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Abstract: This study aimed to simulate the spatiotemporal variation in cotton (Gossypium hirsutum L.)
growth and lint yield using a remote sensing-integrated crop model (RSCM) for cotton. The developed
modeling scheme incorporated proximal sensing data and satellite imagery. We formulated this
model and evaluated its accuracy using field datasets obtained in Lamesa in 1999, Halfway in 2002
and 2004, and Lubbock in 2003–2005 in the Texas High Plains in the USA. We found that RSCM cotton
could reproduce the cotton leaf area index and lint yield across different locations and irrigation
systems with a statistically significant degree of accuracy. RSCM cotton was also used to simulate
cotton lint yield for the field circles in Halfway. The RSCM system could accurately reproduce
the spatiotemporal variations in cotton lint yield when integrated with satellite images. From the
results of this study, we predict that the proposed crop-modeling approach will be applicable for the
practical monitoring of cotton growth and productivity by farmers. Furthermore, a user can operate
the modeling system with minimal input data, owing to the integration of proximal and remote
sensing information.

Keywords: cotton; remote sensing-integrated crop model; satellite imagery; Texas High Plains

1. Introduction

Cotton is a perennial warm-season crop and the most common material used in
textiles [1]. The top cotton producing countries include China, India, and the United States
(https://www.statista.com/statistics/263055/, accessed on 30 December 2021). Within the
United States, Texas produces the greatest share of cotton. There are more than 2 million ha
of cotton farms in Texas, which account for approximately 50% of the cotton fields and 40%
of the total production in the United States (https://www.nass.usda.gov/, accessed on 30
December 2021). Therefore, agricultural sector stakeholders, policymakers, and researchers
are interested in gathering pre-, post-, and mid-season productivity information for these
cotton-producing regions. Developing an effective monitoring system is necessary for
gathering this information.

Remote sensing is a valuable technique used to measure crop growth and development
conditions, which are affected by geographic and spatial variability during crop growing
seasons [2]. It helps obtain detailed information about crop growth conditions from a
region of interest. Crop growth conditions and yields can be estimated by analyzing the
relationship between crop growth variables and remote sensing information [3,4]. For
example, many endeavors have been made to estimate crop yields based on optical remote
sensing data [5,6]. Such empirical modeling approaches are practical and suitable for
determining growth conditions and productivity in specific regions of interest. However,
these empirical modeling methodologies are not sufficient for explaining the growth and
development processes or their influences on productivity [7,8]. In addition, it is not
possible to obtain the necessary information from a continuous source when using most
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satellite images because of the restricted revisit time of the fields of interest or unfavorable
environmental conditions [9].

A crop model integrated with remote sensing information can be effectively applied
to model crop growth and development, and thus to monitor productivity [10]. Most math-
ematical crop models are beneficial for describing seasonal variations in crop growth and
development [11,12]. However, they are limited in providing spatiotemporal projections
based on crop modeling, owing to either the restricted availability of input parameters
and variables or high input requirements. While remote sensing techniques are suitable
for providing two-dimensional images of crop conditions [13,14], these approaches have
limitations in generating information regarding temporal variations in crop growth and
performance [10]. As a result, there have been substantial efforts to integrate remote sensing
information into crop models to strengthen their advantages and compensate for their
weaknesses [10,15–17]. One such effort is developing a remote sensing-integrated crop
model (RSCM) [10,18]. RSCM (previously GRAMI) was designed to model gramineous
crops (such as maize, sorghum, and wheat), using simple weather variables and remote
sensing data. The RSCM technique has been applied to various aspects of crop produc-
tion monitoring, from proximal sensing to remote sensing, using remote-controlled aerial
systems and satellite platforms [19,20].

An earlier version of the RSCM for simulating cotton growth [21] was developed
based on the GRAMI model [22,23]. This modeling approach integrated proximal sensing
data and was also applied to simulate cotton growth and yield under conditions of poor
irrigation [24]. However, no further efforts have been made to employ an integrated system
using other established remote sensing platforms such as airborne or satellite sensing.
Therefore, the objective of the present study was to improve the previous cotton modeling
approach with integrated proximal sensing data and to investigate the practical monitoring
capabilities of integrating satellite-based remote sensing data.

