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Abstract: The 30 m resolution Landsat data have been used for high resolution aerosol optical
depth (AOD) retrieval based on radiative transfer models. In this paper, a Landsat-8 AOD retrieval
algorithm is proposed based on the deep neural network (DNN). A total of 6390 samples were
obtained for model training and validation by collocating 8 years of Landsat-8 top of atmosphere
(TOA) data and aerosol robotic network (AERONET) AOD data acquired from 329 AERONET stations
over 30◦W–160◦E and 60◦N–60◦S. The Google Earth Engine (GEE) cloud-computing platform is
used for the collocation to avoid a large download volume of Landsat data. Seventeen predictor
variables were used to estimate AOD at 500 nm, including the seven bands TOA reflectance, two
bands TOA brightness (BT), solar and viewing zenith and azimuth angles, scattering angle, digital
elevation model (DEM), and the meteorological reanalysis total columnar water vapor and ozone
concentration. The leave-one-station-out cross-validation showed that the estimated AOD agreed
well with AERONET AOD with a correlation coefficient of 0.83, root-mean-square error of 0.15,
and approximately 61% AOD retrievals within 0.05 + 20% of the AERONET AOD. Theoretical
comparisons with the physical-based methods and the adaptation of the developed DNN method to
Sentinel-2 TOA data with a different spectral band configuration are discussed.

Keywords: aerosol optical depth (AOD); Landsat-8; deep neural network; Google Earth Engine;
AERONET; Collection-2

1. Introduction

Aerosols play an important role in the Earth’s radiation balance and are considered
to be one of the largest sources of uncertainty in global radiative forcing estimation [1].
Aerosol optical depth (AOD) is one of the most important parameters for aerosol research.
Over the past several decades, numerous satellite/sensor observations have been used
to obtain spatially explicit and frequent AOD, such as MODerate-resolution Imaging
Spectroradiometer (MODIS) [2–4], Multi-angle Imaging SpectroRadiometer (MISR) [5],
Advanced Along Track Scanning Radiometer (AATSR) [6], MEdium Resolution Imaging
Spectrometer (MERIS) [7] and Himawari-8 Advanced Himawari Imager (AHI) [8]. The
observed top of atmosphere (TOA) signal is often a result of the interactions between
the reflection of the Earth surface and the scattering and absorption of the pristine atmo-
sphere and aerosol. The interactions are complicated, but they can be simulated using
radiative transfer models. Since both aerosol and surface optical properties are unknown,
in the classical AOD retrieval algorithms, some a priori assumptions are made on surface
reflectance. The dark target (DT) [9,10] method assumes fixed ratios between the visible
and 2.1 µm shortwave infrared (SWIR) band surface reflectance over dense dark vegetation.
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The deep blue (DB) [11,12] method uses a pre-calculated static surface reflectance [12]
for AOD retrieval over bright surface. In addition, the multiangle implementation of the
atmospheric correction (MAIAC) algorithm [4,13] uses multiple temporal observations to
jointly retrieve AOD and surface reflectance using an established three-parameter surface
reflection anisotropy model to model reflectance at any Sun/viewing angle [14]. The DT,
DB and MAIAC algorithms were originally developed for MODIS AOD product and have
been adapted to many other sensors. For example, the DT has been applied to the Visible
Infrared Imaging Radiometer Suite (VIIRS) [15] and Himawari-8 AHI data [16], the DB to
the Advanced Very High Resolution Radiometer (AVHRR) [17] and the Himawari-8 AHI
data [18], and the MAIAC to the Himawari-8 AHI data [19].

