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Abstract: Topography plays an important role in shaping the patterns of sediment erosion and deposi-
tion of different landscapes. Studies have investigated the role of topography at basin scales, whereas
little work has been conducted on hillslopes, partially due to the lack of high-resolution topographic
data. We monitored detailed topographic changes of a rilled hillslope in the southeastern United
States using terrestrial laser scanning and investigated the influences of various microtopographic
factors on erosion and deposition. The results suggest that the contributing area is the most important
factor for both rill erosion and deposition. Rills with large contributing areas tend to have high
erosion and deposition. Slope is positively related to erosion but negatively related to deposition.
Roughness, on the other hand, is positively related to deposition but negatively related to erosion.
Higher erosion and lower deposition likely occur on north-facing aspects, possibly because of higher
soil moisture resulting from less received solar insolation. Similarly, soil moisture is likely higher
in areas with higher terrain wetness index values, leading to higher erosion. This work provides
important insight into the sediment dynamic and its microtopographic controls on hillslopes.

Keywords: terrestrial laser scanning; soil erosion; change detection; quantile regression; topographic
factors

1. Introduction

Topography plays an important role in water-induced soil erosion and deposition,
mainly through its impacts on surface flow pattern, velocity, and erosive power. Topogra-
phy is also associated with soil properties, such as soil moisture, organic matter, particle
size, affecting infiltration, runoff generation, and ponding [1]. Multiple topographic factors,
such as slope length, gradient, and curvature, have been incorporated into various soil
erosion models, including the Universal Soil Loss Equation (USLE) [2], Revised Universal
Soil Loss Equation (RUSLE) [3], and Water Erosion Prediction Project (WEPP) [4]. How-
ever, topography has been primarily represented by a single factor in studies related to
hillslope/experimental plots without the consideration of spatially varied terrain charac-
teristics [5,6]. This single topography-related factor has been mainly used to emphasize
slope length, gradient, or concavity/convexity [2–5], while topographic variation (e.g.,
roughness) has been often incorporated into other nontopographic parameters, for example,
the cover factor in USLE.

It is generally accepted that topography affects the patterns of erosion and deposition.
However, most of the emphasis has been focused on the basin spatial scale [7–9], with only
a few attempts at plot or hillslope scales [10–13]. This may be due to a lack of the means to
obtain high-resolution topographic data. Most publicly available digital elevation models
(DEMs), particularly those obtained by airborne light detection and ranging (LiDAR), are
at point densities or pixel resolutions of 50 cm to a few meters, which is not ideal for the
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study of microtopographic features related to erosion and deposition at plot or hillslope
spatial scales.

Recent development of high-resolution remote sensing technologies, including laser
scanning sensors (terrestrial and airborne) and structure from motion (SfM), allows for the
mapping of microtopographic terrain features and the detection of geomorphic changes
at centimeter- to millimeter-length scales [10,11,13–22]. Subsequently, a wide range of
applications of high-resolution point clouds, meshes, and DEMs have been conducted
to quantify detailed hillslope processes over the past decade. Vinci et al. [13] found TLS
advantageous compared to manual survey when measuring rill length and erosion volume.
Eitel et al. [15] examined the impact of surface roughness on concentrated flow processes
and rill erosion on two experimental plots based on centimeter (cm)-resolution DEMs from
different times. Hancock et al. [16] used a cm-resolution DEM generated using a terrestrial
laser scanner (TLS) as the input for landform evolution modeling. In a comparison analysis,
Smith and Vericat [18] found that TLS and SfM can produce comparable measurements
of roughness at the plot scale. Neugirg et al. [19] found that compared to SfM, TLS
can produce higher precision measurements for erosion detection and quantification. Di
Stefano et al. [20] used temporal DEMs created by SfM to study the relationship between
rill dimensions, volume, and discharge. Llena et al. [21,22] demonstrated that TLS and
SfM can capture surface changing rates up to sub-centimeter levels through a five-year
continuous survey of two experimental micro-catchments in the Iberian Peninsula from
2013 to 2018.

Although more and more studies have applied TLS- and SfM-derived high-resolution
DEMs to quantify the amount and spatial distribution of hillslope erosion and deposition,
few studies have investigated microtopographic controls on hillslope processes and whether
the relationships derived at such high centimeter or millimeter resolutions are different
from empirical relations derived at plot or basin scales. This study aims to identify key
topographic factors that can best explain and predict erosion and deposition on hillslopes
and explore the relative importance of each factor on the processes. The detailed research
questions include (i) What is the spatial pattern of erosion and deposition on a rilled
hillslope? (ii) What are the most important microtopographic factors affecting erosion
and deposition, respectively? And (iii) How do the topographic factors influence erosion
and deposition at the centimeter scale? This work quantifies the importance of various
topographic factors on hillslope processes and provides useful guidance for future studies
in predicting and simulating sediment dynamics at fine scales.

2. Study Area

Our study site is located in Loudon County, Tennessee (35◦37′32.52′ ′N, 84◦12′59.69′ ′W,
Figure 1). This area is within the Ridge and Valley physiographic province on a terrace of
the Little Tennessee River that originates from the Blue Ridge of the southern Appalachian
Mountains and meanders westward into the Ridge and Valley. The climate is classified as
the Köppen humid subtropical (Cfa) zone that is characterized by perennial precipitation
and strong seasonality of hot summers and mild winters. High-intensity precipitation
events are frequent due to tropical storms and mid-latitude cyclones. Based on U.S. climate
data, the mean annual total precipitation is 1300 mm, and the mean annual temperature is
15 ◦C in this area (http://www.usclimatedata.com/climate/lenoir-city/tennessee/united-
states/ustn0284, accessed on 5 March 2022). The study area is currently dominated by
croplands and grassland, with chestnut oak (Quercus prinus) and eastern white pine (Pinus
strobus) mixed forests on high elevation ridges and white oak (Quercus alba L.) and tulip
poplar (Liriodendron tulipifera) associations in low-elevation valleys.

