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Abstract: Visible and near-infrared (Vis–NIR) spectroscopy can provide a rapid and inexpensive
estimation for soil organic carbon (SOC). However, with respect to field in situ spectroscopy, external
environmental factors likely degrade the model accuracy. Among these factors, moisture has the
greatest effect on soil spectra. The external parameter orthogonalization (EPO) algorithm in com-
bination with the Chinese soil spectroscopic database (Dataset A, 1566 samples) was investigated
to eliminate the interference of the external parameters for SOC estimation. Two different methods
of EPO development, namely, laboratory-rewetting archive soil samples and field-collecting actual
moist samples, were compared to balance model performance and analytical cost. Memory-based
learning (MBL), a local modeling technique, was introduced to compare with partial least square
(PLS), a global modeling method. A total of 250 soil samples from Central China were collected. Of
these samples, 120 dry ground samples (Dataset B) were rewetted to different moisture levels to
develop EPO P1 matrix. Seventy samples (Dataset C) containing field-moist intact and laboratory
dry ground soils were used to establish EPO P2 matrix. The remaining 60 samples (Dataset D) also
containing field-moist intact and laboratory dry ground soils were employed to validate the spectral
models developed based on Dataset A. Results showed that EPO could correct the effect of external
factors on soil spectra. For PLS, the validation statistics were as follows: no correction, validation
R2 = 0.02; P1 correction, validation R2 = 0.56; and P2 correction, validation R2 = 0.57. For MBL,
the validation results were as follows: no correction, validation R2 = 0.06; P1 correction, validation
R2 = 0.65; and P2 correction, validation R2 = 0.69. The P2 consistently yielded better results than P1
did but simultaneously increased the sampling time and economic cost. The use of the P1 matrix and
the MBL algorithm was recommended because it could reduce the cost of establishing in situ models
for SOC.

Keywords: visible and near-infrared spectroscopy; soil organic carbon; soil moisture; external
parameter orthogonalization; local modeling

1. Introduction

Soil organic carbon (SOC) plays an important role in reducing greenhouse gas emis-
sions into the atmosphere [1–5]. It is also an important indicator of soil quality and can
improve soil biological productivity and agricultural sustainability [6,7]. Therefore, SOC
content should be accurately and timely assessed for managing, enhancing, and improving
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the utilization of this resource. With advancements in proximal soil sensing, visible and
near-infrared (Vis–NIR) spectroscopy has become an effective technique for enriching
conventional soil surveys to reduce cost and quantify multiple soil attributes [8–12]. The
Vis–NIR spectra contain comprehensive soil information, including color, particle size,
organic matter, and clay mineral. In comparison with traditional methods for determining
SOC, Vis–NIR spectroscopy has several advantages, such as time saving, cost effectiveness,
and being environmentally friendly.

The benefits of Vis–NIR spectroscopy have contributed to the development of many
large spectral libraries at different local, regional, national, and even global scales [12,13].
All of these databases contain information on soils that have been prepared under dry
ground conditions. Their spectral data and target properties have been, respectively,
recorded and measured in laboratories. Thus, they involve substantial financial investment
and should be exploited fully in practice. However, in applying such databases to field-
moist intact soils, field spectra are affected by some external factors (henceforth denoted
as in situ factors), such as variable soil moisture, surface conditions, and temperature
variations; consequently, field spectra differ from laboratory dry spectra [14–19]. Thus,
the prediction error of field spectra likely increases when spectroscopic calibration models
are developed from laboratory dry ground soils [20–22]. The effect of moisture on soil
spectra is complex and nonlinear, which are the main reasons for unsatisfactory model
performance.

To overcome the influence of unfavorable factors on field spectra, improve the pre-
diction accuracy of models, and eliminate external parameters, researchers proposed and
adopted many methods, including external parameter orthogonalization (EPO), direct
standardization, moisture classification, removal of wavelengths affected by moisture,
slope bias correction, orthogonal signal correction, and generalized least squares weight-
ing [16,17,23–27]. Among these methods, the EPO algorithm is widely used because it is
easily applied and understood. The EPO algorithm decomposes the field spectral data into
two parts: the useful part for the target property and the useless part affected by the exter-
nal parameters. The calibrated spectral model is insensitive to external effects and more
accurate when it is employed to predict field-moist soils by removing the in situ factors
from spectra through EPO. EPO correction does not require prior knowledge of information
on soil moisture; thus, it can be used without collecting additional measurements [14]. The
EPO transformation matrix can be obtained by either rewetting archive soil samples or
collecting field actual moist samples. Both methods have unique advantages and disad-
vantages. Most studies have used the former to develop an EPO transformation matrix
and then to predict the target properties of laboratory rewetting samples, but such studies
have not verified the prediction accuracy of EPO on field moist intact soils [17–19,26,28].
Some studies have adopted the latter to develop EPO [14,15,20,21]. Although the latter
can effectively account for other factors, except soil moisture, it requires high cost and
considerable labor to collect field soil samples; thus, it is challenging. Therefore, to balance
model accuracy and logistical requirements, researchers should carefully compare these
two EPO development methods.

