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Abstract: Crop type identification is the initial stage and an important part of the agricultural
monitoring system. It is well known that synthetic aperture radar (SAR) Sentinel-1A imagery provides
a reliable data source for crop type identification. However, a single-temporal SAR image does not
contain enough features, and the unique physical characteristics of radar images are relatively lacking,
which limits its potential in crop mapping. In addition, current methods may not be applicable for
time-series SAR data. To address the above issues, a new crop type identification method was
proposed. Specifically, a farmland mask was firstly generated by the object Markov random field
(OMRF) model to remove the interference of non-farmland factors. Then, the features of the standard
backscatter coefficient, Sigma-naught (σ0), and the normalized backscatter coefficient by the incident
angle, Gamma-naught (γ0), were extracted for each type of crop, and the optimal feature combination
was found from time-series SAR images by means of Jeffries-Matusita (J-M) distance analysis. Finally,
to make efficient utilization of optimal multi-temporal feature combination, a new network, the
convolutional-autoencoder neural network (C-AENN), was developed for the crop type identification
task. In order to prove the effectiveness of the method, several classical machine learning methods
such as support vector machine (SVM), random forest (RF), etc., and deep learning methods such
as one dimensional convolutional neural network (1D-CNN) and stacked auto-encoder (SAE), etc.,
were used for comparison. In terms of quantitative assessment, the proposed method achieved the
highest accuracy, with a macro-F1 score of 0.9825, an overall accuracy (OA) score of 0.9794, and a
Kappa coefficient (Kappa) score of 0.9705. In terms of qualitative assessment, four typical regions
were chosen for intuitive comparison with the sample maps, and the identification result covering
the study area was compared with a contemporaneous optical image, which indicated the high
accuracy of the proposed method. In short, this study enables the effective identification of crop
types, which demonstrates the importance of multi-temporal radar images in feature combination
and the necessity of deep learning networks to extract complex features.

Keywords: crop type identification; time-series images; deep learning; synthetic aperture radar
(SAR); J-M distance; feature combination

1. Introduction

With the intensive development of agricultural production modes in China, smart agri-
culture has emerged [1]. There is an urgent need for large-scale and efficient monitoring of
crops [2]. Due to remote sensing technology having the benefit of objectivity and economy,
its application in the agricultural field is continuously expanding and deepening [3,4]. At
present, agricultural remote sensing applications consist of crop type identification [5], yield
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estimation [6], soil moisture inversion [7], growth and phenological phase monitoring [8,9],
etc. Among them, crop type identification is a pre-requisite work for national govern-
ment departments to grasp the status of crop production, which is of great significance to
agricultural management.

Crop type identification by remote sensing is usually carried out by visual interpreta-
tion [10] or computer techniques (supervised and unsupervised classification methods [11]).
Currently, the employment of optical images for crop type identification has been achieved
with good results [12,13]. However, optical remote sensing is susceptible to interference
from weather [14,15]. Cloudy and rainy days often occur during the key growing stage of
crops. In this case, it is difficult to obtain usable images, which affects the accuracy and
timeliness of crop type identification. Fortunately, microwave remote sensing is playing an
increasingly important role [16]. synthetic aperture radar (SAR) data can be obtained all
-day and in all -weather. Not only can the surface information of the crops be captured, but
the leaves, stems, and branches of the crops can be reflected in some way [17]. Moreover,
Sentinel-1A images have good spatial and temporal resolution [18], which ensures the
reliability of the data and shows potential value in crop type identification. Therefore,
Sentinel-1A can be selected as the main data source for this study.

Up to now, scholars have attempted two major directions to improve the accuracy of
crop type identification using SAR data. At first, time-series images are considered available
to complement the necessary features for crop type identification [19,20]. Second, mainstream
deep learning technology is adopted to maximize the utilization of features [21,22].

Due to the complexity and similarity of crop types, the spatial resolution of single-
temporal SAR data is limited [23], and it is difficult to identify crop types effectively. On
the other hand, multi-temporal SAR images can be used to improve the accuracy of crop
type identification [24,25]. It has been shown that crop development over time can lead to
changes in the backscatter coefficient of SAR images [26]. The multi-temporal SAR images
are richer in features, which cover different stages of the crop. Xiao et al. [27] applied the
subspace K-nearest neighbor (KNN) classifier to the Sentinel-1 images of the crop growing
season, which indicated the importance of the time-series SAR data for crop type identi-
fication applications in rural China. Arias et al. [28] extracted polarimetric features (VH,
VV, and VH/VV) from time-series Sentinel-1 images and used supervised classification
techniques for crop classification. The results showed that the combination of time-series
features provided accurate results, with an overall accuracy of over 70%. However, these
studies usually only consider the standard backscatter coefficient, Sigma-naught (σ0), in
the SAR image [29,30], and ignore the influence of the normalized backscatter coefficient
by the incident angle, Gamma-naught (γ0), on crop type identification. It has been proved
that incident angle is an important factor affecting SAR backscattering intensity, and the γ0
can be used to capture the backscatter process of the sensor signal well [31].

The abundance of features makes the processing and analysis of SAR images compli-
cated in the agricultural application field. In order to make full use of the multi-temporal
information of SAR images, various methods have been developed. Classifiers such as
support vector machine (SVM) [32], random forest (RF) [33] and KNN [34] have been
proven to be very helpful. These methods have strong versatility, but the feature extraction
ability is limited. In recent years, the deep learning method [35,36] is used as an ensemble
framework, which can learn directly from data and conduct classification in an end-to-
end manner [37]. Ndikumana et al. [38] proposed a recurrent neural network (RNN) for
agricultural land cover classification, which demonstrated the effectiveness of long short-
term memory networks (LSTMs) and gated recurrent unit (GRU) for processing sequence
features. Zhang et al. [39] employed a new crop discrimination network with multi-scale
features (MSCDN) to improve crop classification ability, with an overall accuracy rate of
up to 99%. The application of deep learning methods have obtained favorable results.
Nevertheless, most of these networks use only one model framework, which potentially
restricts their feature mining capabilities. It is still a challenge to develop a network that
can efficiently exploit features.
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This study aims to develop a deep learning method to improve the accuracy of
crop type identification using Sentinel-1A SAR images. First of all, the object Markov
random field (OMRF) model was applied to produce a farmland mask, removing non-
farmland areas. Then, the backscatter coefficients feature σ0 and γ0 were extracted for
each type of crop, and Jeffries-Matusita (J-M) distance analysis was carried out to obtain
the optimal combination of identification features. Finally, the convolutional-autoencoder
neural network (C-AENN) was proposed for learning valid features automatically on a
given crop type identification task. The main contributions of this paper are:

1. Extracting of backscatter coefficient σ0 and γ0 features from the time-series Sentinel-
1A images and combining them together, which fully exploits the potential of the
time-series Sentinel-1A images in crop type identification.