2. Materials and Methods
2.1. Study Site Description

The study field sites were in Hale, Lamesa, and Lubbock, Texas, USA (Figure 1). These
study locations are located in the Southern Great Plains region, which experiences a conti-
nental climate with low precipitation and humidity, high winds, and sudden temperature
changes (https://www.britannica.com/place/Great-Plains, accessed on 14 January 2022).
As a result, the southern plains experience cold winters and warm summers. The average
rainfall is 380 to 640 mm, but there are substantial yearly variations in both total and
seasonal rainfall.

The High Plains region of Texas, where the study sites were located, produces 64%
of the state’s cotton (https://www.nass.usda.gov/Data_and_Statistics/, accessed on 24
January 2022). Fifty percent of the cotton in this region requires irrigation. Additionally,
the area’s warm days and cool nights, as well as its loam and sandy soil types, mean that
soil and water conservation processes are crucial in this region.

2.2. Cotton Data

The field datasets of this study were obtained from commercial cotton farm fields
#26, #28, and #30 near Halfway in Hale, a Plant Stress and Water Conservation Laboratory
(PSWCL) field in Lubbock, and a Texas A&M University Agricultural Research (TAMUAR)
farm near Lamesa, Texas, USA (Table 1). Halfway fields #26 (34◦2′41′′ N, 102◦2′18′′ W), #28
(34◦4′6′′ N, 102◦11′10′′ W), and #30 (34◦4′5′′ N, 102◦11′8′′ W) were circular and approxi-
mately 50 ha in size. These fields had Brownfield fine sands [21,25]. The TAMUAR farm
(32◦16′ N, 101◦56′ W) was also circular, with Amarillo fine sandy loam [21]. Finally, the
PSWCL field (33◦35′38′′ N, 101◦54′04′′ W) had three irrigation treatments in 2003 and 2004
and four irrigation treatments in 2005 with 165 × 10 m study plots at three replications
with Amarillo fine sandy loam [24].

https://www.britannica.com/place/Great-Plains
https://www.nass.usda.gov/Data_and_Statistics/
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Figure 1. Map of study field locations in Hale, Lubbock, and Lamesa counties, Texas, USA.

Table 1. Summarized information on the study fields and irrigation methods.

Field
Division Location Size

(ha)
Field

Shape Soil Type Irrigation
Method

#26 Halfway 50 Circle Brownfield fine sand LEPA
#28 Halfway 50 Circle Brownfield fine sand LEPA
#30 Halfway 50 Circle Brownfield fine sand LEPA

TAMUAR Lamesa 45 Circle Amarillo fine sandy loam LEPA
PSWCL Lubbock 5 Rectangle Amarillo fine sandy loam Subsurface drip

TAMUAR, PSWCL, and LEPA stand for Texas A&M University Agricultural Research, Plant Stress and Water
Conservation Laboratory, and low-energy precision application.

The cotton cultivar Paymaster 2326 BG/RR (Delta and Pine Land Co., Scott, MS, USA)
was typically seeded in mid-May from 2000 to 2003, with a row spacing of 1.0 m in Halfway
fields #26, #28, and #30. In the TAMUAR farm, Paymaster 2326 RR was planted with a
row spacing of 1.0 m on 10 May 1999 and 28 May 2001. Paymaster 2326 BG/RR was sown
in north–south rows spaced 1.0 m apart on 13 May for 4 years (2002–2005) in the PSWCL
field. Deficit irrigation was applied using a low-energy precision application system
at Halfway and TAMUAR. The irrigation application quantities varied over the years,
depending on the precipitation amounts received during the growing seasons. Irrigation
treatments at PSWCL were established using a subsurface drip irrigation system with
different application levels. Irrigation water was applied at 2, 4, 6, and 8 mm per day in
2005. Then, irrigation was conducted at 5.5, 6.5, and 8.5 h intervals in 2003 and 2004. Field
cultivation and management were performed based on general cotton production guides
from Texas A&M AgriLife Research and Extension Center (https://lubbock.tamu.edu/
programs/crops/cotton/general-production/, accessed on 25 January 2022).