Mathematical models are needed to establish the relationship between spectral data
and target property. In general, partial least square (PLS) is the mainstream modeling
technique of EPO-corrected spectra [14,15,18,20,21]. However, the calibration dataset of the
EPO algorithm is usually an existing spectral library, which collects samples from different
geographical regions and contains complex and nonlinear data relationships [12,13,29,30].
Thus, the spectral variation associated with soil properties can be locally stable [31]. In
modeling with a large spectral library, we should determine whether all soil samples in a
library should be used or a small subset of a library should be selected for modeling [32,33].
The use of all samples in a large and complex spectral library results in large-scale and
universal models. They include more variations in spectral data and soil properties and pro-
vide higher predictive uncertainties. On the contrary, a smaller subset leads to a small-scale
model suitable for local samples, but it may have better prediction accuracy [34]. In local
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regression, each validation sample is estimated with a different calibration equation. This
type of modeling technique can effectively remove unrelated or uninformative samples [30].
For example, memory-based learning (MBL) aims to use the most similar samples selected
from the calibration dataset to predict each new sample [31]. The samples used to train
a local model are chosen from a spectral database on the basis of their similarity to the
predicted samples. However, when correction is performed for in situ field spectral data,
the MBL algorithm has yet to be used to predict SOC via Vis–NIR spectra.

This study aimed to (1) investigate the effects of moisture and other in situ factors
on reflectance spectra, (2) compare the model performance of PLS and MBL methods
established without and with EPO correction on moist soils and explore the influence of
EPO correction on important wavelengths in SOC estimation, and (3) compare the EPO
transformation matrices developed from laboratory-rewetted archive soil samples and
field-collected actual moist samples.

2. Materials and Methods
2.1. Soil Datasets

The soil data used in this study was divided into four independent datasets:
Dataset A: This subset consisted of 1566 topsoil (0–20 cm) samples gathered from

14 provinces in China. It contained 16 soil groups, including Anthrosols, Phaezems,
Chemozems, Eutric Cambisols, and Luvisols [35]. All of the soil samples were air dried,
ground, and sieved (2 mm mesh). Reflectance spectra were obtained under laboratory
conditions with an ASD Fieldspec Vis–NIR spectrometer (Analytical Spectral Devices,
Boulder, CO, USA) in a range of 350–2500 nm with a spectral resolution of 3 and 10 nm
for the regions of 350–1000 and 1000–2500 nm, respectively. A standardized white panel
was applied to calibrate this spectrometer. For each soil sample, 10 spectra were scanned
and then averaged to one spectrum. The SOC content was chemically measured through
H2SO4-K2Cr2O7 oxidation [36]. Further details about this soil dataset were presented by
Ji et al. [29] and Shi et al. [37]. This set was designed to develop a dry-ground calibration
model.

Dataset B: This set comprised 120 dry ground samples collected from Honghu City,
Hubei Province (Figure 1), and this study area is located in the Jianghan Plain. Its terrain is
wide and flat, its altitude is mostly between 22 and 29 m, and its geomorphologic type is
an alluvial plain primarily developed from Quaternary alluvium and lake sediments. The
area is within a subtropical humid monsoon climate zone with mean annual temperature
and precipitation of 16.4 ◦C and 1195.8 mm, respectively. The prevailing soil types of these
120 samples are Anthrosols and Cambisols [35], and the main crops are rice, cotton, and
rapeseed. All of the sampling points were collected in June 2013 and geolocated with a
handheld global positioning system. The dry ground samples in this group were wetted
and air dried to different soil moisture levels. At each moisture level, the reflectance spectra
were scanned with the ASD spectrometer. For each sample at every moisture level, an
average of 10 reflectance spectra produced one reflectance spectrum. The procedure for
sample rewetting was elaborated in the next section. The SOC content was determined via
the potassium dichromate method [36]. The rewetted spectra in this group were used to
develop the EPO projection matrix P1.

Dataset C and Dataset D: These two sets consisted of 70 and 60 samples, respectively,
which were also collected over Jianghan Plain, Hubei Province (Figure 1). The topographic
characteristics, geomorphologic types, climatic conditions (i.e., temperature and precip-
itation), soil types, and crop types were similar to those in Dataset B. The spectral data
collected under field conditions generally contain unfavorable noises because of the effect
of solar radiation, atmosphere, and water factors. Herein, field-moist intact samples were
transported to the laboratory, and their spectra were obtained in the laboratory with the
ASD spectrometer. At each sampling point in the field, the soil water content was recorded
with FieldScout TDR 300 (Spectrum Technologies Inc., Aurora, IL, USA). The samples were
then air dried, milled and sieved to pass a 2 mm mesh from which laboratory dry ground
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spectra were obtained. Each reflectance spectrum was obtained as the mean value of 10
spectra. Both sets (i.e., Dataset C and Dataset D) contained pairs of Vis–NIR spectra from
field-moist intact and laboratory dry ground soils. Similar to the SOC content in Dataset B,
the SOC content in Dataset C and Dataset D was also measured via the potassium dichro-
mate method [36]. The field-moist intact and laboratory dry ground spectra in Dataset
C were used to develop the EPO projection matrix P2. Dataset D was used to test the
effectiveness of EPO in removing the effects of soil moisture and other in situ factors on
SOC estimation.
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2.2. Rewetting Experiment