2. Aiming at time-series SAR data, an effective crop type identification classifier C-AENN
is proposed. It has outstanding feature learning and representation capabilities, which
improves identification accuracy.

The rest of this paper is organized as follows. Section 2 describes the study area and
data. Section 3 introduces the method of crop type identification in detail. Section 4 shows
the results of identification. Section 5 presents the conclusion.

2. Study Area and Data
2.1. Study Area

The study area is Kaifeng City (113◦52′15′′E–115◦15′42′′E, 34◦11′45′′N–35◦01′20′′N),
Henan Province, China. As shown in Figure 1, it is situated in the center of the Henan
Province map, adjacent to the provincial capital, which has an area of about 6266 km2.
The climate in Kaifeng is a continental monsoon, with an average annual temperature of
14.52 ◦C and an annual rainfall of 635 mm. The rainfall usually concentrates in July and
August each year. In addition, Kaifeng has become an important base for agricultural
production. It is located in the plain, and the soil is mostly clay, loess, and sandy soil, which
is suitable for crop cultivation. Farmers usually adopt a two-crop-a-year rotation farming
mode, one stage is from June to October, defined as stage I. The other stage is from October
to June of the following year. This research focuses on stage I. The crops in this period are
mainly corn, peanut, and a small amount of rice.
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2.2. Data and Preprocessing
2.2.1. Sentinel-1A Data and Preprocessing

Sentinel-1A carries an imaging mission all-day and in all-weather, which is used for
observing land and ocean. In particular, Sentinel-1A was launched in April 2014. It is
an active microwave remote sensing satellite and the revisit period is 12 days [40]. The
specific parameters of the data are shown in Table 1. The SAR image on 17 March 2021
was selected for farmland extraction. At that time, the characteristics of farmland and
non-farmland (buildings, water) were quite different. Therefore, this study is conducted to
create a farmland mask firstly to remove the non-farmland areas. SAR images from 3 July
2021 to 1 September 2021 were used for crop type identification, which almost covered the
crop growth cycle (stage I).

The Sentinel-1A data was preprocessed based on the Sentinel Application Platform
(SNAP) software provided by the European Space Agency (ESA). The pre-processing mainly
consists of: (1) Orbit file application. (2) Thermal noise removal. (3) Calibration. The pixel
value in the image was returned in the following form: σ0 band and γ0 band. (4) Mosaicking.
Multiple images covering the study area were mosaicked together. (5) Speckle filtering.
Refined Lee filtering (filter window 7 pixels × 7 pixels) operation was used to reduce the
impact of coherent speckle noise. (6) Range-Doppler terrain correction. With the help
of the Shuttle Radar Topography Mission (SRTM), precise geographic information was
given. (7) Conversion of the backscatter coefficient from linear to dB scale. (8) Study
area extraction.

Table 1. Parameters for Sentinel-1A.

Sentinel-1A Parameters Sentinel-1A

Product type GRD
Imaging mode IW

Polarization VV
VH

Resolution 10 × 10 m
Band C

Pass direction Ascending

Dates 17 March 2021, 3 July 2021, 15 July 2021, 27 July 2021,
8 August 2021, 20 August 2021, 1 September 2021

2.2.2. Ground Truth Data and Preprocessing

In order to obtain a comprehensive and accurate view of the crop planting structure in
the study area, the local Department of Agriculture and Rural Affairs was visited to obtain a
general distribution of crops. A field survey was carried out from July to September 2021 to
collect and record sample data of crops in the study area. Due to the family cropping mode
of the small-scale peasants in China, the distribution of parcels is relatively fragmented
and there are usually multiple crops in one parcel, which increases the difficulty of sample
collection. Based on the actual complexity of the situation, parcels with a larger area were
selected for sample collection. A Global Positioning System (GPS) device was used to locate
the four corners of the parcel to ensure that the ground data was reasonable.

The sample of major crops was converted into shapefile (SHP) files in Geographic
Information System (ArcGIS) software, which provided ground data support for crop
type identification. The ground truth data includes the types of main crops and their
geographic distribution information, as shown in Figure 2. The crop types in the study area
were classified into four categories: peanut, maize, rice, and others. The type of others is
mostly vegetable mixed planting. Eventually, the 109 typical parcels (158,223 pixels) were
selected as samples, including 36 peanuts, 45 corn, 14 rice, and 14 others. In this study,
50% (79,111 pixels) of the samples were randomly selected as training samples and the
remaining 50% (79,112 pixels) as test samples. The parameters of the samples are illustrated
in Table 2.
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Table 2. Ground truth samples for major crop types in the study area.

Label Type Number of Parcels Total Number of Pixels Area (km2) Number of Training Samples Number of Test Samples

1 Peanut 36 30,394 2.51 15,056 15,338
2 Corn 45 68,767 5.73 34,529 34,238
3 Rice 14 39,113 3.22 19,721 19,392
4 Others 14 19,949 1.67 9805 10,144

Total 109 158,223 13.13 79,111 79,112

2.2.3. Optical Reference Data and Preprocessing

Due to the difficulty of obtaining ground truth data covering the entire study area,
Sentinel-2A is used as reference data in this study to evaluate the relative accuracy of
the crop type identification results qualitatively. Sentinel-2A is tasked with multispectral
high-resolution imaging. Its short-wave and near-infrared bands are critical for monitoring
crops, and the spectral characteristics of its bands are shown in Table 3. Sentinel-2A images
possess good resolvability, however, images can only be obtained under cloudless and
rainless conditions. Affected by the weather, only one Sentinel-2A image (25 August
2021) was available during the study period, which covered the study area with relatively
little cloudiness.