Leaf area was measured using an LI-3100 leaf area meter (LI-COR Inc., Lincoln, NE,
USA) in the laboratory, using ten representative plant samples. Plants were sampled in
Halfway fields #26, #28, and #30 and at the TAMUAR farm every two weeks. Plant samples
were collected from PSWCL on the following days of the year: 171, 191, 210, 226, and 254
in 2002; 174, 190, 224, and 266 in 2003; 173, 194, 229, and 264 in 2004; and 187, 206, 243, and
296 in 2015. The leaf area index (LAI) was calculated as the leaf area per plant, divided
by ground area per plant. The cotton lint yield was measured at the end of the growing
season by hand-harvesting randomly chosen zones from each plot (or by harvesting rows
using a cotton stripper in the case of the TAMUAR farm). Additionally, the cotton lint
yield for each year from the entire #26, #28, and #30 fields was measured using a cotton

https://lubbock.tamu.edu/programs/crops/cotton/general-production/
https://lubbock.tamu.edu/programs/crops/cotton/general-production/
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stripper equipped with optical yield monitors (Model AG700, AGRIplan, Stow, MA, USA)
and a differential global positioning system (DGPS) with sub-meter accuracy [26]. These
yield data were calibrated and composited into a single yield data file and combined into
30 × 30 m pixels using the Interpolation to Raster routine (inverse distance weighting to
the power of two) of Spatial Analyst in ArcMap (ESRI, Redlands, CA, USA). The cotton
yield pixel files were then georeferenced to the Universal Transverse Mercator (UTM) Zone
13N projection and the North American Datum of 1983 (NAD83).

Weather data for the field sites at Halfway and Lubbock were obtained from the Texas
ET Network (https://texaset.tamu.edu/, accessed on 5 March 2022) and the PSWC weather
stations respectively. Meanwhile, weather data at Lamesa were collected using a standard
Campbell Scientific meteorological station (Campbell Scientific Inc., Logan, UT, USA).

2.3. Proximal Sensing and Satellite Data

The cotton canopy reflectance at PSWCL from 2003 to 2005 was measured using a
handheld multispectral radiometer (CROPSCAN Inc., Rochester, MN, USA). The proximal
radiometer uses 16 bands to measure incident and reflected solar radiation with a 28◦ field
of view. The center wavebands (CWB) and bandwidths (BW) for the three filters used
in this study were CWB 460 nm with BW 10.0 nm, CWB 660 nm with BW 10.0 nm, and
CWB 800 nm with BW 65.0 nm. Radiometer calibration was performed according to the
one-point calibration procedure, using a white reference panel to compare down sensor
readings and measure reflectance. The field measurement, including LAI measurement,
was periodically conducted at 2 m vertically above objective zones. This measurement
condition was determined to represent the cotton canopy reflectance in the field. The
canopy reflectance was measured five times between 1100 and 1300 h CDT on clear days at
three distinct spots for each experimental plot.

The satellite image data were obtained from Landsat-5 TM and Landsat-7 TM (https://
www.usgs.gov/landsat-missions, accessed on 1 February 2022) during the cotton growing
seasons from 2000 to 2003 and georeferenced to the UTM World Geodetic Survey 1984
(WGS84), Zone 14 [26]. The satellite data were radiometrically normalized so that the
reflectance of different bands on different dates over the 4 years were consistent [27].
An area of interest (AOI) comprising fields #26, #28, and #30 was established for each
satellite image. The AOI’s normalized difference vegetation index (NDVI) was calculated
using the Transform process in ENVI software (Geospatial Solutions, Inc., Broomfield, CO,
USA). NDVI image data were exported as ASCII format grid data and then imported to
ArcToolbox (ESRI, Redlands, CA, USA). Next, the ASCII text grid files were converted
to floating raster grids and projected to UTM Zone 13 NAD83, before being imported to
ArcMap (ESRI, Redlands, CA, USA). Finally, the grid data were carefully georeferenced to
ensure an accurate overlay of grid images. Landsat image grids were converted to polygons
and then superimposed on the 4 m pixels with data on cotton lint yield.