The AOD products derived from AVHRR, MODIS, MISR and Himawari-8 sensors have
a low spatial resolution (≥1 km), which limits their applications in regional air pollution
research especially in urban regions with spatially heterogonous pollution sources [20–22].
Many recent studies focused on obtaining high spatial resolution AOD (<1 km) using
Gaofen (GF, meaning high-resolution in Chinese) and Landsat data [23–25]. Landsat AOD
can be retrieved using atmospheric correction software, such as the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) for Landsat-5 and -7 [26] and the
Land Surface Reflectance Code (LaSRC) for Landsat-8 [27]. The two software are based on
DT for AOD retrieval and are operationally used by the United States Geological Survey
(USGS) to generate Landsat surface reflectance products [28]. However, the AOD output
is not accessible to users and their application for AOD retrieval is thus only limited to
experts who have the capability to run these complicated software that are developed for
the USGS computer environment [29,30]. Consequently, users have to develop their own
Landsat AOD retrieval algorithms [25,31–33]. Sun et al. [24] and Wei et al. [25] used a
pre-calculated surface reflectance database based on MODIS (MOD09) and Landsat surface
reflectance data, respectively. Ou et al. [34] retrieved AOD from Landsat data using a
DT-based method.

These physical model-based Landsat-8 AOD retrieval methods are often used for a few
cities mainly because it is difficult to determine the appropriate aerosol models and surface
reflectance assumptions across all the world urban locations. An alternative way is to use
machine learning methods to approximate the complicated physical relationship between
AOD and satellite TOA observations without any a priori assumption on aerosol model and
surface reflectance. The ground based AOD observation data (such as AERONET) provide
large volume training data for machine learning tasks. Machine learning methods have
been used for AOD retrieval and showed promising performance, e.g., recently developed
deep neural networks (DNNs) for Himawari-8 AHI AOD retrieval [35–37]. There are
also studies using a deep belief network for Landsat AOD retrieval [38,39]. The deep
belief network is not a fully supervised training approach as it requires an unsupervised
process in initial parameterizations and the later training process serves only for fine-
tuning network parameters. In this study, we explore a fully supervised DNN method to
estimate high spatial resolution AOD from Landsat-8 data by leveraging a cloud computing
platform to handle large volume data for an area covering 60◦S–60◦N and 30◦W–160◦E. The
DNN predictors include the TOA reflectance, TOA brightness temperature (BT), sun-sensor
geometry, digital elevation, total columnar water vapor and total columnar ozone. The
Landsat-8 data acquired in the period of 2013–2020 are collocated in space and time with
AERONET AOD for training and validation.

2. Data
2.1. AERONET Data

AERONET consists of a global ground-based network of sun–sky photometers [40]
that provides near continuous (typically every three minutes) daytime measurements
of spectral solar irradiance, spectral AOD, water vapor, and inversion aerosol products.
AERONET stations provide long-term spectral AOD ranging from visible to near-infrared
(NIR) channels (340–1020 nm). The AERONET AOD has a low positive bias of 0.02 (in
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AOD, unitless) and one sigma uncertainty of 0.02 [41] and is commonly used as a reference
dataset for satellite AOD product validation. The AERONET data are categorized into
three different quality levels: L1.0 (unscreened), L1.5 (cloud-screened), and L2.0 (cloud-
screened and quality-assured). In this study, AOD data at 500 nm with quality Level 2.0
from the latest Version 3.0 [41] were used. All the version 3.0 AERONET data over the
329 AERONET stations between 30◦W–160◦E and 60◦N–60◦S during 2013–2020 were used
for training and validation. The area covers most of Asia, Europe, Africa and Australia.

2.2. Collection-1 and -2 Landsat-8 Data

Landsat-8, operated by the U. S. Geological Survey (USGS), was launched on
11 February 2013 and carries the optical wavelength Operational Land Imager (OLI) and
the thermal wavelength Thermal Infrared Sensor (TIRS) in a circular sun-synchronous orbit
with an equatorial crossing time of 10:00 a.m. The OLI providing nine reflective band ob-
servations with one panchromatic band at 15 m resolution and the other eight bands at the
Landsat heritage 30 m resolution (Table 1). The TIRS provides observations at two thermal
infrared bands and at 100 m spatial resolution. The thermal band data products are usually
resampled to 30 m resolution by the USGS. The revisit cycle of Landsat-8 is 16 days, thus
there are 22 or 23 observations per year with 44 to 46 observations at the swath overlapping
areas [42]. The Landsat-8 has a field of view of 15◦ and has the off-nadir pointing capability
for emergency response. Most of the time, it is operated in nadir mode (e.g., maximum
viewing angle about 7.5◦ without consideration of Earth surface curvature). The Landsat-8
data are publicly and freely available and are defined in Worldwide Reference System
(WRS-2) in Universal Transverse Mercator (UTM) projection.