We monitored the topographic change of a 27◦ engineered hillslope that was created
during the construction of the Christenson Yacht facility in 2007 (Figure 1). The soil of
the hillslope is a gradually weathered silt and clayey Ultisols on shale parent material
that is susceptible to rilling and gullying [23]. Particle size analyses of six soil samples
collected from this site show consistency with the county soil survey with a soil texture of

http://www.usclimatedata.com/climate/lenoir-city/tennessee/united-states/ustn0284
http://www.usclimatedata.com/climate/lenoir-city/tennessee/united-states/ustn0284
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70.0% clay, 14.7% silt, and 15.3% sand. These edaphic conditions are conducive to intense
water erosion, and soil loss in this area has been impairing agricultural productivity and
fragmenting the landscapes [24,25].
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Figure 1. A Google Earth bird’s-eye view of the 18 m × 14 m 27◦ rilled hillslope in Loudon County,
Tennessee, showing the three terrestrial laser scanner (TLS) locations for collecting microtopographic
data. The locations of five targets are also illustrated to register the TLS scans. The inset map on the
left shows the yacht facility near this site: the permanent features of this building, such as walls and
corners, were used for the registration of point clouds from different times. The inset map on the
right shows the site location in the United States.

The hillslope faces southwest at an azimuth of 257◦ (Figure 1). The altitude of the
hillslope ranges from approximately 255 to 263 m above sea level. The hillslope has been
almost without vegetation cover and has undergone intensive erosion. Grasses were later
planted at the bottom and on the terraces above the hillslope for erosion control. Despite
such efforts, rills with lengths up to 20 m have emerged on the hillslope surface from top to
toe, detaching and transporting sediment that was subsequently deposited at the base of the
hillslope. This study focuses on a vegetation-free section of the hillslope, extending about
18 m in length by 14 m in width. Because no manmade boundaries (earthen berms, metal
sheets, etc.) were constructed, the hydrological process is not disturbed in this site, and the
erodible materials are not exhaustive, making it ideal for long-term erosion monitoring and
observation [26].

3. Materials and Methods
3.1. Data Acquisition

Data acquisitions for this study were previously explained in Lu et al. [10,11]. We
conducted five field surveys on 10 December 2014, 7 March 2015, 11 June 2015, 13 September
2015, and 16 December 2015, respectively, using a 1550 nm wavelength FARO Focus3D X
330 TLS with an integrated global positioning system (GPS) and a dual axis compensator
to keep data acquisition level and stable. We mounted the scanner on a tripod and set
the height of the scanner at approximately 2 m above the ground. This TLS can scan the
surrounding areas through a preset or customizable 360◦ horizontal and 307◦ vertical view
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at a nominal ranging radius of 330 m at 90% reflectance. The ranging accuracy of the
scanner is ±2 mm at 50 m distance. During each scan, the scanner emits up to 976,000 laser
pulses per second. The size of a laser spot is 2.25 mm at sensor exit and the laser beam
diverges at 0.19 mrad (0.011◦) as it moves further away. In our case, the ranging distance
between the scanner and the hillslope surface is approximately 10 to 20 m, corresponding
to a laser spot size of 4.15–6.05 mm [27]. We placed five identical spherical reference
targets (ATS Scan Reference System with a diameter of 139 mm) around the hillslope before
each survey (Figure 1). The targets are important for intra-survey registration, and we
distributed them uniformly while avoiding any potential disturbance on the hillslope. We
did not install permanent targets because of the concern of theft or vandalism. Because
the scan targets are placed slightly differently for each survey, we only used the targets for
registering intra-survey scans.

A Trimble GeoExplorer 6000 Series GeoXH™ handheld differential GPS (dGPS) was
used to record the locations where the scanner and targets were placed. This dGPS unit
has a built-in satellite-based augmentation system to perform the real-time correction on
the coordinates once the system locks onto the strongest satellite signal. The nearest GPS
base station is at the McGhee Tyson Air National Guard Base (35.81◦N, 84.00◦W), which is
approximately 28 km away from our study site. We performed the dGPS measurement for
at least 20 min at each location, allowing for the carrier to update the horizontal accuracy to
10 cm ± 2 parts per million (ppm) and the vertical accuracy to 20 cm ± 2 ppm. Since such
level of accuracy is not sufficient for the cm level georeferencing, the coordinates collected
by dGPS were only used to coarsely place the scans at their relative locations in the 3D
virtual environment before registration. Further details of intra-survey and between-survey
registrations are given in Section 3.2.

All TLS surveys were conducted on days with mild temperature and clear sky con-
dition, and at least two days after any precipitation event. Each survey started with a
coarse resolution (approximately 5 cm point spacing at 50 m radius) panoramic scan at
the maximum viewing angle of the scanner unit (360◦ horizontal by 307◦ vertical) about
10 m away from the foot of the hillslope. Three scans were performed subsequently from
three different locations at a similar distance from the hillslope. The subsequent scans were
parameterized at a much finer resolution (approximately 1 cm spacing at a 50 m distance) to
only scan the hillslope. For improved precision and comparable geometry of occlusion we
tried to re-occupy the same scanning locations in each survey [28]. However, it was difficult
to maintain identical locations due to the continuous change of the environment [29].