Sentinel-2A data pre-processing mainly consists: (1) Resampling. The images were re-
sampled to a uniform resolution of 10 m in all bands. (2) Layer stacking. Band combinations
were employed to better explain the features in an image. By using band combinations,
specific information in the image can be extracted. (3) Mosaicking. (4) Study area extraction.

Table 3. Spectral description for optical reference data.

Sentinel-2A Bands Sentinel-2A Spectral Description

Band 1 Coastal aerosol
Band 2 Blue
Band 3 Green
Band 4 Red
Band 5 Red-edge 1
Band 6 Red-edge 2
Band 7 Red-edge 3
Band 8 NIR-1

Band 8A NIR-2
Band 9 Water vapor

Band 10 SWIR-cirrus
Band 11 SWIR-1
Band 12 SWIR-2

Dates 25 August 2021
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3. Methodology
3.1. Overview

The flow chart of the proposed method is presented in Figure 3. After the data
acquisition and preprocessing, the crop type identification method was mainly divided
into 3 steps. In step 1, the farmland areas were first extracted by the OMRF model in
order to exclude the interference of non-farmland factors. In step 2, the backward scatter
features σ0 and γ0 of each crop were extracted. By analyzing the J-M distances of various
crop samples under different time phase conditions, the optimal feature combination was
selected, which can improve identification accuracy and efficiency. In step 3, a novel
classifier, C-AENN, was developed for the generation of the crop type identification model.
It can efficiently mine useful features. At the same time, the classic machine learning
methods SVM, RF, KNN, and neural network methods artificial neural network (ANN),
one dimensional convolutional neural network (1D-CNN), stacked auto-encoder (SAE)
were used for comparison. At last, the identification results of the model were evaluated
quantitatively and qualitatively.
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3.2. Crop Type Identification
3.2.1. Farmland Extraction

Since the backscatter features of crops at some growth stages may be similar to those
of non-farm features, it may cause confusion. Therefore, this study first carried out the
extraction of farmland areas. For example, in the early stage of crop sowing, some crops and
buildings have similar backscatter features, which makes them difficult to be distinguished.
Removing the non-farmland regions in advance is beneficial to avoid the interference of
other ground objects on the identification result of crop types [41].

This research first selected a SAR image with a large difference between farmland
and non-farmland features, and applied the OMRF [42] model to classify the image into
buildings, water, and farmland. The OMRF model takes full account of the spatial contex-
tual information of pixels in the image, which has a high resistance to noise. After that,
buildings and water were removed and farmland was retained.

In detail, the OMRF model uses basic segmentation methods, such as simple linear
iterative clustering (SLIC), mean shift (MS), etc., to segment a given SAR image into several
over-segmented regions, firstly, which are denoted by R = {Ri|i = 1, 2, · · · , k}. Each Ri is
an over-segmented region, and k is the total number of over-segmented regions. These
regions are then used to build a regional adjacency graph (RAG).

RAG consists of two random fields, the label field x = {xi|i = 1, 2, · · · , k} represents
the category of each Ri, and the feature field y = {yi|i = 1, 2, · · · , k} represents the average
value of each Ri. According to the maximum a posteriori (MAP) criterion and Bayesian
formulation, the classification problem of the SAR image can be solved by finding the best
result x̂ using the posterior probability P(x|y), which is shown in Equation (1).

x̂ = arg max
x

P(x|y) = arg max
x

P(y|x)P(x)
P(y)

= arg max
x

P(y|x)P(x) (1)

Then the solution of x̂ can be converted into an energy optimal problem expressed
by Equation (2). E(y|x) is the conditional energy and E(x) is the prior energy. Finally, the
best classification result x̂ is found by using the optimization algorithm iterated conditional
mode (ICM).

x̂ = arg min
x
{− ln P(y|x)− ln P(x)} = arg min

x
{E(y|x) + E(x)} (2)

3.2.2. Feature Extraction and J-M Distance Analysis

The backscatter coefficients σ0 and γ0 of each crop sample were extracted from SAR im-
ages. In order to find the optimum feature combination for crop identification, J-M distances
between various crop samples were calculated under different time-phased conditions.

Based on the conditional probability theory, the J-M distance is employed to calculate
the separability of sample characteristics [43], which is illustrated in Equation (3). It is
a useful tool to evaluate whether the sample characteristics are qualified. The overall
variation range of the J-M distance value is 0–2. When the value exceeds 1.9, it indicates
that the selected sample features have good separability. When the value is less than 1.8,
it indicates that the selected sample features are moderately separable. However, if the
value is less than 1, it is considered that the two types of samples are not separable [44].
Depending on the analysis, the optimal combination of features can be obtained:

Dij =

{∫
x

[√
P(x/wi)−

√
P(x/wj)

]2
dx

}0.5

(3)

where Dij represents the separability of class i and class j. P(x/wi) P(x/wj) are the
conditional probability densities of the feature x under class i and class j, respectively.



Remote Sens. 2022, 14, 1379 8 of 24

3.2.3. C-AENN Classifier

In order to effectively utilize the optimal feature combination, the classifier C-AENN
was built to obtain the crop type identification model. The structure of C-AENN is shown
in Figure 4, which consists of three main components: 1D-CNN, SAE, and the Softmax
classification layer. CNN [45,46] and SAE [47] are the more widely used methods in deep
learning, which are proven to be effective for feature mining and representation [48]. The
C-AENN classifier proposed in this paper attempts to combine these two deep learning
models to explore their classification capabilities. Specifically, the 1D-CNN model is used to
perform feature extraction on the original optimal identification features. Then, the features
extracted by 1D-CNN are used as the input of SAE, and further feature mining work is
performed to obtain new feature expressions.

In 1D-CNN, three convolutional filters were set up. Multilayer convolution can extract
complex features and the relationships which are embedded in the preceding and following
sequences. After the convolution layer, the maximum pool and batch normalization layers
followed, respectively, which can reduce the output dimensionality and improve network
generalization capabilities. At last, a flatten layer was applied to convert multi-dimensional
data into one-dimensional data. In SAE, the features extracted by the 1D-CNN were fed into
the encoder, and then they were compressed into a latent space representation. Afterwards,
the decoder aimed to reconstruct the space representation, which mapped the feature
vectors back to the SAE input space size. The number of nodes in each layer of SAE was set
to 128, 64, 32, 16, 32, 64 and 128, respectively. Finally, the extracted features were fed into
the Softmax layer for classification.
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In brief, the C-AENN classifier fused two network frameworks, 1D-CNN and SAE.
1D-CNN was used to extract relevant temporal features from time-series SAR data. SAE
projected the feature to a lower-dimensional latent space and then attempted to reproduce
its original input. The process used supervised learning to discover internal correlations
in the time-series feature dataset and extract as much useful information as possible.
Compared with using 1D-CNN or SAE alone, C-AENN can retain and obtain a better
representation of SAR data.