Table 1. Bandwidth and spatial resolution of the 11 bands of the Landsat-8 OLI/TIRS data.

Band Number Band Width (µm) Band Description Spatial Resolution (m)

1 0.435–0.451 Coastal aerosol 30
2 0.452–0.512 Blue 30
3 0.533–0.590 Green 30
4 0.636–0.673 Red 30
5 0.851–0.879 Near infrared (NIR) 30
6 1.566–1.651 Short wavelength infrared (SWIR) 1 30
7 2.107–2.294 SWIR 2 30
8 0.503–0.676 Panchromatic 15
9 1.363–1.384 Cirrus 30
10 10.60–11.19 Thermal Infrared Sensor (TIRS) 1 100
11 11.50–12.51 TIRS 2 100

In 2017, USGS started to use ‘Collection’ to manage the data, software and algorithm
updates, and reprocessed all the Landsat archive, including Landsat-8 data into Collection-1
format [28]. The Collection-1 data include the TOA reflectance and BT bands, a quality
assessment band indicating for each 30 m the presence of cloud, cloud shadow, water
and snow/ice, and scene level metadata, including acquisition time. In December 2020,
the USGS reprocessed all the Landsat archive into Collection-2 format. In addition to
including the Collection-1 data content, the Collection-2 also includes the atmospherically
corrected reflectance (i.e., surface surface), per-pixel solar and viewing geometries (zeniths
and azimuths) and the quality assessment band with improved accuracy. The Collection-2
data also has a better geolocation accuracy [43]. In recognition of the wide application of
Landsat data, the Google Earth Engine (GEE) also holds a copy of the whole archive of the
Collection-1 data and at the time of writing this paper, the Collection-2 data was not yet
copied over. The GEE is an online cloud-computing platform that holds massive satellite
images, including Landsat, Sentinel, and MODIS data.

In this study, the Landsat-8 data acquired over the AERONET stations between
30◦W–160◦E and 60◦N–60◦S during 2013–2020 were used. The data includes the Collection-
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1 TOA reflectance from bands 1–7 and TOA BT from the two TIRS bands and the Collection-
2 per-pixel quality assessment band, and solar and viewing geometry and scene metadata
(Table 1). The panchromatic band is not used as its information is contained in its spectrally
overlapping blue, green, and red bands. The cirrus band is not used as it is designed to
detect the cirrus cloud and has little information about land surface and aerosols. The
TOA reflectance and BT data used the Collection-1 data available on the GEE to avoid the
massive volume data download. The corresponding Collection-2 sun-sensor geometry
data as well as the quality assessment (QA) band data were downloaded using the USGS
Machine-to-Machine (M2M) Application Programing Interface (API) as these data have
much smaller volume (<20 MB/scene) and they (Collection-2 data) are not yet available on
GEE platform at the time of the paper’s writing.

2.3. Auxiliary Data: Atmospheric Reanalysis and Digital Elevation Data

The effect of gas absorption must be considered in aerosol estimation as the absorption
by water vapor and columnar ozone affects the visible band TOA reflectance. The total
columnar water vapor (kg m−2) and total columnar ozone (kg m−2) from the ERA5 hourly
data were used. The ERA5 (ECMWF Reanalysis v5) is the fifth generation European Centre
for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global
climate. ERA5 provides estimates of atmosphere variables for each hour with a spatial
resolution of 0.25◦ × 0.25◦ (~27 km at Equator). In addition, digital elevation is related to
the scattering and absorption of sunlight by atmospheric molecules. The digital elevation
data from the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)
with a 90 m spatial resolution were used in this study.