Subsamples (approximately 100 g) were extracted from the original dry ground soils in
Dataset B. Before the rewetting experiment was conducted, all of these 120 subsamples were
oven dried at 105 ◦C for 1 day to eliminate soil moisture. Sample rewetting was completed
in only one batch. A spray flask was used to slowly add water to the soil. The subsamples
were placed in Petri dishes, and approximately 40 g of deionized water was used to wet
each sample to obtain a moisture level of approximately 40% (dry basis, gravimetric). This
step was immediately followed by covering the dishes with lids for 24 h to avoid moisture
loss and homogenize the moisture within the sample. The samples were weighed with a
scale to determine the soil moisture content and record their first set of wet spectra. On the
following days, the samples were uncovered, air dried at room temperature, and weighed
daily. Simultaneously, their corresponding wet spectra were recorded. This process was
repeated until the soil moisture was close to 0%. Consequently, eight soil moisture levels
were obtained. All of the moisture contents were gravimetric; thus, they were calculated on
the basis of dry soils.

2.3. Spectral Preprocessing

The final output interval of the spectrometer was 1 nm, thereby providing us 2151 re-
flectance values for each spectrum. The original spectral curves were smoothened through
Savitzky–Golay filtering with a window size of 11 nm and a second-order polynomial [38].
Spectral regions ranging from 350 nm to 399 nm and from 2401 nm to 2500 nm were
excluded from subsequent data analysis because of spectral noise. Spectra were resam-
pled to a 10 nm resolution to reduce the dimension of spectral matrix and computation
time; thus, 201 wavelength variables were obtained. Continuum removal (CR) allows
the normalization of the reflectance spectra to isolate and identify significant absorption
characteristics [39]. Savitzky–Golay smoothing and CR transformation were processed in R
programming language with the prospectr package [40,41].

2.4. EPO

The EPO algorithm introduced by Roger et al. [42] aims to remove the effects of external
environmental parameters on reflectance spectra. EPO finds spectral areas affected by soil
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moisture and then projects the reflectance spectra into a space orthogonal to variation [17].
Field-moist intact spectra (X) can be expressed as a combination of the useful part (XP,
containing useful spectral information of SOC), the external part (XQ, including useless
information affected by water content and other in situ factors), and the spectral noise (R).
EPO aims to isolate useful spectral response by developing the projection matrix P. D is
initially defined as the spectral difference between dry and moist (laboratory rewetted or
field-moist intact) soils. In summary, the EPO method proceeds as follows:

(1) Calculate the difference matrix D.
(2) Perform singular value decomposition on matrix D to obtain matrix V . This process

can also be achieved by employing principal component decomposition on DTD. The
superscript T represents the matrix transpose.

(3) Define the dimension g of the EPO and calculate a subset Vs of the V matrix.
(4) Calculate Q from VsVs

T.
(5) Derive the projection matrix P from I–Q, where I is an identity matrix.

EPO data analysis was conducted in the R statistical environment [40]. During EPO
development, the number of dimensions g, which is an important parameter, should be
determined in the EPO. g was calculated on the basis of Wilk’s Λ method [42,43] defined as
follows:

Λ =
trace(B)
trace(T)

, (1)

where T is the total covariance matrix of the EPO-transformed reflectance spectra, and B is
the inter-group covariance matrix of the EPO-transformed reflectance spectra (i.e., averag-
ing over different moisture levels for each sample). The reflectance spectra transformed
by EPO are projected in a different subspace; thus, in the development of the prediction
models, calibration and validation datasets should be recalibrated with the EPO projection
matrix.

2.5. Statistical Analysis and Modeling

The SOC data was investigated by descriptive statistics, including minimum, maxi-
mum, and mean values and coefficient of variation (CV). Principal component analysis
(PCA) was applied to evaluate the dispersion of the reflectance spectra and to determine
the spectral similarities or differences among various datasets [44]. PCA scores were used
to interpret these features. The remaining principal components (PCs) represent a small
percentage of the spectral information, so they were not used later [12]. Two multivariate
methods, namely, PLS and MBL, were used to build SOC prediction models.

2.5.1. PLS

The PLS can effectively deal with data multi-collinearity and cases in which the number
of spectral variables exceeds the number of samples [45–47]. It can be considered as a
combination of correlation analysis, PCA, and regression analysis. PLS is a linear method
based on the projection of predictive variables and response variables in a group of latent
factors and corresponding scores, and it is the most commonly used model for predicting
soil properties from spectral data [18,48,49]. Unlike some nonlinear methods, PLS models
are less computationally intensive and more interpretable [32]. The determination of
important wavelengths in the PLS model can be obtained on the basis of the variable
importance in projection (VIP) [50]. If a VIP score at a specific wavelength is greater than
1, then it indicates that this wavelength is necessary to estimate SOC [51]. In the present
research, the optimal number of latent variables was selected through leave-one-out cross-
validation, and PLS was implemented in R with the pls package [52].