3.2.4. Other Classifier

Several existing classifiers were used to compare the proposed methods, for example,
the classical machine learning methods SVM, RF, and KNN, and the neural network
methods ANN, 1D-CNN, and SAE. The hyperparameters of the SVM, RF, KNN, and ANN
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are listed in Table 4. The structures of the 1D-CNN and SAE are shown in Figure 4. These
two networks were used separately to test the effects.

Table 4. Hyperparameters of the classifier.

Classifier Parameters Description Value

SVM
C Penalty coefficient 2

Kernel Kernel function Rbf
RF N_estimators Number of decision trees 550

KNN N_neighbors Number of neighboring points 20
ANN Hidden_layer_sizes Number of neurons in the hidden layer (20, 20, 20, 20)

3.3. Model Accuracy Evaluation

For the purpose of assessing the accuracy of different classifiers, the identification
results were evaluated both quantitatively and qualitatively.

For the quantitative evaluation, precision, recall, F1-score, macro-F1, overall accuracy
(OA), and Kappa coefficient (Kappa) are used. The calculations of them are illustrated in
Equations (4)–(10), respectively. Higher values indicate better results. The definitions of
true positive (TP), false positive (FP), false negative (FN), and true negative (TN) in the
formulas are given in the confusion matrix, which is demonstrated in Table 5. A, B are the
assumed categories.

Table 5. Confusion matrix.

Predicted Label
Type A B

Ground truth
A True positive (TP) False negative (FN)
B False positive (FP) True negative (TN)

• Precision;

precision =
TP

TP + FP
(4)

• Recall;

recall =
TP

TP + FN
(5)

• F1-score;

F1-score =
2× precision× recall

precision + recall
(6)

• Macro-F1;

macro-F1 = Average(F1-score) (7)

• OA;

OA =
TP + TN

TP + TN + FP + FN
(8)

• Kappa.

Kappa =
OA− pe

1− pe
(9)
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pe =
(TP + FN)× (FP + TP) + (FP + TN)× (FN + TN)

(FP + TN + TP + FN)2 (10)

For the qualitative assessment, two approaches were chosen. One approach is to
make a visual comparison between the sample maps and the result maps of different
classifiers, and the other is to compare the identification result covering the study area with
an optical image of the same period. Both quantitative and qualitative evaluation results
could support the validity of the proposed methodology.

4. Results
4.1. Temporal Profiles of the Sentinel-1A Backscatter Coefficient

The geometric and physical characteristics of the irradiated object can be reflected to
some extent, by the backscatter coefficients in the image, assisting in the identification of
the crop types. Figure 5 summarizes the temporal profiles for the four crop types, with each
point being the average backscatter coefficient for each crop type sample, which provides
temporal dynamic information about crops.
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Several vital points of information can be seen in Figure 5, which is concluded in two
dimensions.

1. The necessity of combining VV polarization and VH polarization.

Overall, due to long-term coverage by water layers, rice always exhibited a low
backscattering coefficient [49]. In contrast, peanut had a high backscatter coefficient. More-
over, the backscatter coefficient of maize and the “others” category intersected several
times, which meant that it was more difficult to distinguish them. According to the fact that
the average backscatter coefficient had no intersection with other crops, the peanut was
relatively easier to distinguish from other crops under VV polarization, and rice showed a
good separability under VH polarization. Furthermore, in July, the stems of corn elongated
upward rapidly, so it showed greater variation in the backscatter coefficient under VH
polarization. This polarization mode is more sensitive to crop structure changes [50]. While
in August, rice was in the filling stage and required a lot of water. VV polarization is
very sensitive to water [50]. Thus, rice varied more under the VV polarization mode. In
summary, necessary information to differentiate crops was provided by both polarization
modes. To better recognize crops, VV and VH polarizations were combined in the study.

2. The criticality of time-series features.

It can be seen that the trends of the backscatter coefficients σ0 and γ0 over time were
generally consistent and the average backscatter coefficient σ0 was 1 dB lower than the
γ0 for all crops. At the beginning of July, peanuts, corn, and rice had just been sown and
were in the early stages of growth. The radar response was mainly surface scattering from
rough soils, tillage conditions, and soil moisture content. From July to August, crops were
in the peak growing season, and the backscatter coefficients gradually increased. They both
reached a maximum on 27 July 2021. In August, the backscatter coefficients of crops all
decreased, which may be related to variations in crop growth and soil water content. As a
whole, changes in peanuts and the “others” category were basically flat. The backscatter
coefficients of corn and rice were relatively variable, which indicated the necessity of using
time-series images to distinguish them.

4.2. Farmland Mask

The extraction result of the farmland mask is shown in Figure 6. The SAR image on
17 March 2021 was made into a mask by OMRF, as shown in Figure 6a,b. The mask was
applied to the time-series SAR images during the study period, as shown in Figure 6c.
Subsequent studies were conducted only in the farmland area.
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4.3. J-M Distance Analysis of Features

The backscatter coefficients σ0 and γ0 of peanuts, corn, rice, and other crops were
extracted, which showed different separability under different time-phase conditions. This
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paper performed J-M distance calculations for samples based on a single-temporal image
and multi-temporal images.

Table 6 gives the J-M distances for various crop samples under a single time-temporal
image. The maximum J-M distance between each of the two crops was bolded. Based on the
previous backscatter coefficient analysis, the VV polarization and VH polarization features
were combined, so that σ0 in Table 6 represents σ0 VV and σ0 VH, and γ0 represents
γ0 VV and γ0 VH. It can be seen that the J-M distances for σ0 and γ0 features were not
significantly different and the values were all low, essentially below 1.0, which indicated
a large similarity of samples that were not separable. Therefore, σ0 and γ0 features were
considered in combination to explore crops divisibility. The results are shown in Table 7.
The symbol σ0-γ0 represents four features, which are σ0 VV, σ0 VH, γ0 VV and γ0 VH. It is
clearly shown that the combination of σ0 and γ0 features was effective in improving the
J-M distance values. The J-M distances between some crops already exceeded 1.0, but there
was still much space for improvement.