3.2. Preprocessing and DEM Generation

A relatively uniform density point cloud can be obtained by registering the point
clouds produced by the TLS scans for each survey period (intra-survey registration). The
registration was performed in the FARO SCENE® software (version 5.1). This software pro-
vides a target-based registration that allows for intra-survey registration between different
scans. An iterative closest point algorithm [30] is incorporated in the software to help align
the scans on a target-to-target basis. We also visually checked the results of the registration
and manually placed different scans using the scan targets and other fixed features, such as
the wall of the yacht facility, in each scan to further improve the registration (Table 1).

A panoramic scan was conducted at a relatively coarser resolution to help the reg-
istration of the point clouds collected at different survey periods (henceforth called the
between-survey registration). The first survey (14 December 2014) was used as the reference
point cloud for the four between-survey registrations (Table 1). The root-mean-square error
(RMSE) of control points was used to assess the quality of the intra-survey and between-
survey registrations (Table 1). The RMSE is calculated in three-dimensional x, y, and z space.
The RMSE of the intra-survey registration was calculated based on the offset of the five
spherical targets, while the RMSE of the between-survey registration was calculated based
on the offset of permanent artificial features (e.g., the walls of the yacht facility) captured in
each survey.
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Table 1. TLS-collected point cloud data of an engineered hillslope in Loudon County, Tennessee,
from December 2014 to December 2015.

Survey Date Number of
Return Points

Average Point
Density

(pts/cm2)

Intra-Survey
RMSE (cm)

Between-
Survey

RMSE (cm)

10 December 2014 7,671,276 1.91 0.35 ± 0.11 (reference)
7 March 2015 8,983,232 2.25 0.35 ± 0.13 0.53 ± 0.08
11 June 2015 8,223,775 2.06 0.34 ± 0.11 0.41 ± 0.08

13 September 2015 8,059,708 2.02 0.33 ± 0.12 0.44 ± 0.05
16 December 2015 7,931,839 1.99 0.35 ± 0.14 0.40 ± 0.07

Table 1 lists the RMSE values for the intra-survey and between-survey registrations.
Approximately 7.7 to 9.0 million points were collected for each survey with the average
point density of 1.91–2.25 pts/cm2. The RMSE values range from 0.33 to 0.35 cm for intra-
survey registration and from 0.41 to 0.53 cm for between-survey registrations. Both intra-
and between-survey RMSE values are comparable to the studies of similar environmental
and technological settings [12,13,29,31].

We then rasterized the registered point cloud to produce a DEM for each survey
period. No vegetation removal was necessary because this section of the hillslope was
free of vegetation. After removing some outlier points, we converted each point cloud to
a 1 cm pixel resolution DEM using a bilinear interpolation method in ArcGIS. The 1 cm
pixel resolution was determined to best represent sediment estimates based on a previous
study [10]. The bilinear interpolation algorithm determines the value of a grid cell using
the linear combination of four neighboring cells [32]. It is suitable for continuous surface
interpolation without distinct boundaries and has been widely used in converting LiDAR
point clouds to raster DEMs [33–35].

All five DEMs were output to a local Cartesian projection. This projection focuses on
the center point of the area of interest and defines a plane that is tangent to the spheroid at
the center point, without accounting for the differences in z between corresponding points
on the plane and the spheroid [36]. Note that the distortion in z is negligible due to the
small extent of the study area. This projection best preserves the original quality of the data
because the scanner stores the points first in polar coordinates that are then converted to
Cartesian space.

3.3. DEM of Difference

We used the DEM of difference (DoD) method to calculate the erosion and deposition
on the hillslope [37]. The DoD method has been widely used for geomorphic change
detection where the differences between two or more DEMs obtained at different times can
be quantified based on the following equation [37]:

∆DEM = DEMt1− DEMt0 + ε (1)

where t0 is the initial time when the DEM was collected, t1 is the subsequent time of
data collection, and ε is the error. The calculation was performed on a cell-to-cell basis to
produce a raster with cells of zero, positive, and negative values that spatially represent
stable, depositional, and erosional areas on the hillslope, respectively. The error (ε) is
related to the ranging error associated with the scanner (±2 mm), the registration errors
(Table 1), the noise created by local topographic variation, and the error associated with
environmental factors (atmospheric conditions, soil moisture, etc.).

We used the Geometric Change Detection 6.0 (GCD) software with the capability to
account for spatially varied uncertainties for the DoD calculation [37]. The GCD uses a fuzzy
inference system that applies the fuzzy membership function to assign the uncertainties of
each individual cell based on a set of input variables, including point density, roughness,
and slope. For example, cells of high point density, low roughness, and low slope gradient
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are considered with low uncertainty and vice versa. When performing the DoD calculation,
the elevation uncertainty is propagated along with uncertainties from various sources (e.g.,
registration, the survey method), and the elevation change at any cell is only included when
the value is significantly (p < 0.05 or 95% confidence level) higher than the propagated
uncertainty. A more detailed instruction on the GCD method is available in [37]. We
repeated the DoD analysis across the time series, producing four DoD rasters from the five
DEMs [10,11]. The elevation changes were only considered at the 95% confidence level.
These four DoD rasters allow for the spatial mapping and estimation of both the volume
and mass of erosion and deposition within this section of the hillslope [10,11].

3.4. Microtopographic Factors

Hillslope erosion and deposition may be affected by various microtopographic factors.
We examined nine factors that are derived from DEMs [38]: elevation, slope, aspect,
roughness index (RI), contributing or catchment area (CA), rill density (RD), channel depth
(CD), topographic wetness index (TWI), and length-slope factor (LS). These topographic
factors were selected because of their impacts on various perspectives of erosion and
deposition processes [39–57] and because they can be derived from DEMs using available
GIS software packages, such as ArcGIS [58] and the System for Automated Geoscientific
Analyses (SAGA) GIS tools [59].