2.5.2. MBL

In machine learning theory, MBL is a data-driven method similar to human reasoning,
which includes remembering past situations, adjusting them to solve current problems,
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examining the possibility of using new approaches to solve problems, and remembering
experiences to improve knowledge [31]. MBL resembles the k-nearest neighbor regression,
locally weighted PLS regression, and LOCAL algorithm. MBL does not generate a global
function; instead, it relies on a reference set or a spectral library to perform local regression.
MBL mainly comprises three steps:

(1) Nearest-neighbor searching. This step aims to determine which samples in the calibra-
tion dataset are similar to the samples in the validation dataset, that is, either similar
or dissimilar measurements are needed. The optimized PC Mahalanobis (oPC-M)
distance is implemented to indicate similarity or dissimilarity [53]. Selecting the
optimal number of PCs is based on the minimal root mean square of compositional
differences.

(2) Training and testing. This step is performed in the spectral space. For each sample to
be predicted, its most similar sample, namely, its k-nearest neighbor, must be used to
fit the model. However, before fitting is performed, a sufficient number of neighbors
must be identified for each calibration. A Gaussian process regression with a linear
covariance function (GPL) is applied to predict samples in the validation dataset.

(3) Fitting and predicting. A new local GPL model is developed for each sample in the
validation dataset. The predictors include spectral data and a local distance matrix.

In the MBL method, the following parameters should be optimized: the optimal
number of PCs for oPC-M distance calculation and the number of the most similar samples
used for local GPL regression. In this study, the maximum number of PCs was set to 50,
and 23 different values of the most similar samples ranging from 120 to 810 were tested
with an increment of 30 samples at each step. Further details on the descriptions of the
MBL algorithm were provided by Ramirez-Lopez et al. [53] and Ramirez-Lopez et al. [31].
For MBL modeling, package resemble was used in the statistical software R [43].

The model performance was assessed using the following indices: the coefficient of
determination (R2), root-mean-square error (RMSE) (Equation (2)), the ratio of performance
to inter-quartile range (RPIQ) (Equation (3)), and bias (Equation (4)).

RMSE =

√
∑
(
ypre − ymeas

)2

n
(2)

RPIQ =
IQ

RMSE
(3)

bias =
∑
(
ypre − ymeas

)
n

(4)

where ypre and ymeas are the predicted and measured values of SOC, n is the number of
samples, and IQ is the interquartile range of the measured SOC. A well-behaved model
typically has large R2 and RPIQ and small RMSE and bias.

2.6. Modeling Flowchart

Model calibration and validation are shown in Figure 2. Here, we mainly explored
four types of models to study the effects of EPO algorithms for correcting moisture and
other in situ factors on the spectral estimation of SOC. Both PLS and MBL models were
involved in modeling.

Prediction I (Figure 2a): Dataset A (dry ground soils) was applied to build estimation
models, which were then tested on the dry ground spectra in Dataset D. This prediction
was used as a benchmark to compare with the three other predictions.

Prediction II (Figure 2b): Dataset A (dry ground soils) was used to establish estimation
models, which were used to predict the field-moist intact spectra in Dataset D. In this
process, no effort was made to remove the effect of moisture and other in situ factors.

Prediction III (Figure 2c): Dataset B with rewetted spectra at different moisture levels
was used to develop the EPO projection matrix P1. The dry ground spectra in Dataset A
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were subsequently transformed with P1, and the transformed Dataset A* was applied to
calibrate an EPO model. The matrix P1 was also employed to the field-moist intact spectra
in Dataset D. The EPO model was used to predict the EPO-transformed moist intact spectra
in Dataset D*.
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Figure 2. Flowcharts of the four approaches used to estimate SOC: (a) Dataset A model applied
to estimate laboratory dry ground samples. (b) Dataset A model applied to estimate field-moist
intact samples. (c) Dataset A model first recalibrated with P1 correction and then applied to estimate
P1 transformed field-moist intact samples. (d) Dataset A model was initially recalibrated with P2
correction and then applied to estimate P2 transformed field-moist intact samples.

Prediction IV (Figure 2d): Dataset C comprising laboratory dry ground and field-moist
intact spectra was utilized to obtain the EPO projection matrix P2 for transforming Dataset
A and field-moist intact spectra in Dataset D. A moisture-insensitive EPO model based on
the transformed Dataset A** was calibrated. This model was tested on the EPO-transformed
moist intact spectra in Dataset D**.

The prediction results of these four types of models were compared with one another
to understand the performance of P2 compared with that of P1 in accounting for moisture
and other in situ factors and to compare the performance of the PLS model with that of the
MBL model.