Table 6. J-M distances for crops σ0 and γ0 features based on a single-temporal image.

J-M
Distance

3 July 2021 15 July 2021 27 July 2021 8 August 2021 20 August 2021 1 September 2021
σ0 γ0 σ0 γ0 σ0 γ0 σ0 γ0 σ0 γ0 σ0 γ0

Peanut–Corn 0.3179 0.3359 0.1189 0.1016 0.1586 0.1549 0.3814 0.3970 0.3652 0.3763 0.2305 0.2499
Peanut–Rice 0.3056 0.3218 0.3519 0.3529 0.1597 0.1600 0.6257 0.6459 0.8617 0.8822 0.7436 1.2088

Peanut–Others 0.1346 0.1430 0.1430 0.1411 0.4775 0.4662 0.2796 0.3043 0.2074 0.2237 0.1694 0.2160
Corn–Rice 0.1021 0.1028 0.2347 0.2356 0.0803 0.0839 0.1675 0.1763 0.3665 0.3834 0.4129 0.8187

Corn–Others 0.1233 0.1251 0.0064 0.0073 0.1337 0.1291 0.0209 0.0204 0.0349 0.0314 0.0175 0.0375
Rice–Others 0.2512 0.2575 0.2372 0.2375 0.3051 0.3079 0.1812 0.1798 0.4727 0.4814 0.4224 0.7027

Table 7. J-M distances for crops σ0 and γ0 combination features based on a single-temporal image.

J-M
Distance

3 July 2021 15 July 2021 27 July 2021 8 August 2021 20 August 2021 1 September 2021
σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0

Peanut–Corn 0.9114 0.1789 0.5301 0.9521 0.8515 0.3528
Peanut–Rice 0.8095 0.4583 1.0426 1.0700 1.2081 1.3609

Peanut–Others 0.5299 0.2309 0.4803 0.6383 1.6040 0.3380
Corn–Rice 1.1932 0.3219 0.5047 0.4398 0.7158 0.9456

Corn–Others 0.4503 0.0125 0.2444 0.5228 1.7408 0.0814
Rice–Others 0.9770 0.3243 0.5900 0.3238 1.7385 0.8216

Within a single-temporal SAR image, it is possible for different crops to have similar
backscatter responses [51], causing the J-M distance values to perform poorly and, therefore,
cannot yet meet the application requirements. However, within multi-temporal SAR images,
it is possible to characterize crop growth patterns. Typically, the patterns of growth change
for different crops are not identical, and the differences between their temporal trends
are key to distinguishing them. Table 8 exhibits the J-M distances for crops σ0 and γ0
features based on multi-temporal SAR images. Apparently, the J-M distance tended to
increase as the images increased. When the images of 3 July 2021, 15 July 2021, 27 July 2021,
8 August 2021, 20 August 2021 and 1 September 2021 were all combined, defined by T,
the J-M distance values exceeded any other combination of SAR images. In particular, σ0
and γ0 features had their own special advantages. Between peanut and maize, peanut and
rice, and maize and rice, the γ0 feature was better than the σ0 feature. The rest were the
opposite. Hence, the σ0 and γ0 features were combined to exploit whether there was an
improvement in the J-M distance values. The results are indicated in Table 9. The combined
σ0 and γ0 features from SAR image T showed the greatest degree of separation, with the
J-M distance values between each crop even exceeding 1.9. It meant that the combination
of σ0 and γ0 was productive and samples exhibited a good separability. Therefore, this
feature was selected as the optimal feature combination for subsequent crop identification.
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4.4. Model Generation

The SAR images have two polarizations, four features can be obtained for each SAR
image. They are σ0 VV, σ0 VH, γ0 VV, and γ0 VH. Since the optimal feature combination
contains six images, each sample had a feature shape of (1, 24), as shown in Figure 7. In
order to facilitate the input of the samples into C-AENN, they were reshaped. The shape of
each sample was changed to (12, 2). After that, the reshaped sample features were fed to
the classifier.

Table 8. J-M distances for crops σ0 and γ0 features based on multi-temporal images.

J-M Distance
Single-Temporal

Maximum
3 July 2021

15 July 2021

3 July 2021
15 July 2021
27 July 2021

3 July 2021
15 July 2021
27 July 2021

8 August 2021

3 July 2021
15 July 2021
27 July 2021

8 August 2021
20 August 2021

3 July 2021
15 July 2021
27 July 2021

8 August 2021
20 August 2021

1 September 2021
σ0 γ0 σ0 γ0 σ0 γ0 σ0 γ0 σ0 γ0 σ0 γ0

Peanut–Corn 0.3814 0.3970 0.5193 0.5128 0.6115 0.6187 0.9568 0.9524 0.9841 1.0173 1.0765 1.0781
Peanut–Rice 0.8617 1.2088 0.5292 0.5333 0.6262 0.6383 1.3136 1.3210 1.5586 1.5995 1.6089 1.6497

Peanut–Others 0.4775 0.4662 0.2462 0.2620 0.3585 0.3910 0.6553 0.6996 0.7501 0.7213 0.9794 0.7839
Corn–Rice 0.4129 0.8187 0.4068 0.3785 0.5428 0.5227 0.8225 0.8081 1.1298 1.1625 1.1917 1.2819

Corn–Others 0.1337 0.1291 0.3140 0.2730 0.2695 0.2567 0.3932 0.3719 0.4815 0.4228 0.6176 0.4800
Rice–Others 0.4727 0.7027 0.4556 0.4266 0.6148 0.5865 0.9024 0.8637 1.3391 1.3377 1.4378 1.4031

Table 9. J-M distances for crops σ0 and γ0 combination features based on multi-temporal images.