3. Method
3.1. Training and Validation Sample Collection by Collocating Landsat-8 and
AERONET Observations

A total of 6390 training and validation samples were extracted from the collocated
Landsat-8 TOA and the AERONET observations. Spatially, the observations from the
Landsat-8 30 m pixel closest to the AERONET station were used. Temporally, the AERONET
500 nm AOD measurements around the Landsat-8 acquisition time (±30 min) were av-
eraged as the AOD value. At least 3 AERONET observations were required to obtain a
robust average value, and only AERONET data with a positive 500 nm AOD were used. In
addition, Landsat-8 observations identified as cloud, cloud shadow, cirrus, dilated cloud or
fill data were discarded based on the QA band of Landsat data. In addition, observations
with blue band TOA reflectance >0.4 were discarded to further exclude cloudy pixels that
may be missed by the Landsat-8 cloud mask. The AERONET measurements and Landsat-8
observations between 30◦W–160◦E and 60◦N–60◦S during 2013–2020 were used.

Each sample contains a temporally averaged AERONET AOD and seventeen predic-
tor variables derived from the Landsat observations and auxiliary data. The seventeen
predictor variables include the seven band (bands 1–7) OLI TOA reflectance, the two band
TIRS TOA BT, the solar and viewing zenith, the solar and viewing azimuth, the scattering
angle, SRTM DEM, and ERA5 hourly total columnar water vapor and total columnar
ozone. The Collection-1 TOA reflectance and BT without any QA layer filtering were first
collocated with the AERONET AOD using the GEE platform to avoid a large volume
Landsat image download. The collocated results were saved in a two-dimensional table
with rows storing collocated samples and columns storing the AEROENT AOD, latitude,
longitude, Landsat-8 acquisition time, TOA reflectance, and TOA BT and the Landsat-8
Scene ID. The Collection-2 Landsat-8 solar and viewing geometry and QA bands for the
Landsat-8 scenes in the table were then downloaded and their pixel values added to the
table columns. Finally, the atmospheric reanalysis and digital elevation data were added to
the table columns by finding the nearest pixel location of each sample.
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3.2. Deep Neural Network AOD Retrieval and Validation

The deep neural network (DNN) was constructed by advancing the three layer (one
input, one hidden and one output layer) artificial neural network (ANN) with multiple
hidden layers [44]. In this study, the 17 predictors were used as the input layer and
the 500 nm AOD (one single value) as the output layer. It should be noted that the
different DNN structures have small performance differences given sufficient training
samples, despite that optimal DNN structure being usually unknown in deep learning
applications [45]. This study used the same structure we developed for Himawari-8
AHI AOD retrieval [35]. Specifically, three hidden layers were used with 256, 512 and
512 neurons. Other deeper structures (with 6 layers and 8 layers) were tested with little
improvement in performance. The state-of-the-art practices for DNN training were used.
The mini-batch gradient descent search method was used [46] with a batch size of 256
and 200 epochs to ensure a stable and robust solution. The weight and bias were carefully
initialized following He et al. [47]. To be specific, the bias was initialized as 0, while the
weights were initialized with random values drawn from a normal distribution with 0 mean
and with standard deviation determined by the neuron number of the previous layer. Batch
normalization [48] was used as regularization to avoid over-fitting. A dynamic learning
rate was used where the training starts with a large learning rate for fast coverage and then
deceases the learning rate to avoid loss function oscillation around the minimum when the
loss approaches the minimum. The learning rate was initialized as 0.1 and decreased to 0.01,
0.001 and 0.0001 at the 80, 120 and 160 epochs, respectively [49]. The DNN is implemented
using the Google TensorFlow application programing interface (API) [50].

The DNN retrieved AOD was compared with the reference AERONET AOD at 500 nm
using the correlation coefficient (R), root-mean-square error (RMSE), mean absolute error
(MAE), linear regression slopes, and fraction within the uncertainty of ± (0.05 + 0.20
*AODAERONET) [12]. Two cross-validation methods were used following She et al. [35]:
(i) k-fold cross-validation and (ii) leave-one-station-out cross-validation. Cross-validation is
achieved by training and applying DNN multiple times, each with different training and
validation samples. Consequently, each sample is used as a validation sample so that a total
of 6390 samples are validated. The 6390 samples are randomly partitioned into k equally
sized subsamples. A single subsample is used to validate the model trained by the other
k − 1 subsamples. The training and validation process is repeated k times so that every
single sample is used as an independent validation sample [51]. The k-fold cross-validation
has been used in the validation of PM2.5 estimation using machine learning methods [52,53].
However, in the k-fold cross-validation, the training and validation samples may come
from the same AERONET station for each DNN validation, which could overestimate
the accuracy for machine learning models [35]. In this study, k was set at 329 so that the
numbers of training samples in (i) and (ii) are comparable.