3. Results and Discussion
3.1. Soil Moisture Content and SOC

In Dataset B, the average soil moisture contents at the eight moisture levels were
32.61%, 29.05%, 25.45%, 21.58%, 16.91%, 11.83%, 6.87%, and 2.56% (Figure 3). In Dataset C,
for the field-moist intact samples, the soil moisture content varied from 11.43% to 36.48%,
with a mean value of 22.51% (Figure 3). Soil moisture of field-moist intact samples in
Dataset D ranged from 12.44% to 39%, which was the same as that in Dataset C. Overall, the
rewetting experiment obtained a large range of soil moisture contents from 0% to 40.71%,
completely covering a range of soil moisture contents of the field-moist intact samples in
Dataset D.
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Figure 3. Soil moisture values measured during the rewetting experiment (Dataset B) and under the
field-moist intact conditions (Dataset C and Dataset D).

The descriptive analysis of the SOC values in four different datasets was presented in
Table 1. The range of the SOC values in Dataset A was quite large, that is, from 0.10% to
4.34%. Wilding [54] divided the CV values into three groups: CV < 15%, low variability; 15%
< CV < 35%, moderate variability; and CV > 35%, high variability. The CV of Dataset A was
high, whereas the CVs of Dataset B, Dataset C, and Dataset D were moderate as a possible
result of differences in soil type, land use, parent material, and spatial extent [12,55,56]. In
comparison with Dataset B, Dataset C, or Dataset D, Dataset A contained a larger range
in SOC with lower minimum and higher maximum SOC values. These results indicated
that Dataset A contained soil samples that were not represented in Dataset B, Dataset C, or
Dataset D. Thus, the estimation model provided a favorable predictive performance.

Table 1. Summary statistics of soil organic carbon (SOC) in different subsets.

Sample Sets n 1 N 2 Min (%) Max (%) Mean (%) Standard
Deviation (%) CV (%) 3

Dataset A 1566 1566 0.10 4.34 1.35 0.67 49.61
Dataset B 120 960 0.52 2.68 1.29 0.49 37.75
Dataset C 70 140 0.64 3.23 1.77 0.46 26.02
Dataset D 60 120 1.01 2.28 1.65 0.30 17.90

1 Sample number. 2 Number of scans. 3 Coefficient of variation.

3.2. Effects of Moisture and Other In Situ Factors on Reflectance Spectra

In Dataset B with different soil moisture levels (Figure 4a), increasing the soil moisture
content led to a decreased reflectance spectra, but the shift was not uniform along the
wavebands. This feature is consistent with previously reported results [15,19,25,57,58].
However, the moisture-induced decrease in the reflectance spectra was less pronounced
when the soil moisture was larger than 16.91%. This pattern can be attributed to the results
of Lobell and Asner [59], who showed that additional soil moisture that continuously fills
micro- and macropores slightly influences the reflectance spectra as soil moisture increases
and when enough soil moisture content is absorbed by most of the soil surfaces. After
CR transformation was completed (Figure 4b), three absorption features located within
400–580, 1340–1680, and 1840–2150 nm were noted. The difference in the region of 400–580
nm is presumably due to the interactions between soil moisture and soil color [60], whereas
the differences in the regions of 1340–1680 and 1840–2150 nm can be related to water
absorption areas and other OH bands [15,16,46,61]. The effect of soil moisture was stronger
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in the NIR range (700–2400 nm) than in the visible range (400–700 nm), indicating that
longer wavelengths are more appropriate for estimating soil moisture content.
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Figure 4. Average spectral and continuum removal (CR) reflectance: (a) mean reflectance spectra at
different moisture levels (Dataset B, n = 120); (b) mean CR spectra at different moisture levels (Dataset
B, n = 120); (c) mean reflectance spectra collected under laboratory dry ground and field-moist intact
conditions (Dataset C, n = 70); and (d) mean CR spectra collected under laboratory dry ground and
field-moist intact conditions (Dataset C, n = 70). The shaded areas in the lower subplots denote
spectral standard deviations.

The average spectra of 70 samples from Dataset C measured under laboratory dry
ground and field-moist intact conditions are shown in Figure 4c. The laboratory spectra
were higher than the field spectra, which might be affected by various factors, such as soil
moisture, roughness, and soil surface condition. After the spectral transformation was
achieved by CR (Figure 4d), similar to the pattern in Figure 4b, three absorption features at
400–580, 1340–1680, and 1840–2150 nm were observed. The field spectra absorbed more
light and had larger depths and widths at the water absorption bands around 1450 and
1940 nm than the laboratory spectra did.