Elevation is the altitude of a DEM cell, slope is the gradient, and aspect is the azimuth
of the slope. Since aspect is a directional variable ranging from 0◦ to 360◦, we transformed
it to cosine (CosA) and sine (SinA) values for the analyses.

The roughness index (RI) describes topographic variation and irregularities in the
elevation or standardized height of surface features for individual pixels. It is defined as

RI =
√

∑
(
xij − x00

)2 (2)

where x00 is the elevation of the central cell, and xij is the elevation of each neighboring
cell in a 3 × 3 window. A high roughness surface reduces erosion by increasing hydraulic
resistance, dissipating the flow energy [39,40], and reducing runoff generation [41,42].

Contributing area (CA) is the upstream watershed area of a specific location on the
hillslope. CA can be derived using flow direction, flow accumulation, and watershed
analysis tools in ArcGIS. It has been widely used for channel network analysis [43,44] and
soil erosion prediction [44].

Rill density (RD) is defined as the total length of rills per unit area [45]. It varies for
slope steepness, slope length, runoff, soil, and precipitation conditions [46,47]. Channel
depth (CD) measures the elevation difference between a specific cell location and its closest
drainage divide (watershed boundary). Low CD values represent interfluve areas, while
high values represent rill channels. This index has been used in soil classification and
geomorphic feature analyses [48,49].

Topographic wetness index (TWI) was proposed to quantify the topographic control
on hydrological processes [50]. TWI is defined as

TWI = ln(CA/tanθ) (3)

where CA is the contributing area, and θ is the slope angle in degrees. TWI is related to soil
depth, infiltration rate, runoff generation, soil texture, and soil aggregates [51–55].

Slope length-gradient (LS) factor is a topographic index used in USLE and RUSLE for
soil erosion prediction [2,3,7,56,57]. We derive the LS factor based on the method proposed
in [7]:

LS =

(Ai,j−in + D2)m+1 − Am+1
i,j−in

Dm+2 × xm
i,j × (22.13)m

×√G2
x + G2

y (4)
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where Ai,j−in is the contributing area at the inlet of grid cell (i,j); D is the cell size; and Gx
and Gy represent gradient on x and y directions. The coefficient m is the length exponent of
the USLE LS factor, representing the ratio of rill and interrill erosion. It is calculated by the
β-value [57]:

m =
β

β + 1
(5)

The β-value ranges between 0 (the ratio of rill to interrill erosion close to 0) and 1 and
is defined as follows [57]:

β =
sinθ/0.0896[

0.56 + 3× (sinθ)0.8
] (6)

where θ is the slope angle.
We derived the above nine topographic factors using ArcGIS 10 and SAGA GIS tools

for the four 1 cm DEMs (December 2014, March 2015, June 2015, and September 2015).
Each of the four DEMs was considered as the initial stages to which the DEM produced
in the immediately subsequent survey was compared. The topographic changes occurred
between each survey and the next are produced using the DoD method described in
Section 3.3.

We used the “sub-watershed” method described in [11] to derive summary statistics
(median, sum, or percentage value) for each factor, as well as the erosion and deposition
amounts along the rills. The rill network was derived using the hydrology tools in Tau-
DEM [58]. A rill basin refers to all upstream pixels contributing to the lowest outlet point
along a rill channel. We generated a set of outlet points at a 0.05 m interval along the rills to
segment a rill basin into a series of non-overlapping polygons (sub-watersheds). Although
the generated sub-watersheds have various shapes and sizes, a fixed interval guarantees a
uniform sampling distance along the rill basin. Please check the reference [11] for detailed
description of the “sub-watershed” method.

3.5. Correlation and Regression Analysis

Pearson’s correlation analysis was used to examine the relationships among erosion,
deposition, and topographic factors. This analysis produces a correlation coefficient (r) to
measure the strength and a p-value to represent the statistical significance of the correlation
between each pair of two variables.

We used the linear regression models to examine the relationship between erosion/
deposition and topographic factors. The linear models were chosen because they provide
clarity and interpretability compared to machine learning models, although they may
compromise some predictability. A linear regression model can be expressed as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (7)

where y is the dependent variable; x1, x2, . . . , xn are the independent variables; β0, β1, . . . , βn
are the regression coefficients; and ε is the error.

Both ordinary least squares (OLS) and quantile regression (QR) were used in the
analysis. OLS estimates the conditional mean of the dependent variable based on the
estimation of regression coefficients (β) using the minimum of the sum of squared residuals:

β̂ = argminβ∈Rp ∑
(
yi − x′i β

)2 (8)

OLS is usually used when both dependent and independent variables are normally
distributed, and it is not very robust against datasets that have potential outliers.

QR is a modification of OLS that estimates the regression coefficient using the condi-
tional quantile [60]:

β̂(τ) = argminβ∈Rp ∑ ρτ

(
yi − x′i β

)
(9)
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where τ is the τth quantile (0 < τ < 1) that is defined as

Q(τ) = inf{y : F(y) ≥ τ} (10)

which satisfies
F(y) = Prob(Y ≤ y). (11)

QR is more robust against the datasets with potential outliers and provides better
performance when variables have a non-Gaussian distribution. QR is also ideal when the
distribution of the data is skewed, especially when the variables do not exhibit homoscedas-
ticity (similar variance for all independent variables) [60].