2.4. Model Calculation and Evaluation

The RSCM for cotton created in this study was a simple crop model that adopted
a radiation use efficiency (RUE) approach [28], simulating crop growth and lint yield
(Figure 2a). It was integrated with proximal and remote sensing data based on specific
crop growth parameters using a mathematical optimization procedure (Figure 2b), which
is further explained following this section’s cotton growth modeling description. RSCM
reproduces canopy growth and development using four mathematical calculations that
incorporate growth-specific coefficients (Table A1). These coefficients include RUE, specific
leaf area (SLA), light extinction coefficient (k), base temperature, and leaf partition and
senescence coefficients. This modeling scheme used the same cotton growth-specific
parameters determined by Ko et al. [21].

https://texaset.tamu.edu/
https://www.usgs.gov/landsat-missions
https://www.usgs.gov/landsat-missions
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Figure 2. Diagrammatic representation of the remote sensing-integrated crop model (RSCM) for
cotton: (a) cotton growth simulation (CGS) procedure and (b) optimization of model parameters
using proximal or remote sensing information. AGDM, LAI, PAR, and RS represent above-ground
dry mass, leaf area index, photosynthetically active radiation, and remote sensing, respectively.

The four calculations used for cotton growth modeling (Figure 2a) take into account
(a) buildup of growing degree-days (GDD), (b) solar radiation absorption in LAI, (c) daily
production of above-ground dry mass (AGDM) by photosynthesis, and (d) LAI partitioning
or senescence as calculated by the formula below. First, daily GDD (∆D) was determined
using the following equation.

∆D = Max [T − Tb, 0] (1)

where T and Tb are daily mean temperature and the base temperature of cotton, respectively.
The daily production of AGDM (∆M) and daily total intercepted PAR above the canopy (Q)
were estimated using the following calculations:

∆M = ε × Q,
Q = β × R × (1 − exp (−k × LAI))

(2)

where ε, β, R, and k represent RUE, the fractional constant (0.45) of solar radiation (β) used
to calculate PAR [29], daily solar radiation, and the light extinction coefficient, respectively.
The daily increase in LAI (∆L) was calculated using the following formula:

∆L = ∆M × P1 × S,
P1 = Max [1 − a × exp (b × D), 0]

(3)

where P1 and S represent the fraction of ∆M attributed to new leaves and specific leaf area,
respectively. P1 is calculated using the above formula, where a and b are two coefficients
that define the magnitude and shape, respectively, of the leaf partitioning process, and
D is the accumulated GDD. The leaf senescence (Ls) coefficient used in the model was
determined using the following formula:

Ls = c × (∆Rm − ∆M),
∆Rm = f m ×M

(4)

where c is a coefficient that defines the magnitude of the leaf senescence function, ∆Rm is
the maintenance respiration function needed for conversion to biomass, M is the AGDM,
and f m is the maintenance respiration coefficient. The f m value was calculated theoretically
as ~1.5% of the current dry weight of a crop. The LAI typically starts to senesce after
reaching a maximum value.
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The cotton lint yield (∆Y) was partitioned from the fraction of ∆M to cotton lint using
a dimensionless lint-partitioning function (P2).

∆Y = P2 × ∆M,
P2 = Max [1 − a × exp (b × f GD), 0],

f GD = GDDpm − (Pa × GDDm)/(GDDm − GDDr/Pb)
(5)

where f GD is the lint-partitioning factor based on the cumulative G.D.D. In the f GD function,
GDDpm, GDDm, and GDDr represent G.D.D.s at potential maturity, actual maturity, and
reproduction, respectively, and Pa and Pb are lint partitioning coefficients. The lint yield
partitioning function described earlier [21] can also be used in this context. All parameters
applied in this study are listed in Table A1.