The PCA was performed on the spectral data from Dataset B (Figure 5a), Dataset A,
and Dataset C (Figure 5b). For Dataset B (Figure 5a), PC1 and PC2 explained more than
99% of the spectral variability. As soil moisture increased, the PC scatter points varied from
right to left. The samples with moisture content ranging from dry ground to 11.83% could
be easily discriminated, whereas the PC scores were mixed from 16.91% to 32.61% and
could not be clearly distinguished. This phenomenon is consistent with that in Figure 4a.
Adding water changes the physical structure and the color of the soils, further explaining
the low sensitivity of spectral response to high moisture content [25,62]. For Dataset A
and Dataset C (Figure 5b), the first two PCs accounted for more than 95% of the spectral
variability. The first two PCs of the dry ground spectra in Dataset C overlapped with those
of the spectra in Dataset A, thereby showing the spectral similarity between these two
sets of spectra. However, overlapping was almost not observed between the moist intact
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spectra in Dataset C and Dataset A because of the influence of the field external factors
on the reflectance spectra, and the moist intact spectra in Dataset C were distributed in a
separate feature space from the Dataset A spectra.
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Figure 5. Principal component analysis (PCA): (a) score plot of reflectance spectra at different
moisture levels (Dataset B) and (b) score plots of Dataset A and Dataset C (two different moisture
conditions).

The above analyses can be summarized as follows. First, the bands of water absorption
in the regions of 1340–1680 and 1840–2150 nm masked the sensitive spectral wavebands
related to SOC prediction. Some previously published studies, such as those of Hong
et al. [48], Jiang et al. [63], Nawar and Mouazen [64], and Viscarra Rossel and Behrens [46],
showed that the wavelengths around 1400 and 1900 nm are spectrally important for SOC
estimation. Second, the spectral feature space of field-moist samples did not overlap with
that of Dataset A, often leading to an inaccurate SOC estimation. Therefore, a method
for removing or minimizing the influence of external parameters on reflectance spectra is
needed so that the existing spectral library of Dataset A can be used to predict field-moist
samples.

3.3. Effects of Moisture and Other In Situ Factors on Spectral Estimation of SOC

Moisture correction using the EPO method was dependent on g, which was the
number of EPO dimensions retained for calculating the transformation matrix P. Figure 6
showed Wilk’s Λ values as a function of g for P1 and P2 development. The numbers of
EPO components determined by Wilk’s Λ metrics for P1 and P2 were 5 and 4, respectively.
In general, lower EPO dimensions provide considerably smoother corrected spectra than
higher EPO dimensions do, that is, the latter obtain noisy spectra. The primary reason
behind this pattern is that high EPO components may introduce additional spectral noise
to the matrix Q by including considerably numerous eigenvectors from the decomposition
on matrix D. Wilk’s Λ method can determine the dimension of EPO only by spectral
information, and it is simple and feasible in practical applications [19,43].

After projection with EPO was performed, the scores of the first two PCs derived
through PCA in Dataset D and Dataset A were shown in Figure 7. Contrary to the obser-
vations in PCA conducted before EPO was applied (Figure 7a,b), the convex hulls of the
moist spectra in Dataset D were contained within those of Dataset A, suggesting that the
moist spectra in Dataset D occupied the same spectral space with Dataset A. Thus, after
EPO was applied, the estimation models that were calibrated on Dataset A with dry soils
could be expected to work on the field-moist intact soils.
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Figure 7. Score plots for the first and second principal components: (a) Dataset A and dry ground
samples in Dataset D. (b) Dataset A and field-moist intact samples in Dataset D. (c) Dataset A* and
field-moist intact Dataset C* corrected by P1. (d) Dataset A** and field-moist intact Dataset C**
corrected by P2. Lines indicate the convex hulls of each dataset.

The performance of PLS and MBL models was tested to predict the SOC on dry ground
and moist intact spectra before and after EPO transformation was carried out (Table 2).
For the dry ground spectra, PLS and MBL methods provided good validation results for
SOC, and PLS and MBL had RPIQ of 2.70 and 2.91, respectively. Conversely, without
EPO application, the prediction performance of the PLS and MBL models was poor when
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the moist intact spectra were directly used (PLS: R2 = 0.02, RPIQ = 0.43; MBL: R2 = 0.06,
RPIQ = 1.25). This degradation in the model performance under the influence of moisture
and other in situ factors is consistent with the results reported by other authors [14–17,20,21]
and further confirms the rationality of efforts to develop a moisture correction algorithm.
After the moist spectral transformation was conducted with the EPO algorithms, the model
accuracies of PLS and MBL were greatly improved. Specifically, for EPO P1, PLS and
MBL models had RPIQ of 2.27 and 2.53, respectively. For EPO P2, PLS and MBL models
had RPIQ of 2.31 and 2.72, respectively. In principle, the EPO algorithm is a process of
information removal to effectively remove the spectral information related to moisture
and other factors, suggesting that spectral transformation with EPO can improve model
performance [17,21,26]. However, overall, EPO predictions with PLS and MBL models for
moist intact spectra (Table 2) were not as accurate as their corresponding PLS and MBL
models for the dry ground spectra of the same soils. This result is expected, considering
that laboratory dry ground spectra were scanned on dry ground soils; thus, they were not
subjected to in situ effects.

Table 2. Validation results of partial least square (PLS) and memory-based learning (MBL) models
for estimating SOC without and with external parameter orthogonalization (EPO) correction.