Spatial autocorrelation may exist among these topographic factors, violating the
assumption of independence for common statistical practices [61]. In our case, various
sources might contribute to the spatial autocorrelation of the topographic factors, for
example, through hydrological and geomorphic processes associated with erosion and
deposition on the hillslope. We used a group k-fold cross-validation method to minimize
the influence of spatial autocorrelation while achieving the optimal quantile τ without
overfitting. The group k-fold cross-validation method divides data into k groups based on
a categorical variable; the cross-validation is repeated for k times, and for each iteration,
k-1 groups are used to train the model and the one group that is left out is used to validate
the model. The k results from the iterations are eventually averaged to yield an estimation.
In this study, a set of parallel rills that were developing on the hillslope comprised our
cross-validation dataset. To reduce spatial autocorrelation, we divided the entire dataset
into different rill basins based on the rill drainage points close to the foot of the hillslope.
We then ensured that the segments within the same rill basin cannot be included in both
the training and testing sets.

Since we included various topographic factors that may or may not share redundant
information, it is possible for our model to produce biased estimation unless variables
are selected in an objective fashion. We used the recursive feature elimination (RFE) with
external validation to select the fewest possible variables that preserve the best predictive
ability [62]. Sometimes, a backward feature selection approach is used for statistical models:
the model loads all variables at the beginning and the least important variable is dropped
at each iteration until the model performance converges at an optimal set of variables.
However, such an approach is susceptible to overfitting of the training dataset [63]. The
RFE approach accounts for such issues by enclosing the backward feature selection within
a resampling procedure. For each iteration, the data are partitioned into different training
and testing subsets, and the performance of the model is evaluated using the mean squared
error (MSE) of the testing subset. The variables included in the final model are determined
based on a consensus ranking from all iterations [62].

4. Results
4.1. DEM of Difference

Table 2 summarizes the areal and volumetric changes on the hillslope section during
the four periods in 2014–2015. Both erosion and deposition were observed at each period.
Overall, this hillslope section underwent intensive erosion with a total of 1.19 ± 0.46 m3

sediment eroded and 0.17 ± 0.08 m3 sediment deposited from December 2014 to December
2015. The net volume change is 1.02 ± 0.54 m3. The March–June period witnessed the
largest volume of erosion (0.38 ± 0.16 m3) followed by the September–December period
(0.36 ± 0.13 m3). The December 2014–March 2015 and the September–December periods
underwent the largest volume of deposition (0.05± 0.03 m3 and 0.05± 0.02 m3, separately).
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Table 2. Results of DoD analysis between DEMs surveyed between December 2014 to December 2015.

December
2014–March

2015

March
2015–June

2015

June 2015–
September

2015

September
2015–

December
2015

Total

Areal change
Total detectable

change (m2) 5.83 8.73 6.86 8.75 -

Total change
percentage (%) 3.76 5.63 4.42 5.65 -

Erosion (m2) 3.80 8.59 6.35 7.37 -
Deposition (m2) 2.03 0.14 0.52 1.38 -

Volumetric change
Erosion (m3) 0.18 ± 0.07 0.38 ± 0.16 0.27 ±0.10 0.36 ± 0.13 1.19 ± 0.46

Deposition (m3) 0.05 ± 0.03 0.03 ± 0.01 0.04 ± 0.02 0.05 ±0.02 0.17 ± 0.08
Net change (m3) 0.13 ± 0.10 0.35 ± 0.17 0.23 ± 0.12 0.31 ±0.15 1.02 ± 0.54

Figure 2 illustrates the spatial pattern of erosion and deposition on this hillslope
section during the four periods. Generally, the rills are more dynamic compared to interrill
areas, with the majority of the detectable changes occurring either within or in proximity to
the rills. The majority of the interrill areas are relatively stable with only a few detectable
“hotspots” of erosion or deposition.
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4.2. Correlation and Regression Analyses

Table 3 shows the results of Pearson’s correlations between the dependent variables
and independent variables. Both erosion and deposition are correlated with several in-



Remote Sens. 2022, 14, 1315 10 of 19

dependent variables, and many independent variables are correlated with one another.
High correlations are observed between some of the variables. For example, the correlation
coefficient between slope and the LS factor is 0.83, and the correlation between slope and
RI is 0.97. The LS factor is highly correlated with CA (0.73) and RI (0.84). The correlations
among independent variables might lead to biased estimation of coefficients and affect the
efficacy of the linear regression models.

Table 3. Results of Pearson’s correlation analysis.

Erosion Deposition Elevation Slope LS CA CD CosA SinA RD RI

Deposition −0.11
Elevation 0.38 ** −0.17 ***

Slope −0.30 *** 0.23 *** −0.36 ***
LS −0.37 *** 0.25 −0.50 ** 0.83 ***
CA −0.43 *** 0.31 ** −0.55 *** 0.53 *** 0.73 ***
CD 0.27 ** −0.12 −0.10 * −0.01 0.03 0.15 **

CosA 0.04 −0.09 * 0.01 −0.06 −0.07 −0.01 0.07
SinA 0.03 −0.09 * 0.01 −0.06 −0.07 −0.01 0.07 0.99 ***
RD −0.01 0.04 0.06 0.04 *** 0.25 ** 0.15 −0.07 ** −0.11 *** 0.10 ***
RI −0.31 *** 0.24 *** −0.37 *** 0.97 *** 0.84 *** 0.58 *** −0.02 ** −0.09 −0.08 0.04 **

TWI 0.02 ** 0.01 −0.07 *** −0.52 *** −0.05 0.00 0.10 0.00 0.00 0.31 *** −0.50 ***

* Significant at the 0.1 level (p < 0.1); ** significant at the 0.05 level (p < 0.05); *** significant at the 0.01 level
(p < 0.01).