In the (ii) leave-one-station-out cross-validation, the 6390 samples were partitioned
into 329 subsamples (there are 329 AERONET stations) and all samples in each subsample
were from the same unique AERONET station. A single subsample was used to validate
the model trained by the other 328 subsamples. The training and validation process was
repeated 329 times so that every single sample was used as an independent testing sample
and the validation samples came from different locations than the training samples. This
corresponds to the real situation where the AERONET stations are distributed sparsely
over the globe and the DNN model application locations usually does not have AERONET
observations. This has been used in the validation of PM2.5 estimation using machine
learning methods [54,55].

4. Results
4.1. Descriptive Statistics of the Collocted Training and Validation Samples

The mean, standard deviation, maximum, and minimum values of the AOD and
the 17 predictor variables in the 6390 data records are presented in Table 2. The AOD
ranges from 0.003 (occurred in station Albergue_UGR) to 2.735 (occurred in station Chi-
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ang_Mai_Met_Sta) with a mean value of 0.234, which is comparable to the global multi-year
mean MODIS AOD value of 0.19 reported in Remer et al. [56]. As expected, the four visible
bands (bands 1–4) have very similar TOA reflectance (0.143–0.164). The mean NIR band
TOA reflectance (0.258) is higher than the visible band because of vegetation presence
in the AERONET stations. The two mean SWIR bands reflectance (0.241 and 0.178) is
lower than NIR band due to the water absorption in soil and vegetation. The BT covers a
range of temperatures for the two thermal bands, e.g., the thermal band 10 BT ranges from
262.0 K (−11.1 ◦C) to 327.7 K (54.6 ◦C) with a mean value of 298.7 K (25.5 ◦C). The mean
viewing zenith angle is 3.6◦, which is expected considering that the viewing zenith angle
ranges from 0◦ to ~8◦ for Landsat-8 image acquired in nadir operations [57]. The 17.48◦

maximum viewing angle was observed for an off-nadir pointing scene that was acquired
on 13 May 2013 for WRS2 path 130 row 30. The minimal solar zenith angle is 20.2◦, which
is slightly higher than the global minimal Landsat-5 and 7 solar zenith angle 22.14◦ [58]
because of its ~30 min later overpass time.

Table 2. Descriptive statistics for AERONET AOD and 17 predictor variables. The AOD and TOA
reflectance are unitless.

Variable Mean Std Min Max

AERONET AOD 500 nm 0.234 0.277 0.003 2.735
TOA band 1 0.164 0.030 0.087 0.330
TOA band 2 0.149 0.035 0.071 0.335
TOA band 3 0.143 0.047 0.047 0.415
TOA band 4 0.151 0.069 0.027 0.509
TOA band 5 0.258 0.082 0.012 0.61
TOA band 6 0.241 0.097 0.002 0.629
TOA band 7 0.178 0.089 0.001 0.504

BT band 10 (K) 298.7 9.2 262.0 327.7
BT band 11 (K) 296.4 8.5 262.5 325.8

View zenith angle (◦) 3.6 2.3 0.2 17.48
Solar zenith angle (◦) 39.2 12.8 20.2 69.8

View azimuth angle (◦) 55.4 87.2 −161.2 140.2
Solar azimuth angle (◦) 127.7 36.3 −180.0 178.9

Scattering angle (◦) 142.2 13.7 99.8 166.2
Water vapor content (kg m−2) 19.4 11.8 0.3 67.9