Modeling
Technique 1

Calibration
Dataset Validation Dataset

Moisture
Correction
Approach 2

N 3 R2 4 RMSE (%) 5 RPIQ 6 Bias (%) 7

PLS

Dataset A Dataset D (dry ground) – 26 0.69 0.1638 2.70 0
Dataset A Dataset D (moist intact) No correction 31 0.02 1.0268 0.43 0.8884

Transformed
Dataset A*

Transformed Dataset D*
(moist intact) EPO (P1) 33 0.56 0.1951 2.27 0

Transformed
Dataset A**

Transformed Dataset D**
(moist intact) EPO (P2) 30 0.57 0.1918 2.31 0

MBL

Dataset A Dataset D (dry ground) – 540 0.73 0.1519 2.91 0.0047
Dataset A Dataset D (moist intact) No correction 180 0.06 0.3538 1.25 −0.0794

Transformed
Dataset A*

Transformed Dataset D*
(moist intact) EPO (P1) 600 0.65 0.1750 2.53 −0.0040

Transformed
Dataset A**

Transformed Dataset D**
(moist intact) EPO (P2) 660 0.69 0.1628 2.72 0

1 PLS and MBL mean partial least square and memory-based learning, respectively. 2 P1 is developed by
subtracting the rewetted reflectance spectra at different moisture levels from the laboratory dry ground reflectance
spectra, whereas P2 is developed by subtracting the reflectance spectra of field-moist intact samples from the
corresponding reflectance spectra of laboratory dry ground samples. 3 Number of optimal latent variables in PLS
models or number of the most similar samples in MBL models. 4 Determination coefficient. 5 Root-mean-square
error. 6 Ratio of performance to interquartile range. 7 Average difference between measured and predicted values.

The MBL models (RPIQ, 1.25–2.91) outperformed the PLS models (RPIQ, 0.43–2.70) in
all of the cases regardless of the dry ground spectra or the moist intact spectra transformed
before and after EPO (Table 2). The MBL model typically aimed to choose the most similar
samples from the spectral library to improve the prediction accuracy of each validation
sample [31,65]. Thus, the MBL method can effectively discard potential outliers included
in the spectral library because only some of the samples in the spectral library are useful
for predicting SOC [32,33]. The MBL method yields better results when the collected
samples likely contain complex and nonlinear relationships between SOC and spectral data,
whereas the PLS method is a linear modeling technique suitable for linear relationships
only [34,65,66]. Our model results support the findings of Jaconi et al. [67], who summarized
that among different modeling strategies, calibration with the MBL algorithm provides the
most accurate prediction for SOC. In MBL modeling techniques (Table 2), the number of the
most similar samples in the moist intact spectra matched from Dataset A was much smaller
than that in the dry ground spectra selected from Dataset A. The effects of in situ factors
on field spectra made the determination of samples with similar spectra from Dataset A
difficult. However, after EPO was performed to remove the in situ factors, the numbers of
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spectrally similar samples increased to 600 and 660 for the EPO-transformed P1 and P2,
respectively.

Figure 8 illustrates how EPO improved the prediction accuracy of the moist samples.
In predicting the laboratory dry spectra (Figure 8a), the prediction R2 was 0.73, indicating a
strong correlation between the measured and predicted SOC values. However, without EPO
(Dataset A applied directly to moist intact spectra), the prediction was poor as indicated
by the large RMSE value of 0.3538% (Figure 8b). Most of the sample points were either
overestimated or underestimated, and the regression line deviated from the 1:1 line. For
the moist spectra corrected by EPO algorithms (Figure 8c,d), EPO reduced RMSE values
compared with the prediction of the moist intact spectra without correction, and most
scatter points were distributed well around the 1:1 lines.
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Figure 8. Scatterplots of SOC estimation from MBL: (a) prediction made on the spectra recorded in the
laboratory (Dataset D: dry ground); (b) prediction made on the spectra recorded in the field (Dataset
D: moist intact); (c) prediction made on the field spectra corrected by P1 (transformed Dataset D*:
moist intact); and (d) prediction made on the field spectra corrected by P2 (transformed Dataset D**:
moist intact). Black and red lines represent 1:1 and regression lines, correspondingly.

3.4. Comparison of P1 and P2 Transformation Matrices

Figure 9 visualizes P1 and P2 transformation matrices and three randomly selected
spectral data before and after EPO transformation. The color bars of P1 and P2 are adjusted
to a consistent range of values. Visually, P1 and P2 were significantly different (Figure 9c,d).
Likewise, the transformed spectral data significantly varied after the EPO projection was
completed (Figure 9e,f). With EPO correction, the transformed field moist spectral data
were similar to each other.

Transforming the moist spectra through either P1 or P2 improved the prediction accu-
racy (Table 2). The prediction results of P2 were better than those of P1 (Table 2) regardless
of PLS or MBL modeling techniques, mainly because the developed P2 transformation
matrix aimed to correct moisture and other in situ factors, such as aggregation and intact-
ness, whereas P1 was generated from the laboratory-rewetted samples presumably only
suitable for correcting the moisture effect. This finding supports the result of Ge et al. [15] in
correcting moisture and other in situ factors, that is, the prediction accuracy of the inclusion
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of more representation of soil variability is higher than that of only inclusion of moisture
variability.
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Figure 9. Visualization of EPO projection applied for spectral correction: (a,b) three randomly
selected moist spectra from Dataset D; (c) a visual diagram of EPO P1; (d) a visual diagram of EPO
P2; (e) spectral data transformed by P1; and (f) spectral data transformed by P2.