We used RFE to select the fewest variables that could achieve the minimal MSE. Table 4
shows the results of the RFE. The erosion model and the deposition model achieved the
least MSEs with eight and nine variables, respectively. The variables in Table 4 are ranked
in correspondence to their importance to the model. In the erosion model, CA is the most
important variable. The model with only CA as the independent variable has a relatively
high MSE of 0.286. With more variables included in the model, the MSE gradually decreases
until it increases again. The second most important factor is slope, followed by CosA, CD,
RI, TWI, LS, and elevation. For the deposition model, CA is also of the highest importance,
followed by elevation, CD, CosA, TWI, LS, slope, RD, and RI.

Table 4. Change of MSE as more variables are included in the models.

Variable Rank
Erosion Deposition

Variable * MSE Variable * MSE

1 CA 0.286 CA 0.225
2 Slope 0.221 Elevation 0.179
3 CosA 0.208 CD 0.165
4 CD 0.197 CosA 0.159
5 RI 0.191 TWI 0.157
6 TWI 0.177 LS 0.152
7 LS 0.173 Slope 0.148
8 Elevation ** 0.171 RD 0.142
9 RD 0.172 RI ** 0.141
10 SinA 0.173 SinA 0.142

* Ranked based on their importance to the model in descending order. ** The minimum MSE produced by the model.

Figure 3 shows the comparison between the observed and predicted erosion/deposition
using OLS and QR models. The OLS models produced R2 values of 0.19 and 0.31 for ero-
sion and deposition, respectively. The QR models produce R2 values of 0.29 and 0.34,
respectively. The QR models have stronger explanatory capability compared to the OLS
models, possibly because the amounts of erosion and deposition do not follow a normal
distribution on the hillslope. The QR models also produced less-biased prediction at the
extreme values when the optimal quantile parameter was adopted. The predictions made
by the QR models showed a better agreement with the observed values compared to those
of the OLS models (the black and red dashed lines are closer in QR models).
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Tables 5–8 list the coefficients of RFE-selected topographic variables in the QR models
for erosion and deposition during the four scanned periods, respectively, with the quantile
(τ) that produces the smallest cross-validation MSE. Generally, CA is associated with higher
erosion and deposition, although its coefficient (absolute value) is relatively higher in the
erosion model, except for the period from June to September. A steeper slope is associated
with higher erosion and lower deposition. In our study area, the hillslope has been incised
with well-developed rills, and rill sidewalls are steeper than the interrill and rill floor areas.
During rainfall events, erosion would be more significant on rill sidewalls than interrill and
rill floor areas. The coefficient of slope, representing the impact of slope on the magnitude
of erosion/deposition, is the highest during the period of March to June. This is likely
because the soil surface is relatively loose at the beginning of this period after the winter
freeze–thaw cycles so that the hillslope is more vulnerable to erosion. Similar to slope, a
higher roughness is associated with higher deposition and lower erosion because rugged
terrain surface tends to dissipate flow power, reducing transport capacity. Higher elevation
leads to lower erosion and lower deposition, which is consistent with the field observation
that the areas closer to the top of the hillslope are generally more inactive compared to the
foot area. Higher CD values lead to less erosion and more deposition. On this hillslope,
areas of high CD values are usually where rills are most deeply incised, such as rill floors;
the deeper the rills grow, the more compact and less erodible materials (close to the bedrock)
are.
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Several other topographic factors affect erosion and deposition through their associ-
ations with soil moisture content. Our results suggest that a larger CosA leads to higher
erosion and lower deposition. CosA represents the aspect facing a north–south direction,
and a larger CosA is closer to north. North-facing areas are more likely have higher soil
moisture content in the Northern Hemisphere. These areas are easily saturated, leading to
the generation of more runoff during a rainfall event. Similarly, the areas with higher TWI
values have higher erosion and lower deposition because TWI estimates the likelihood of
water accumulation in an area with elevation differences [51].

Table 5. Coefficients of the QR models for erosion and deposition (December 2014–March 2015).

Erosion Model * (τ = 0.56, n = 322) Deposition Model (τ = 0.53, n = 297)

Variables Coefficient Std. Error p-Value Variables Coefficient Std. Error p-Value

constant −2.235 1.186 0.060 constant 16.454 2.903 0.000
CA −0.011 0.005 0.042 CA 0.010 0.002 0.000

Slope −0.322 0.090 0.000 Slope −0.025 0.013 0.065
CosA −0.367 0.116 0.002 CosA −0.726 0.213 0.001

RI 81.325 43.617 0.000 RI 95.151 12.201 0.000
CD 1.199 0.669 0.074 RD 0.036 0.027 0.185
TWI −0.115 0.055 0.035 CD 0.425 1.164 0.715
LS −0.012 0.005 0.021 TWI −0.056 0.042 0.188

Elevation 0.009 0.004 0.000 LS 0.068 0.228 0.767
Elevation −0.058 0.011 0.000

* Erosion values are represented by negative elevation change.

Table 6. Coefficients of the QR models for erosion and deposition (March–June 2015).

Erosion Model * (τ = 0.66, n = 255) Deposition Model (τ = 0.59, n = 302)

Variables Coefficient Std. Error p-Value Variables Coefficient Std. Error p-Value

constant 6.454 2.525 0.011 constant 3.098 1.328 0.019
CA −0.127 0.007 0.000 CA 0.011 0.002 0.000

Slope −0.356 0.160 0.000 Slope −0.227 0.085 0.000
CosA −0.798 0.337 0.019 CosA −0.142 0.115 0.143

RI 68.499 19.014 0.000 RI 68.773 56.161 0.216
CD 1.727 0.353 0.001 RD −0.099 0.022 0.000
TWI −0.967 0.451 0.033 CD 0.085 0.081 0.299
LS 1.956 1.018 0.056 TWI −2.020 0.239 0.000

Elevation 0.085 0.028 0.003 LS −3.699 0.447 0.000
Elevation −0.019 0.007 0.002

* Erosion values are represented by negative elevation change.