J-M Distance
Single-Temporal

Maximum
3 July 2021

15 July 2021

3 July 2021
15 July 2021
27 July 2021

3 July 2021
15 July 2021
27 July 2021

8 August 2021

3 July 2021
15 July 2021
27 July 2021

8 August 2021
20 August 2021

3 July 2021
15 July 2021
27 July 2021

8 August 2021
20 August 2021

1 September 2021
σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0

Peanut–Corn 0.9521 1.0565 1.6045 1.8137 1.9698 1.9924
Peanut–Rice 1.3609 1.5980 1.7670 1.9699 1.9949 1.9955

Peanut–Others 1.6040 0.7575 1.6647 1.9427 1.9865 1.9898
Corn–Rice 1.1932 1.7442 1.8415 1.9544 1.9837 1.9961

Corn–Others 0.5228 0.7368 0.9466 1.8338 1.9957 1.9933
Rice–Others 1.7385 1.6092 1.8117 1.9998 1.9999 1.9995

Remote Sens. 2022, 14, 1379 14 of 24 
 

 

Peanut–Rice 0.8617 1.2088 0.5292 0.5333 0.6262 0.6383 1.3136 1.3210 1.5586 1.5995 1.6089 1.6497 
Peanut–Others 0.4775 0.4662 0.2462 0.2620 0.3585 0.3910 0.6553 0.6996 0.7501 0.7213 0.9794 0.7839 

Corn–Rice 0.4129 0.8187 0.4068 0.3785 0.5428 0.5227 0.8225 0.8081 1.1298 1.1625 1.1917 1.2819 
Corn–Others 0.1337 0.1291 0.3140 0.2730 0.2695 0.2567 0.3932 0.3719 0.4815 0.4228 0.6176 0.4800 
Rice–Others 0.4727 0.7027 0.4556 0.4266 0.6148 0.5865 0.9024 0.8637 1.3391 1.3377 1.4378 1.4031 

Table 9. J-M distances for crops σ0 and γ0 combination features based on multi-temporal images. 

J-M Distance 
Single-Temporal 

Maximum 
3 July 2021 

15 July 2021 

3 July 2021 
15 July 2021 
27 July 2021 

3 July 2021 
15 July 2021 
27 July 2021 

8 August 2021 

3 July 2021 
15 July 2021 
27 July 2021 

8 August 2021 
20 August 2021 

3 July 2021 
15 July 2021 
27 July 2021 

8 August 2021 
20 August 2021 

1 September 2021 
σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 σ0-γ0 

Peanut–Corn 0.9521 1.0565 1.6045 1.8137 1.9698 1.9924 
Peanut–Rice 1.3609 1.5980 1.7670 1.9699 1.9949 1.9955 

Peanut–Others 1.6040 0.7575 1.6647 1.9427 1.9865 1.9898 
Corn–Rice 1.1932 1.7442 1.8415 1.9544 1.9837 1.9961 

Corn–Others 0.5228 0.7368 0.9466 1.8338 1.9957 1.9933 
Rice–Others 1.7385 1.6092 1.8117 1.9998 1.9999 1.9995 

4.4. Model Generation 
The SAR images have two polarizations, four features can be obtained for each SAR 

image. They are σ0 VV, σ0 VH, γ0 VV, and γ0 VH. Since the optimal feature combination 
contains six images, each sample had a feature shape of (1, 24), as shown in Figure 7. In 
order to facilitate the input of the samples into C-AENN, they were reshaped. The shape 
of each sample was changed to (12, 2). After that, the reshaped sample features were fed 
to the classifier. 

 
Figure 7. Samples feature reshaping. 

The classifier C-AENN was built to identify crops. The detailed parameters of C-
AENN are shown in Table 10. After the training samples were trained, a crop type iden-
tification model was generated. 

Table 10. Parameters of C-AENN. 

Layer Parameters Output Shape 
Input  (n, 12, 2) 

Conv1D Filters = 32, kernel_size = 7, activation = ‘relu’ (n, 12, 32) 
MaxPooling1D Pool_size = 2 (n, 6, 32) 

BatchNormalization  (n, 6, 32) 
Conv1D Filters = 64, kernel_size = 5, activation = ‘relu’ (n, 6, 64) 

Figure 7. Samples feature reshaping.



Remote Sens. 2022, 14, 1379 14 of 24

The classifier C-AENN was built to identify crops. The detailed parameters of C-
AENN are shown in Table 10. After the training samples were trained, a crop type identifi-
cation model was generated.

Table 10. Parameters of C-AENN.

Layer Parameters Output Shape

Input (n, 12, 2)
Conv1D Filters = 32, kernel_size = 7, activation = ‘relu’ (n, 12, 32)

MaxPooling1D Pool_size = 2 (n, 6, 32)
BatchNormalization (n, 6, 32)

Conv1D Filters = 64, kernel_size = 5, activation = ‘relu’ (n, 6, 64)
MaxPooling1D Pool_size = 2 (n, 3, 64)

BatchNormalization (n, 3, 64)
Conv1D Filters = 128, kernel_size = 3, activation = ‘relu’ (n, 3, 128)

MaxPooling1D Pool_size = 2 (n, 2, 128)
BatchNormalization (n, 2, 128)

Flatten (n, 256)
Encoder1 128, activation = ‘relu’ (n, 128)
Encoder2 64, activation = ‘relu’ (n, 64)
Encoder3 32, activation = ‘relu’ (n, 32)

Compressed features 16, activation = ‘relu’ (n, 16)
Decoder1 32, activation = ‘relu’ (n, 32)
Decoder2 64, activation = ‘relu’ (n, 64)
Decoder3 128, activation = ‘relu’ (n, 128)

Classification Softmax (n, 4)

4.5. Accuracy Comparison with Other Classifiers

To demonstrate the effectiveness of the model generated by C-AENN, several classi-
fiers were used for comparison, which included SVM, RF, KNN, ANN, 1D-CNN, and SAE.
The models generated by these classifiers were evaluated quantitatively and qualitatively.

