ALL) 43.5% 1.9% 34.11 M 52.11 G 5.75

RetinaNet-R50-FPN 35.0% / 36.10 M 96.34 G 4.66
104.5%RetinaNet (ALL) 31.3% 3.7% 12.89 M 31.43 G 9.53

FCOS-R50-FPN 41.1% / 31.84 M 92.69 G 4.88
100.8%FCOS (ALL) 36.4% 4.7% 12.69 M 30.92 G 9.80

ATSS-R50-FPN 46.2% / 31.89 M 94.92 G 4.73
97.2%ATSS (ALL) 42.6% 3.6% 12.70 M 30.92 G 9.33

YOLOv5s 44.0% / 7.05 M 12.75 G 11.39
37.9%YOLOv5s (Y1 + Y2 + Y3) 39.9% 4.1% 1.85 M 4.15 G 15.71

Table 6. Performance comparison after converting the original model to FP16 or INT8 model using
TensorRT. Cali. indicates that the model was calibrated before INT8 quantization, and engine
represents a model file is suffixed with engine.

Model Precision mAP mAP Decline Model Volume

Faster-RCNN (ALL)

Original model 40.3% / 120.4 MB
FP16 38.9% 1.4% 37.7 MB
INT8 37.4% 2.9% 24.3 MB

INT8 (Cali.) 38.7% 1.6% 29.5 MB

Cascade-RCNN (ALL)

Original model 43.5% / 240.0 MB
FP16 40.7% 2.8% 82.8 MB
INT8 39.4% 4.1% 47.4 MB

INT8 (Cali.) 40.5% 3.0% 52.7 MB

RetinaNet (ALL)

Original model 31.3% / 70.3 MB
FP16 31.1% 0.2% 27.9 MB
INT8 8.1% 23.2% 21.4 MB

INT8 (Cali.) 31.0% 0.3% 21.7 MB

FCOS (ALL)

Original model 36.4% / 68.8 MB
FP16 36.3% 0.1% 28.2 MB
INT8 4.5% 31.9% 22.2 MB

INT8 (Cali.) 35.8% 0.6% 21.7 MB

ATSS (ALL)

Original model 42.6% / 68.8 MB
FP16 40.9% 1.7% 27.7 MB
INT8 37.6% 5.0% 21.7 MB

INT8 (Cali.) 40.7% 1.9% 21.3 MB

YOLOv5s (Y2 + Y3)
Original model 39.8% / 5.6 MB

FP16 38.5% 1.3% 6.4 MB (engine)
INT8 (Cali.) 38.3% 1.5% 1.4 MB (engine)

It can be seen from the table that, after converting to the FP16 model, various al-
gorithms have produced different degrees of mAP decline, but they were all within an
acceptable range. Cascade RCNN, which had the least drop in mAP during model simplifi-
cation, had the most drop during TensorRT deployment. Converting to the INT8 model
requires the assistance of a calibration dataset. We performed a set of experiments without
the calibration dataset and it turns out that the model loses too much mAP, which is pre-



Remote Sens. 2022, 14, 1234 17 of 23

dictable since INT8 had only 256 value representation ranges. More seriously, two of the
models (RetinaNet and FCOS) diverged after INT8 quantization (marked in green font in
Table 6). TensorRT takes this into account and provides a fully automatic calibration process
for optimization in order to minimize the performance loss after INT8 quantization, which
only requires some images in a similar style to the training dataset. We randomly selected
1000 images from the VisDrone2021-DET testing dataset as the calibration dataset. After
calibration, the performance of the INT8 model was greatly improved. Most of the INT8
models had a mAP difference of only 0.2% from the FP16 model, but they were smaller
and faster. When converting the YOLOv5s model, we retained the detection head of P5,
which had little effect on precision and efficiency. The FP16 and INT8 model generated by
YOLOv5s was a file with a engine suffix, but this did not affect the deployment effect.

We adopted the INT8 model for subsequent experiments. On the Jetson AGX Xavier
edge device, whether TensorRT was used for deployment or not, and the comparison of
the inference speeds of the different object detection algorithms are shown in Table 7. It
can be seen that the inference speed of object detection models has been greatly improved
after TensorRT deployment, reaching a maximum improvement rate of 140%, which is very
critical for mobile edge devices with limited performance.

Table 7. Comparison of inference speed with and without TensorRT deployment (INT8).