Ozone content (kg m−2) 0.006 0.001 0.005 0.011
DEM (m) 473.2 737.0 −350.0 4901.0

Figure 1 shows the number of collocated samples for each AERONET station. On aver-
age, each station has 19.4 samples extracted from the eight years (2013–2020) of Landsat-8
data. This small number of collocated samples compared to the total Landsat-8 observations
in each station (>176 = 8 × 22) reflects the strict criteria to collocate samples (Section 3.1).
The number variations across different stations reflect the different Landsat-8 cloud cover-
age and different AERONET station maintenance. The maximum number of the collated
samples is 97 in SEDE_BOKER station (30.86◦N, 34.78◦E in Israel) and minimum number of
the collated samples is 1 in 24 stations. Figure 2 shows the average AOD for the collocated
samples for each AERONET station. The high AOD value stations are located mainly in
Asian countries due to heavy pollution (e.g., the highest mean AOD value is 1.44 in the
Maeson station (99.17◦E, 19.83◦N) in Thailand). Notably, there are some high AOD stations
around the Sahara Desert in Africa due to the presence of dust aerosol.
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4.2. DNN AOD Validation

Figure 3 shows density scatterplots between the DNN estimated AOD and the
AERONET AOD at 500 nm ((a): k-fold cross-validation; (b): leave-one-station-out cross-
validation; (c) same as (b), but only for the urban AERONET stations). The R, RMSE, MAE
and linear regression equations are also shown in the figures. Both k-fold cross-validation
(Figure 3a) and leave-one-station-out cross-validation (Figure 3b) show good performance
in all the evaluation metrics (RMSE = 0.12/0.15, and R = 0.90/0.83, fraction within the un-
certainty of ± (0.05 + 0.20 ×AODAERONET) = 72%/61%, respectively). The linear regression
slope and intercept are 0.82 and 0.04 for k-fold cross-validation and 0.75 and 0.06 for leave-
one-station-out cross-validation, indicating that DNN slightly overestimated low AOD
values and underestimated high AOD values. Figure 3c shows the leave-one-station-out
cross-validation results for urban AERONET station samples. An AERONET is urban if at
least three of the 3 × 3 MODIS pixels centered on the AERONET station are classified as
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urban in the MODIS land cover product. There are about a fourth of samples (1682) from
the identified 89 urban AERONET stations. There is little difference between the accuracies
for the urban samples (Figure 3c) and for all samples (Figure 3b).
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The leave-one-station-out cross-validation strategy is recommended for use despite the
fact that the accuracy of k-fold cross-validation is better than that of the leave-one-station-
out cross-validation. This is because the k-fold cross-validation may boost the validation
accuracy as the validation and training samples could come from the same AERONET
station. The trained model application to locations without any training data is actually
unknown for the k-fold cross-validation and the model is usually less representative to
non-AERONET station locations due to the different surface reflectance characteristics
and aerosol optical properties. The leave-one-station-out cross-validation has training and
validation samples that are forced to come from different stations and thus reflects the
accuracy for large-area applications where most of the pixel locations have no AERONET
observations for DNN training. For the following analysis, only the results for the leave-
one-station-out cross-validation are shown.

Figure 4 shows the RMSE map for the DNN leave-one-station-out AOD validation
with RMSE derived for each AERONET station. There are 170 out of 329 stations with
RMSE smaller than 0.1 and 12 larger than 0.3. The variety of the RMSE values depends
on the station average AOD magnitude (Figure 2). For example, the RMSE of stations
in Europe and the Korean Peninsula is small and the RMSE of stations in south Asian
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countries and around the Sahara Desert is large. There are a few stations with low AOD,
but high RMSE values, such as the Simonstown_IMT station in South Africa (with RMSE of
0.40 but mean AOD value of 0.04). The stations with very high RMSE values are located in
west-central Africa, where there are only a few training samples and with different aerosol
characteristics from Europe and Asia.
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Figure 5 shows two example time series of AOD at the Windpoort station and the Chi-
ang_Mai_Met_Sta station for the AERONET and Landsat-8 DNN AOD. The two AERONET
stations are selected for this comparison because of their large number of collocated samples
and because they represent low mean AOD (0.16) and high mean AOD (0.58), respectively.
The Windpoort station is located at 15.48◦E, 19.37◦S in Namibia, representing a typical
rural aerosol model, and the Chiang_Mai_Met_Sta station is located at 18.77◦N, 98.97◦E in
Thailand, representing a typical polluted urban aerosol model. Despite their differences,
the Landsat-8 DNN estimated AOD agrees well with the AERONET measured AOD,
and successfully captures the time series fluctuation of the AERONET AOD. There is no
apparent underestimation or overestimation of the DNN AOD.
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5. Discussion