4.5.1. Quantitative Evaluation

The test samples were fed into the models, then the outputs of models were com-
pared with the ground truth sample labels to generate confusion matrices, which are
shown in Figure 8. According to the confusion matrices, the models generated by the
above-mentioned classifiers were quantitatively evaluated. All these models showed good
accuracies, which denoted that the optimal identification features played an effective role.
The results are listed in Table 11.
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Among them, the C-AENN model achieved the best accuracy. Macro-F1 scored 0.9825,
OA scored 0.9794, and Kappa scored 0.9705. In addition, 1D-CNN and SAE models also
achieved good performance, and the accuracy metrics were slightly lower than the C-
AENN model. They achieved Macro-F1 of 0.9650 and 0.9550, OA of 0.9671 and 0.9584,
and Kappa of 0.9529 and 0.9404, respectively. Experiments proved that the combination
of 1D-CNN classifier and SAE classifier improved the accuracy of using either classifier
alone. Macro-F1 and Kappa were improved by approximately 2~3%, and OA increased
by approximately 1~2%. Nevertheless, the RF model performed the worst with Macro-F1
at 0.8400, OA at 0.8757, and Kappa at 0.8191. Compared with the results of the proposed
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C-AENN model, Macro-F1 was approximately 14% lower, OA was about 10%lower, and
Kappa was about 15% lower.

Table 11. Quantitative evaluation of models generated by different classifiers.

Peanut Corn Rice Other Macro-F1 OA Kappa

SVM
Precision 0.91 0.93 0.99 0.83

0.9125 0.9273 0.8956Recall 0.92 0.95 0.97 0.79
F1-score 0.92 0.94 0.98 0.81

RF
Precision 0.85 0.86 0.97 0.78

0.8400 0.8757 0.8191Recall 0.88 0.93 0.95 0.54
F1-score 0.87 0.89 0.96 0.64

KNN
Precision 0.85 0.86 0.99 0.77

0.8450 0.8760 0.8201Recall 0.90 0.93 0.91 0.59
F1-score 0.87 0.89 0.95 0.67

ANN
Precision 0.89 0.94 0.98 0.92

0.9350 0.9358 0.9082Recall 0.92 0.93 0.96 0.93
F1-score 0.91 0.94 0.97 0.92

1D-CNN
Precision 0.97 0.97 0.98 0.94

0.9650 0.9671 0.9529Recall 0.93 0.97 0.99 0.96
F1-score 0.95 0.97 0.99 0.95

SAE
Precision 0.93 0.95 0.99 0.96

0.9550 0.9584 0.9404Recall 0.97 0.97 0.97 0.90
F1-score 0.95 0.96 0.98 0.93

C-AENN
Precision 0.97 0.98 0.99 0.97

0.9825 0.9794 0.9705Recall 0.97 0.98 0.99 0.97
F1-score 0.97 0.98 0.99 0.99

Moreover, in order to objectively see the model ability of each classifier, a visual
comparison of three more representative accuracy evaluation indicators, Macro-F1, OA,
and Kappa, is presented in Figure 9. The accuracy of the models generated by classifiers can
be ranked in the following order: C-AENN > 1D-CNN > SAE > ANN > SVM > KNN > RF.
It demonstrates that the neural network models outperformed the machine learning models
on our dataset. In particular, the C-AENN model exhibited an outstanding capability.
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4.5.2. Qualitative Evaluation

The qualitative assessment was carried out in two ways, one of which was to select
four typical areas, and compare them with the sample maps for visual interpretation. The
second was a comparison with contemporaneous optical images. Both of them gave an
intuitive performance assessment of the proposed method.

In the first place, four typical regions A (peanut), B (corn), C (rice), and D (others) were
selected, as shown in Figure 10, to present the effects of the models generated by various
classifiers. Figure 10a gave the location of the selected regions, and Figure 10b displayed
the sample maps for these regions. The comparison results are exhibited in Figure 11. It
can be clearly seen that the effects of 1D-CNN, SAE, and C-AENN models were better than
others, and there were fewer mistakes. In region A (peanut), numerous peanut pixels were
misclassified as maize. In contrast to the sample map, SAE and C-AENN models had better
results. In region B (corn), the 1D-CNN, SAE, and C-AENN models showed superiority
over the other models. In regions C (rice) and D (others), 1D-CNN and C-AENN models
were relatively good. The error rate was significantly reduced. In summary, the proposed
C-AENN model had better robustness.

Remote Sens. 2022, 14, 1379 18 of 24 
 

 

 
Figure 10. Selected typical areas. (a) Locations of selected typical areas. (b) Sample maps of selected 
typical areas. 

 
Figure 11. (a) SVM, (b) RF, (c) KNN, (d) ANN, (e) 1D-CNN, (f) SAE, and (g) C-AENN maps for 
regions (A) (peanut), (B) (corn), (C) (rice), and (D) (others). 

Next, the C-AENN model was used to predict the entire study area. Figure 12 shows 
a qualitative comparison of the identification result for multiple crops with the optical 
image of the same period and the identification result covering the study area is given in 
Figure 12a. Due to the difficulty in obtaining real ground conditions covering the entire 
study area, the high-resolution the Sentinel-2 optical image on  25 August 2021 was used 

Figure 10. Selected typical areas. (a) Locations of selected typical areas. (b) Sample maps of selected
typical areas.

Next, the C-AENN model was used to predict the entire study area. Figure 12 shows
a qualitative comparison of the identification result for multiple crops with the optical
image of the same period and the identification result covering the study area is given in
Figure 12a. Due to the difficulty in obtaining real ground conditions covering the entire
study area, the high-resolution the Sentinel-2 optical image on 25 August 2021 was used
for qualitative evaluation. The band combinations of Sentinel-2 image can extract specific
information to help better understand the ground objects. The image of bands B11 (SWIR-
1), B8 (NIR-1), and the B2 (Blue) combination was defined as a pseudo-color image, as
shown in Figure 12b. It is mainly used to monitor crops because it applies shortwave and
near-infrared bands. Both of these two bands are more sensitive to vegetation.
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Figure 11. (a) SVM, (b) RF, (c) KNN, (d) ANN, (e) 1D-CNN, (f) SAE, and (g) C-AENN maps for
regions (A) (peanut), (B) (corn), (C) (rice), and (D) (others).