Model FPS (Original) FPS (TensorRT) Improvement Rate

Faster-RCNN (ALL) 8.12 18.72 130.5%
Cascade-RCNN (ALL) 5.75 13.85 140.8%
RetinaNet (ALL) 9.53 20.20 111.9%
FCOS (ALL) 9.80 20.46 108.7%
ATSS (ALL) 9.33 19.91 113.3%
YOLOv5s (Y2 + Y3) 15.48 27.20 75.7%

Table 8 summarizes all of the previous experiments. After model simplification and
TensorRT deployment, most of the models sacrifice only about 5% of mAP, but in exchange
for at least 400% of the operating efficiency of the benchmark model.

Table 8. Comparisons of the performance of the final model used on the edge device and the
benchmark model.

Benchmark Model mAP mAP Final mAP Decline FPS FPS Final Improvement
Rate

Faster-RCNN-R50-FPN 43.3% 38.7% 4.6% 4.06 18.72 361.0%
Cascade-RCNN-R50-FPN 45.4% 40.5% 4.9% 3.01 13.85 360.1%
RetinaNet-R50-FPN 35.0% 31.0% 4.0% 4.66 20.20 333.4%
FCOS-R50-FPN 41.1% 35.8% 5.3% 4.88 20.46 319.2%
ATSS-R50-FPN 46.2% 40.7% 5.5% 4.73 19.91 320.9%
YOLOv5s 44.0% 38.3% 5.3% 11.39 27.20 138.8%

3.3. Practical Application of the System
3.3.1. Task Analysis

Our target was to conduct a regular inspection task in a grazing area of the prairie
with a range of about 7×20 km2 in order to check for suspicious vehicles. We selected Sony
A7R2 with a 55 mm prime lens as the image capture device, and the installation of this set
of devices on the UAV is shown in Figure 19a. When flying at different altitudes relative to
the ground, the coverage of a single acquisition is shown in Table 9.
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Figure 19. (a) Install a single camera with the angle of view facing directly below the UAV; (b) Install
dual cameras, and the cameras deviate from the UAV by 15◦ to the left or right, respectively.

Table 9. The coverage of a single acquisition, using a Sony A7R2 camera with a 55 mm prime lens.

Fly Relative Altitude Width Coverage Height Coverage Resolution Per Pixel

300 m 195.818 m 130.909 m 0.025 m
400 m 261.091 m 174.545 m 0.033 m
500 m 326.364 m 218.182 m 0.041 m
600 m 391.636 m 261.818 m 0.049 m
700 m 456.909 m 305.455 m 0.057 m
800 m 522.182 m 349.091 m 0.066 m
900 m 587.455 m 392.727 m 0.074 m

1000 m 652.727 m 436.364 m 0.082 m

We comprehensively considered the efficiency and effect and chose a flight altitude of
800 m relative to the ground for scanning. Figure 20 is a schematic diagram of a scanning
route. With a 20% image side overlap rate, the distance between the two adjacent routes
was calculated to be about 417 m. In the flying direction of the UAV, we considered 40%
overlap, and the interval was 209 m. According to the UAV’s flying speed (120 km/h,
33.3 m/s), it can be calculated that the capture interval between the two images should be
less than about 6.27 s.
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3.3.2. System Performance

We already know that the entire system was executed in parallel by six modules. In
the task of vehicle search in a prairie grazing area equipped with a single camera, the
actual execution period of each module is shown in Table 10. We chose simplified Faster
RCNN as the object detection algorithm of the system and selected N = 5 for each aerial
image collected by the camera. That is, each aerial image needed to be detected 25 times
in total. As we can see from the table, compared with sequential processing, modular
parallel processing provided a speed increase of more than 100%. The average period of
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parallel execution was only 3.8 s, which is equal to the time consumption of the slowest
Image Acquisition module in the system. Modular processing also brings good scalability
and versatility to the system. In other practical applications, different cameras, different
object detection algorithms, and different N values can be flexibly selected to adapt to
different scenarios.

Table 10. Execution time of each module of the system.

Module Average Execution Period

Image Acquisition (Camera = 1) 3.8 s
Communicate with UAV Ignored
Store Original Image 0.9 s
Object Detection (N = 5) 2.4 s
Store Detect Results 1.1 s
Results Real-time Transmit Ignored

Average sequential execution period 8.2 s
Average parallel execution period 3.8 s

3.3.3. Equipped with Dual Cameras

The system further improved the working efficiency by using two cameras. The
installation method of the dual cameras is shown in Figure 19b, and the principle of image
acquisition is shown in Figure 21. The system captures two images at a time while ensuring
that the images from the two cameras partially overlap.Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 24 
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Figure 21. Images of two cameras with a certain degree of overlap.