RSCM can adapt the model parameters and initial conditions to modify the crop
growth variables. Mid-season calibration procedures are typically used to adjust the
model approach based on the simulation and observation of readily available crop state
variables of LAI or vegetation indices (VIs) [10]. The mathematical agreement between the
simulated and observed LAIs is typically achieved using POWELL optimization [30] or
Quasi-Newton minimization calculation [31]. Following this adjustment, all parameters
was calibrated to ensure agreement between the simulations and observations. The updated
RSCM system also employed this mid-season calibration procedure to input the proximal
or remote sensing data (Figure 2b). This mathematical procedure optimizes the simulated
and observed LAIs using the model parameters (L0, a, b, and c) that describe the cotton
canopy growth processes. As an example, the combined model parameters used for
this evaluation at different locations are listed in Table A2. This mid-season calibration
procedure was accomplished by incorporating observed values into the model using the
mathematical approach described above to mitigate the uncertainties in crop modeling
induced by possible inaccuracies or the inaccessibility of state variables such as VIs or LAI.

In this study, the observed LAI values for RSCM cotton simulation application for
fields #26 and #28 over four years (2000–2003) were extrapolated using the parameters
from the exponential relationship between LAI and NDVI (Figure 3). We assumed that
the LAI and NDVI relationships at the proposed cotton fields were consistent with the
experimental data obtained at PSWCL over three years (2003–2005). This hypothesis was
made considering that all the cultivars planted in the study were similar to upland cotton,
which should allow limited genetic variation. In addition, all the cotton cultivars were
grown and cultivated in the same High Plains region environment.

Figure 3. Relationship between leaf area index (LAI) and normalized difference vegetation index
(NDVI) using the dataset obtained from the plant stress and water conservation laboratory in Lubbock,
Texas, USA, from 2003 to 2005.
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Four statistical indices were employed to evaluate the performance of the RSCM cotton
system: a p-value calculated using the two-sample t-test, mean absolute error (MAE), root
mean square error (RMSE), and Nash–Sutcliffe model efficiency (NSME) [32]. The MAE,
RMSE, and NSME were determined using the following equations.

MAE =
∑n

i=1|Si −Oi|
n

(6)

RMSE =

√
1
n ∑n

i=1(Si −Oi)
2 (7)

NSME = 1− ∑n
i=1(Si −Oi)

2

∑n
i=1(Oi −Om)

2 (8)

where n, Si, Oi, and Om represent the total number of observations, the simulated value,
the observed value, and the mean observed value, respectively. NSME can range from −∞
values to one. NSME values closer to one indicate more consistency and reliability, and
values less than zero indicate poor reliability.

3. Results
3.1. Model Evaluation

The simulated LAI values agreed with the observed LAI values to a statistically
significant degree for the datasets obtained at all locations (Figure 4). For example, NSME,
MAE, and RMSE were 0.986, 0.09 m2 m−2, and 0.11 m2 m−2, respectively, at Halfway field
#26; 0.948, 0.09 m2 m−2, and 0.09 m2 m−2, respectively, at the Lamesa field in 1999; and 0.976,
0.18 m2 m−2, and 0.20 m2 m−2, respectively, at the Lubbock field in 2002. The simulated
lint yields agreed with the measured lint yields with a p-value of 0.849 calculated by a
two-sample t-test, an NSME of 0.91, an MAE of 73.5 kg ha−1, and an RMSE of 95.0 kg ha−1.