In this study, the AERONET AOD measurements observed within a relatively large
temporal window (±30 min) centered at the Landsat-8 acquisition time were averaged as
the AOD training data (Section 3.1). To examine whether a smaller temporal window has a
better accuracy, we collocated samples using ±5 min and ±15 min temporal windows. To
be specific, the AERONET AOD within ±5 min and ±15 min of the Landsat-8 acquisition
time were averaged as the AOD and their leave-one-station-out cross-validation results are
shown in Figure 6a,b, respectively. As expected, the smaller temporal window generated
a smaller number of collocated samples. There is little accuracy difference between the
±15 min (Figure 6b) and ±30 min (Figure 3b) temporal collocation window results. The
validation accuracy of the ±5 min window results is slightly inferior to the validation
accuracy of the ±15 min and ±30 min window results. This may be because of the smaller
number of collocated samples (4608), resulting in insufficient DNN training. Consequently,
a relatively large (±30 min) window is used in this study to gain more training samples.
Such large temporal window has been applied in AOD validation studies [37,59].
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The DNN method is not to replace the existing radiative transfer methods, but to
complement them. As noted in the introduction, the DNN methods try to approximate the
complicated physical relationship between AOD and satellite TOA observations without
any a priori assumption on aerosol model and surface reflectance. Despite that the current
DNN models have very powerful capability to represent complicated relationships, one
main and well-known drawback is that the learned model only represents well the physical
relationship in the training data. For example, the learned model in this study is not
applicable for ocean surface AOD retrieval, which may need a new DNN model trained
(calibrated) using the ocean ground AOD measurement data [60]. The training data
representativeness is the key for the successful machine learning application. For example,
in Figure 4, there are a few AERONET stations with high RMSE in the south of the Sahara
Desert, which is, likely, because this region aerosol model and surface condition are not well
represented in the training data, i.e., most AERONET stations are not located in the desert.
The dust aerosols are distributed in global desert regions [61,62] with relative less human
settlement and thus AERONET stations. To further examine this issue, Figure 7 shows the
RMSE of the DNN estimated AOD as a function of Ångström exponent that is derived
from the AERONET spectral AOD. The Ångström exponent describes the AOD spectral
dependence and is usually related to the aerosol models. In general, a high Ångström
exponent value is related to fine particles (e.g., industry air pollution aerosols) and a low
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Ångström exponent value is related to coarse particles (e.g., dust and sea salt aerosols). The
AERONET AOD with a small Ångström exponent tends to have a large bias and there is a
general decrease trend of RMSE with an increase in Ångström exponent. This is possibly
because the AERONET stations in arid and semi-arid regions with dust aerosols dominate
the small Ångström exponent AODs and the bright surface reflectance is relatively sparse
in the AERONET training dataset. This could also be simply due to the large AOD values in
the region, i.e., the AOD magnitude also decreases with the increase in Ångström exponent,
which reflects that the coarse aerosols normally have larger AOD values than fine aerosols.
Decoupling the two contribution factors is very difficult, if not impossible, and future
studies on this are encouraged to understand the DNN algorithm performance.
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The developed DNN model for 500 nm AOD estimation can neither provide the
physical explanations of the underlying learned relationship nor estimate other aerosol-
relevant variables. In particular, most physical based methods can estimate AOD at any
wavelength using some physical dependence principle of the aerosol model assumptions.
For the DNN-based method, however, as no model assumption is given, additional DNN
models need to be trained to estimate AOD at other wavelengths. To test the effectiveness,
we trained two new models for AOD estimation at 440 nm and 675 nm, respectively,
using the same model structure. The same training samples were used, except that the
500 nm AERONET AOD is replaced with the 440 nm and 675 nm AOD, respectively.
The leave-one-station-out cross-validation results are shown in Figure 8. The RMSE of
440 nm (RMSE = 0.17), 500 nm (0.15) and 675 nm (0.13) AOD DNN estimation decreases
with the wavelength because the AOD magnitude decreases with the wavelength as the
particular sizes of the aerosols are normally smaller than these wavelengths. The correlation
coefficient (R) is the same for the AOD estimation at 440 nm (0.83) and 500 nm (0.83) and
is smaller for 675 nm AOD estimation (0.77), mainly because the 675 nm AOD has a very
smaller range of AOD that may decrease the R-value.
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corresponding AERONET AODs using the leave-one-station-out cross-validation.