Table 7. Coefficients of the QR models for erosion and deposition (June–September 2015).

Erosion Model * (τ = 0.63, n = 341) Deposition Model (τ = 0.52, n = 169)

Variables Coefficient Std. Error p-Value Variables Coefficient Std. Error p-Value

constant −0.647 2.078 0.755 constant −1.816 4.472 0.685
CA −0.011 0.004 0.008 CA 0.015 0.006 0.000

Slope −0.012 0.007 0.113 Slope −0.210 0.059 0.000
CosA −0.124 0.049 0.012 CosA −0.705 0.091 0.000

RI 88.795 38.530 0.022 RI 17.169 14.803 0.256
CD 1.409 1.302 0.280 RD −0.057 0.041 0.162
TWI −0.039 0.016 0.015 CD 0.919 0.700 0.000
LS −0.305 0.027 0.000 TWI −0.759 0.237 0.002

Elevation 0.004 0.006 0.481 LS 1.565 0.408 0.000
Elevation −0.144 0.044 0.000

* Erosion values are represented by negative elevation change.
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Table 8. Coefficients of the QR models for erosion and deposition (September–December 2015).

Erosion Model * (τ = 0.58, n = 290) Deposition Model (τ = 0.66, n = 149)

Variables Coefficient Std. Error p-Value Variables Coefficient Std. Error p-Value

constant −5.791 1.452 0.000 constant −11.040 4.232 0.010
CA −0.015 0.002 0.000 CA 0.021 0.003 0.000

Slope −0.049 0.012 0.000 Slope −0.017 0.033 0.607
CosA −0.177 0.102 0.083 CosA −0.265 0.147 0.073

RI 95.925 26.975 0.000 RI 42.273 40.107 0.300
CD 0.034 0.014 0.012 RD −0.009 0.022 0.680
TWI −0.042 0.083 0.017 CD 1.553 1.065 0.147
LS −0.429 0.189 0.022 TWI −0.092 0.093 0.322

Elevation 0.020 0.006 0.000 LS 0.408 3.910 0.917
Elevation 0.047 0.018 0.009

* Erosion values are represented by negative elevation change.

5. Discussion
5.1. Seasonal Variation of Erosion and Deposition

The patterns of erosion and deposition are related to the different precipitation and
temperature conditions during the four scan periods. Less erosion and more deposition
occurred from December 2014 to March 2015 compared to other periods. This is likely
caused by the relatively limited transport capacity during this period. Most days of this
period had temperatures below 0 ◦C at this site, and the observed topographic change
might be driven by the freeze–thaw process. Figure 4 illustrates the changes in daily high
temperature, low temperature, precipitation, and snow at Lenoir City, TN, USA (35.79◦N,
84.26◦W, www.usclimatedata.com, accessed on 5 March 2022), approximately 18 km from
the study site. The daily low temperature dropped below 0 ◦C starting late October and
fluctuated above and below 0 ◦C for most days of November, December, and January.
Meanwhile, precipitation events may keep the soil moist, allowing for freeze–thaw cycles
with the diurnal variation of the temperature. Barnes et al. [64] found that a thin soil layer
on the surface can be heaved by ice crystals formed during freezing seasons, and these
crystals lead to failures and within-channel deposition during thawing. The mass failures
along the sidewalls created by freeze–thaw cycles may widen cross-sections, reducing
flow velocities within the rills [65]. The DoD result during the first period suggests that
limited transport capacity created more in-channel deposition in the first period, leading to
excessive sediment supply in the subsequent period (March to June 2015), shown as the
high erosion rate.

As listed in Tables 5–8 and shown in Figure 5, the coefficients of the same topographic
factor are different in the four survey periods. Note that negative coefficients represent
positive influences, while positive coefficients represent negative influences for the topo-
graphic factors in the erosion models because erosion values are represented by negative
elevation changes. The erosion models show that CA, slope, CosA, and TWI have the
highest positive influences, whereas CD, LS, and elevation show the highest negative influ-
ences during the March–June period in these four periods. The highest positive or negative
influences of these factors during the March–June period are likely associated with the
excessive sediment supply following the winter period. Because of the excessive sediment
supply, all factors related to surface flow (CA, LS, elevation, and slope), soil moisture
(TWI and CosA), and erodibility (CD) actively act on sediment erosion and transportation
during the March–June period. In contrast, the decreasing influences of these factors in
the following periods likely reflect the limited sediment supply on hillslope after eroding
and transporting the excessive sediments during the March–June period. In addition to the
spring period (March–June 2015), our results also indicate that slope has a higher influence
during the winter (December 2014–March 2015) period than the other two periods. This
might suggest that slope, at the microtopographic scale, is strongly associated with erosion
during freeze–thaw cycles as well.

www.usclimatedata.com
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For the deposition models, CA has the greatest influence during the September–
December 2015 period and the least influence during the December 2014–March 2015
period. CosA and TWI are both negatively related to deposition in all deposition models,
with the highest negative influences in the March–June 2015 period. These two factors are
associated with soil moisture, and sediments are more erodible or transportable in higher
soil moisture areas when sediment supply is excessive, consistent with the results that these
two factors have the highest impacts on the erosion models during the same period. Slope
had higher negative impacts during March–June 2015 (−0.227) and June–September 2015
(−0.210) periods, suggesting that the areas of higher slope gradients (usually rill headwalls
and sidewalls) have less chance of deposition. RI, associated with the flow friction imposed
by surface variation, has the highest influence on deposition during the winter period
(December 2014–March 2015). This is likely caused by the freeze–thaw cycles, which create
more surface irregularity and friction to surface flow, leading to more sediment deposition.