When the UAV was equipped with dual cameras, the coverage of a single acquisition is
shown in Table 11. As can be seen from the table, the width coverage was greatly improved.
The tilt of the camera stretched the image, so the height coverage was calculated at the
lowest value. After using two cameras, the resolution per pixel was reduced slightly at the
same flying altitude, which lost some performance. Table 12 displays the actual execution
period of each module. Since the two cameras can work in parallel, the bottleneck of the
system at this time becomes the efficiency of the Object Detection module, which was
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about 0.8 s longer than that of a single camera. Although the average acquisition time
increased, it significantly increased the coverage area of one acquisition, so the system’s
overall efficiency was still higher.

Table 11. The coverage of a single acquisition by using two cameras.

Fly Relative Altitude Width Coverage Height Coverage Resolution Per Pixel

300 m 410.451 m 130.909 m 0.029 m
400 m 547.268 m 174.545 m 0.039 m
500 m 684.086 m 218.182 m 0.049 m
600 m 820.902 m 261.818 m 0.059 m
700 m 957.719 m 305.455 m 0.069 m
800 m 1094.537 m 349.091 m 0.078 m
900 m 1231.355 m 392.727 m 0.088 m

1000 m 1368.170 m 436.364 m 0.098 m

Table 12. Execution cycle of each module of the dual camera system.

Module Average Execution Period

Image Acquisition (Camera = 2) 4.0 s
Communicate with UAV Ignored
Store Original Image 1.4 s
Object Detection (N = 5) 4.6 s
Store Detect Results 1.7 s
Results Real-time Transmit Ignored

Average sequential execution period 11.7 s
Average parallel execution period 4.6 s

Figure 22 displays some of the images containing vehicles that were successfully
detected. Since a single image can reach a volume size of about 30 MB, the capacity of the
image transmission equipment is difficult to meet the complete transmission requirements.
Therefore, the system will only transmit the full image after compression, and together
with the corresponding suspected object images and the positioning to the GCS. After
post-processing on the ground, the results will be displayed on the computer screen in
real-time.
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4. Conclusions

This paper focuses on the real-time object search problem in a wide area. We selected
the NVIDIA Jetson AGX Xavier edge device as the computing and control unit, and the
high-resolution camera as the image acquisition device, to design a wide-area and real-time
object search system of UAVs. The system considers both issues of real-time detection
and area scanning efficiency in wide-area object search, which greatly reduces the cost of
performing related tasks compared to other existing methods. Most of the hardware used
in the system are shelf products, which do not need to be specially customized so that the
entire system can be easily implemented.

The software part of the system is divided into the image acquisition subsystem and
objection detection subsystem, which are designed respectively, and the realization and
optimization scheme of each step in the subsystem are explained in detail. At the same
time, the parallel multi-threading method is adopted in order to modularize the system
so that the system’s performance more than doubled. In this paper’s discussion of the
vehicle detection task, the system’s execution period was reduced from 8.2 s to 3.8 s when
a single camera was mounted on the UAV based on the parallel design of the software.
The execution period was also compressed from 11.7 s to 4.6 s in the expansion scheme
with dual cameras. The end result satisfies the time constraints calculated according to
the UAV flight altitude and camera parameters in both cases. That is, the capture interval
between the two images should be less than about 6.27 s. However, in the case of sequential
execution, the system cannot operate normally.

For the most time-consuming object detection process, we adopted a variety of simpli-
fication strategies for the algorithms and used data augmentation on the training dataset
in order to better adapt to the UAV aerial photography scene. We also adopted the Ten-
sorRT to optimize the object detection model, which significantly speeds up the detection
speed and better applies to the embedded edge device with limited performance. After
simplifying the algorithms and deploying the vehicle detection models on the edge device
using the TensorRT tool, the detection speed of most of the models increased to 400% of
the original, with only a loss of about 5% of the precision index, which solved the biggest
limiting bottleneck of the system that the cost of detection time is too large.

The system design considers the scalability and versatility as much as possible, so
different software and hardware modules can be flexibly selected according to different ap-
plication scenarios, which provides a new idea for engineering applications in related fields.
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