3.5. Important Wavelengths for SOC

We investigated whether the use of EPO affects the sensitive wavebands of SOC. Hence,
we analyzed the VIP scores derived from different PLS models (Figure 10). Because MBL is
a local model rather than a global model and cannot identify the important wavelengths
for SOC. In general, EPO correction exerted no significant effect on the distribution of
the important waveband of SOC (Figure 10). The important wavelengths of SOC were
distributed within the following common regions: 400–800, 1380–1440, 1830–1950, and
2090–2400 nm. In these regions, spectral bands were governed by the presence of iron
oxides; organic matter; the O–H, C–H, and H–O–H functional groups; kaolin; illite; clay
minerals; carbonates; and soil water [46,68,69]. Moreover, these bands are similar to the
important wavelength distributions of SOC reported in previous studies, such as those
of Hong et al. [68], Jiang et al. [63], Moura-Bueno et al. [49], and Xu et al. [70]. Therefore,
when we used EPO to correct the in situ factors of SOC estimation, we could expect a stable
distribution of the important wavelengths of SOC.
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3.6. Practical Implications

Most studies rewetted dry ground soils to obtain an EPO transformation matrix and
predict SOC contents under different moisture levels [17–19,26]. Few studies have focused
on field-moist intact soil prediction, which our study aimed to investigate. In our study,
the legacy dry soil samples were wetted to some predefined moisture levels to develop
the EPO matrix, which was then applied to field soils. This development process did not
involve fieldwork and was relatively simple in practical applications. Conversely, the EPO
projection matrix developed from the field data should scan the soil samples under both
moist intact and dry ground conditions. However, this method is difficult in practical
applications when collecting an adequate number of soil samples for EPO development is
impossible because of sampling or economic difficulties [71]. Overall, in our case, in terms
of prediction accuracy, P1 and P2 slightly differed (Table 2). Our results suggested that EPO
P1 matrix featuring variable moisture levels could minimize sampling requirements and
simultaneously reduce the effect of moisture on moist-intact spectra. Ge et al. [15] indicated
that their efforts to correct intactness with an EPO algorithm obtains low gain, in contrast
to moisture, and variations in natural aggregation on reflectance spectra are limited. Thus,
in practical aspects, we could use the P1 transformation matrix to correct the field-moist
intact spectra. The P1 matrix could be achieved in the laboratory by manually rewetting
legacy samples and could effectively simplify the whole modeling process and save time,
money, and labor resources. The P2 matrix should acquire spectral data in moist-intact
and dry ground states, thereby increasing sampling time and economic cost, but further
improvement in model accuracy is considerable.

4. Conclusions

This study investigated the usefulness of the EPO algorithm to reduce the effect of
moisture and other in situ factors on field-moist intact soils for SOC prediction. Two types
of EPO projection matrices were developed: one from rewetting archive soil samples that
had been in a dry ground state in the laboratory (P1) and one from the natural state of soils
(P2). Two different modeling techniques, namely, PLS and MBL, were also compared for
SOC estimation. The following conclusions could be drawn from:

(1) The laboratory dry ground soils were less disturbed by external environmental param-
eters, and accurate estimation models could be achieved for SOC. The RPIQ values
of PLS and MBL were 2.70 and 2.91, respectively. Considering the interference of
moisture and some other in situ factors, we should have a mathematical algorithm to
eliminate the influence of external parameters on the reflectance spectra when a dry
soil spectral library would be used to predict moist-intact soils. Without correction,
the PLS and MBL had RPIQ of 0.43 and 1.25 for moist-intact soils, respectively.
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(2) The performance of the prediction of SOC of field-moist intact soils with a dry spec-
tral library in P2 was better than that in P1. The differences in the validated R2

between the two projection matrices were 0.01 and 0.04 for PLS and MBL, respectively.
Nevertheless, the P1 matrix was recommended for correcting the external parame-
ters because it could effectively simplify the whole modeling process and save time,
money, and labor resources.

(3) Local modeling (MBL) performed better than global modeling (PLS) in a large spectral
library and could exclude potential sample outliers. With EPO correction, the best SOC
prediction for moist intact soils was achieved by the MBL model with P2 correction,
and the validated R2 was 0.69.

(4) The EPO correction did not significantly affect the distribution of the important
waveband of SOC. The important wavelengths for SOC estimation were mainly
located within 400–800, 1380–1440, 1830–1950, and 2090–2400 nm.

We concluded that it is possible to utilize the EPO correction and local modeling
to develop spectral models from dry ground libraries for estimating SOC based on soils
collected in the field-moist intact state.
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