5.2. Factors Controlling Erosion and Deposition

Microtopographic factors show varied importance regarding their impact on erosion
and deposition at different scales. CA is the most important variable in all models; both
high erosion and deposition occur on the areas with high CA values, reflecting the influence
of relative location on the hillslope and within a rill basin. High erosion and low deposition
occur on the areas with larger TWI values and on north-facing aspects (larger CosA). Both
TWI and aspect are related to soil moisture content, which is likely lower on the areas with
lower TWI or CosA (south-facing) values. During a rainfall event, relatively dry soil can
absorb more rainfall, postponing and reducing runoff generation. CD is another important
factor in most models. CD represents the relative location along the rill cross-sectional
profile. A larger CD value suggests low erosion and high deposition in the models. This
is because rills have been well developed on the hillslope, and rill floors (high CD areas)
have reached a compact layer where the parent materials are not fully decomposed. This
compact layer is less erodible than the topsoil of the hillslope. On the other hand, sediments
eroded from steep rill sidewalls are likely deposited, at least temporarily, on rill floors
where CD is relatively high.

5.3. Limitations of This Work

The complex nature of the erosion and deposition processes introduces challenges to
quantifying sediment dynamics at a hillslope scale using grid-based approaches [31,66,67].
The choice of surveying hardware, software, and data processing and analytical methods
should be in correspondence with the size of the study area, the features to be monitored,
the acceptable level of error, and other factors, such as the frequency of data acquisition and
logistic availabilities [10]. TLS is useful in our study by allowing for rapid survey of the
hillslope surface without direct interference of the erosional and depositional processes, and
the obtained high-resolution topographic data enable the differentiation and quantification
of the spatially varied erosion and deposition. However, limited by the uncertainty from
various sources, it is still difficult to detect the microtopographic changes on interrill areas.

A closer field examination shows that the redistribution of sediment in our study area
is further complicated by other factors, including surface armoring and crusting (Figure 6).
The erosive power gradually exhausts relatively finer particles (e.g., clay, silt, and fine sand),
leaving behind coarser materials, such as some pebbles (Figure 6a). Although our model
considered factors such as roughness and TWI as proxies of soil properties, including
particle size, organic matter, and soil moisture, these factors are only approximations of the
ground truth at best. In situ measurements are impossible as mass sampling at such fine
resolution can be expensive, time-consuming, and would inevitably disturb the sediment
on the hillslope.
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Other factors, such as the pebbles commonly observed on the rill floor, also likely 
affect the erosion/deposition patterns by altering surface hydrology. The pebbles help pre-
vent raindrop splash and sheet erosion on interrill areas by reducing raindrop impact and 
dissipating flow energy; they also protect rill floors from further entrenchment. The in-
crease in roughness because of the pebbles reduces the transport capacity, leading to dep-
osition in the rills. We also observed surface crusting on the hillslope (Figure 6b), which 
can affect raindrop impact on interrill areas [68]. The sporadic crusting may create varia-
tion in erodibility between different interrill areas. It is also possible that microorganisms 
(worms) or animals may disturb the site between surveys, causing potential errors. In ad-
dition, the erosion and deposition processes are also affected by rainfall characteristics, 
such as intensity and duration. More work is needed in the future to examine the impacts 
of rainfall characteristics on hillslope erosion and deposition. 

 

Figure 6. (a) Surface armoring at the study site, with pebbles covering the floor of rills; (b) surface
crusting on the interrill areas.

Other factors, such as the pebbles commonly observed on the rill floor, also likely
affect the erosion/deposition patterns by altering surface hydrology. The pebbles help
prevent raindrop splash and sheet erosion on interrill areas by reducing raindrop impact
and dissipating flow energy; they also protect rill floors from further entrenchment. The
increase in roughness because of the pebbles reduces the transport capacity, leading to
deposition in the rills. We also observed surface crusting on the hillslope (Figure 6b), which
can affect raindrop impact on interrill areas [68]. The sporadic crusting may create variation
in erodibility between different interrill areas. It is also possible that microorganisms
(worms) or animals may disturb the site between surveys, causing potential errors. In
addition, the erosion and deposition processes are also affected by rainfall characteristics,
such as intensity and duration. More work is needed in the future to examine the impacts
of rainfall characteristics on hillslope erosion and deposition.

6. Conclusions

This study examined the influences of microtopographic factors on sediment dynamics
on a rilled hillslope in eastern Tennessee, USA, based on linear regression models. Generally,
the QR model showed a stronger predictive ability compared to the OLS model, with 29%
of the variability for erosion and 34% for deposition explained by the microtopographic
variables. The coefficients of nine factors (contributing area, roughness, slope length,
gradient, rill density, aspect, TWI, LS factor, and channel depth) reflect the level of their
influences on the prediction of erosion or deposition in the QR models. A larger CA
leads to higher erosion and deposition. A steeper slope increases erosion and reduces
deposition. Roughness is positively related to deposition and negatively related to erosion.
Rill floors with larger depth values tend to have less erosion and more deposition. The
cosine component of the aspect is associated with higher erosion and lower deposition,
possibly due to higher soil moisture on the north-facing aspects with lower solar insolation
received. TWI, another index positively associated with soil moisture, is positively related
to erosion, and negatively related to deposition. The influences of each topographic factor
on erosion and deposition vary in the four periods. The highest positive or negative
influences of most topographic factors on erosion during spring are likely associated with
the excessive sediment supply accumulated in winter. Then, after eroding and transporting
the excessive sediments in spring, the influences of these factors decrease in the following
summer and fall periods. The influences of these topographic factors on deposition are
mostly consistent with (opposite to) the influences on erosion.
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