Ignoring the effects of clouds, the prediction result of the C-AENN model was largely
consistent with the pseudo-color image. As can be seen in Figure 12a,b, the study area was
dominated by maize cultivation, which is grown in all counties and districts. Additionally,
the red rectangular boxes in Figure 12a,b were the main peanut cultivation areas and
they were mainly distributed in Weishi, Tongxu, and Qixian counties. Moreover, the
red circles in Figure 12a,b were the main rice cultivation areas. The rice was grown in
a relatively concentrated area, which was mainly on the border between the Shunhe
and Xiangfu districts. Furthermore, due to the cultivation structure of the “others“ type
isrelatively complex, there were no distinctive features in Figure 12b. Combined with the
fieldwork records, the “others“ category was mainly located in Xiangfu district and Tongxu
county, which were basically consistent with the results in Figure 12a. In short, the crop
identification results almost matched the distribution in the optical images of the same
period, which further validates the effectiveness of the model.
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5. Discussion

In this work, the study of crop type identification methods using multi-temporal
Sentinel-1A images was carried out. Good results were achieved through feature opti-
mization and building a new classifier. At first, the unique physical characteristics of σ0
and γ0 features of SAR images were extracted, and their combination showed a better J-M
distance value, which provided an optimal identification feature for the crop classification
model. Then, a new classifier C-AENN was developed for the type identification task,
which combined the 1D-CNN model and the SAE model. In the end, the quantitative and
qualitative evaluation results demonstrated the validity of the method.

First of all, the extraction of the farmland mask was carried out to avoid the interference
of non-farmland features on the identification results of crop types. The public mask data
Global Food Security-Support Analysis Data at 30 m (GFSAD30) product has been used
in many agricultural fields. However, due to the development of urbanization in China,
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farmland is changing rapidly, therefore, relatively timely and accurate mask data are
required. Figure 13 shows the results for the publicly available GFSAD30 mask data and
the proposed mask data in this study. Additionally, this paper selected two enlarged
regions E and F for comparison. As can be seen from Figure 13, both mask data can detect
non-farmland areas well, such as cities and towns, while the proposed mask was better in
terms of edge detail for cities and towns, which basically completed the extraction of the
farmland.
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Next, this paper demonstrated the importance of multi-temporal radar data for crop
type identification. Good accuracy can be obtained even using classical machine learning
methods such as SVM and RF. The optimal selection of features and the J-M distance analy-
sis played a useful role. In this paper, J-M distance analysis was performed on σ0 features,
γ0 features, and σ0 and γ0 combination features of single-temporal and multi-temporal
SAR images. It was found that the combination of σ0 and γ0 features can significantly
enhance the J-M distance values between crop samples, and the multi-temporal images
were apparently better than the single-temporal image. Therefore, multi-temporal σ0 and
γ0 features combination is the best choice for the optimal identification feature. Most of
the previous studies have mostly neglected the role of γ0, surprisingly, the combination of
σ0 and γ0 yielded better results, and the application of γ0 can be paid more attention in
subsequent studies.

In the end, this paper demonstrated that the C-AENN classifier outperformed the
classical machine learning methods SVM and RF, etc., and the neural network methods
1D-CNN and SAE, etc. Based on the optimal identification feature, the most representative
machine learning methods, SVM, RF, and KNN, were chosen for comparison and they
were still competitive with other methods in many cases. As can be seen in Figure 8, these
machine learning methods achieved better results in the type identification of peanut, corn,
and rice crops, but the identification accuracy of the “other” category was lower. However,
this misclassification was not so high for neural network methods such as 1D-CNN and
SAE. This showed that the neural network approach outperformed the traditional machine
learning approach in our dataset. In particular, the proposed C-AENN showed good
classification performance in every category, exceeding 97% in all quantitative evaluation
metrics. 1D-CNN and SAE also showed better classification accuracy, however, in general,
the accuracy was slightly lower than the proposed method. Additionally, this paper
explored the time consumption of 1D-CNN, SAE, and C-AENN. Through ten experiments,
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it was concluded that the time consumption of SAE was relatively less, and the time
consumption of 1D-CNN and C-AENN was similar. The result is shown in Figure 14. For
research, it is worthwhile to use C-AENN to improve accuracy compared with 1D-CNN
alone and SAE alone.
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With regard to the selection of network parameters, this paper was based on the
data of the study area and multiple debugging. The selection of convolutional kernels
in 1D-CNN is illustrated as an example. The size of the convolution kernel was related
to the local feature extraction dimension. According to the optimal identification feature
shape of (12, 2), this paper attempted smaller convolutional kernels, such as 7, 5, 3. Then,
based on several debugging sessions, the optimal parameters can be selected. As for the
node settings of SAE, the last layer of 1D-CNN in C-AENN was 256, so some common
parameter settings of 128, 64, 32, etc. can be attempted, and the optimal parameters through
multiple tests can be determined. It is worth noting that the parameter settings of the deep
learning methods have their unexplainable aspects, which need specific analysis for specific
problems. This is also the direction that needs to be studied in follow-up research.

6. Conclusions

In this study, a novel method was proposed for crop type identification based on
the C-AENN classifier using time-series Sentinel-1A images. The method first removed
non-farm areas by the OMRF model. Then features were extracted for each type of crop
and the optimal identification feature, the combined time-series backscatter coefficient σ0
and γ0, was selected by J-M distance analysis. Finally, the optimal identification feature
was used for crop type identification model generation by using the C-AENN classifier,
which was fused by 1D-CNN and SAE. The quantitative and qualitative model assessments
demonstrated the validity of the proposed method.

In terms of quantitative assessment, the effectiveness of the proposed method was
illustrated by comparison with the traditional machine learning methods SVM, RF, and
KNN, as well as the deep learning methods ANN, 1D-CNN, and SAE. Six evaluation
metrics directly reflected the ability of the various methods to identify different crops.
Compared with other methods, the proposed method achieved the highest F1, OA, and
Kappa. All of these evaluation indicators were above 97%.

In addition, in terms of qualitative assessment, four typical areas were selected for
visual presentation in comparison with the sample maps. The model identification re-
sult covering the study area was compared with the contemporaneous optical image,
which proved that the proposed method gave satisfactory results. In conclusion, both the
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quantitative and qualitative assessments proved that the result of crop type identification
significantly improved.

Furthermore, a few interesting things are found in this paper, such as the unique
advantage of combining multi-temporal σ0 and γ0 features; they can obtain higher clas-
sification accuracy without using other auxiliary data. In addition, compared with one
network framework, a joined neural network plays a better role. This study demonstrates
the validity of time-series SAR data and the importance of deep learning methods for
feature mining. Both methods have great potential for crop type identification, which have
promising application prospects in agricultural management.
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