It should be noted that there are no publicly available Landsat-8 AOD products
that can be used for inter-comparison with the DNN AOD retrieval in this study. The
public available software package Generalized Retrieval of Aerosol and Surface Properties
(GRASP) that was developed to jointly characterize aerosol and surface properties for
observations, such as POLDER and AERONET [63], may require code adaptations for
Landsat-8 observations. The reported accuracy in the literature [25,31–33] on Landsat-8
AOD retrieval has an RMSE ranging from 0.04 to 0.135 and R2 ranging from 0.670 to 0.997.
Their study regions, however, often cover less than two city locations and a meaningful
comparison with this study is impossible. We encourage future study to inter-compare the
DNN-based AOD retrieval and physical model-based retrieval to understand better their
strengthens and limitations. We also encourage the USGS, who now provides Landsat-
8 surface reflectance product, to provide also the AOD product derived in the surface
reflectance calculation. This will not only benefit users focusing on aerosol studies but
also those land application users who rely on the AOD quality to determine the surface
reflectance quality.

The developed method can be used for Sentinel-2 data with several advantages over
Landsat-8 data. First, Sentinel-2 has more bands in the solar reflective wavelength region
that may be useful for aerosol characterization (e.g., the water vapor band). We note
Sentinel-2 has no thermal bands and we found, however, that the thermal bands had only
small contribution to the Landsat-8 AOD estimation. Figure 9 shows the leave-one-station-
out cross-validation results for the 500 nm AOD estimation without the thermal BT as
predictors. The accuracy slightly drops compared to Figure 3b results with BT as predictors.
Secondly, Sentinel-2 has higher temporal resolution (5-day) than Landsat-8 (16-day), which
may be helpful for aerosol studies. Thirdly, the Sentinel-2 level-2 product has a publicly
available AOD that can be used as a baseline to compare the DNN AOD estimation. The
Sentinel-2 AOD is generated by the atmospheric correction software known as Sen2Cor [64],
based on the DT algorithm. The developed DNN needs to be retrained using Sentinel-2
TOA reflectance data and the adaptation should be straightforward as the data are also
available in the GEE.
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6. Conclusions

In this paper, a DNN-based high spatial resolution AOD retrieval method for Landsat-
8 data has been presented. The Landsat-8 TOA reflectance and BT, sun-sensor geometry,
and auxiliary data were used as predictors. The AERONET version 3 Level 2.0 observation
over 60◦S–60◦N, 30◦W–160◦E during 2013–2020 were collocated to obtain 6390 training and
validation samples. The k-fold and leave-one-station-out cross-validation were undertaken
and compared. The leave-one-station-out cross-validation has a lower validation accuracy,
but it is believed to reflect the large area application accuracy as the training and valida-
tion samples are from different AERONET stations. For the leave-one-station-out cross-
validation, the DNN-estimated AOD agrees well with AERONET AOD measurements
(R = 0.83, RMSE = 0.15), as 61% of retrieval fall within the uncertainty of ± (0.05 + 0.20
*AODAERONET). The DNN-estimated AOD has larger errors over small Ångström exponent
aerosol conditions.

The accuracy of DNN models usually increase with training sample number and
there are two ways to boost training sample size. On the one hand, one can use more
ground-based AOD measurements from other AERONET stations and non-AERONET
stations. For example, the Sun–Sky Radiometer Observation Network (SONET) can provide
many more AOD measurements over mainland China than AERONET, especially over
northeast China. On the other hand, one can use the Landsat-9 to augment training data.
The Landsat-9 carrying OLI-2 and TIRS-2 was launched on 27 September 2021 and the data
are now public available.
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