Figure 4. Simulated and observed cotton growth from Texas, USA at (a) field #26 in Halfway, HW in
2002; (b) the Texas A&M University Agricultural Research field in Lamesa, LMS in 1999; and (c) the
Plant Stress and Water Conservation Laboratory field in Lubbock, LBK in 2002. (d) Comparison
between simulated and observed lint yields for all data from the study sites. OLAI, SLAI, and
SAGDM represent observed leaf area index, simulated leaf area index, and simulated above-ground
dry mass, respectively. #26, #28, and #33 represent cotton field circles.
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We also generated LAI observation data estimated from proximal sensing at the
PSWCL field under different irrigation conditions. These were extrapolated from the LAI
and NDVI relationship data (Figure 3). The simulated LAI values agreed with the observed
LAI values to a statistically significant degree (Figures 5 and A1) for all locations. For
example, NSME, MAE, and RMSE were 0.999, 0.03 m2 m−2, and 0.04 m2 m−2, respectively,
at 5.5 h irrigation intervals; 0.998, 0.09 m2 m−2, and 0.05 m2 m−2, respectively, at 6.5 h irri-
gation intervals; and 0.993, 0.05 m2 m−2, and 0.07 m2 m−2, respectively, with an irrigation
amount of 2 mm (Figure 5). In addition, the simulated lint yields corresponded to the
measured lint yields with a p-value of 0.893 according to a two-sample t-test, an NSME of
0.96, an MAE of 58.0 kg ha−1, and an RMSE of 64.5 kg ha−1. This calculation accounted for
the differences in the times of data collection and the variations in irrigation treatments.

Figure 5. Simulated and observed cotton growth at irrigation intervals of (a) 5.5 h and (b) 6.5 h in
2003, and (c) with 2 mm irrigation in 2005 at the Plant Stress and Water Conservation Laboratory field
in Lubbock, Texas, USA (d) Comparison between simulated and observed lint yields for all irrigation
treatments. OLAI, SLAI, and SAGDM represent observed leaf area index, simulated leaf area index,
and simulated above-ground dry mass, respectively.

3.2. Geographical Projection

We found that the RSCM cotton system could reproduce spatiotemporal field varia-
tions in lint yield at Halfway fields #26 and #28 in the Texas High Plains region (Figures 6
and A2). The simulated lint yields agreed with the measured yields without significant
differences at the two locations over four years (Figures 7 and A3). For example, the
p-value, NSME value, MAE value, and RMSE value were 0.978, 0.201, 168.6 kg ha−1, and
212.1 kg ha−1, respectively, in 2000; 0.595, 0.633, 117.8 kg ha−1, and 161.2 kg ha−1, respec-
tively, in 2001; 0.313, 0.612, 121.8 kg ha−1, and 164.5 kg ha−1, respectively, in 2002; and
0.357, 0.429, 160.8 kg ha−1, and 200.9 kg ha−1, respectively, in 2003 (Table 2).

We also demonstrated that the RSCM cotton regime could reproduce lint yields in
significant agreement with the measured yields using a separate dataset at field #30 for
model validation (Figures 8 and 9). The p-value, NSME value, MAE value, and RMSE
value were 0.979, −1.535, 139.5 kg ha−1, and 173.9 kg ha−1, respectively, in 2000; 0.749,
0.053, 141.7 kg ha−1, and 180.3 kg ha−1, respectively, in 2001; 0.823, 0.167, 190.4 kg ha−1,
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and 243.8 kg ha−1, respectively, in 2002; and 0.848, 0.561, 122.9 kg ha−1, and 155.7 kg ha−1,
respectively, in 2003 (Table 2).

Figure 6. Geospatial variations in (a–d) observed and (e–h) simulated cotton lint yield at field #26,
Halfway, Texas, USA, in (a,e) 2000, (b,f) 2001, (c,g) 2002, and (d,h) 2003.

Figure 7. Box and whisker plots comparing p values according to the t-test (α = 0.05) and Nash–
Sutcliffe model efficiency (NSME) values for the simulated (S) and measured (M) cotton lint yields of
field #26 over time. Error bars and boxes represent the 10th, 25th, 75th, and 90th percentiles of the
yield data, showing the median (solid line) and mean (×), where circles indicate outliers.
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Figure 8. Geospatial variations in (a–d) observed and (e–h) simulated cotton lint yield at field #30,
Halfway, Texas, USA, in (a,e) 2000, (b,f) 2001, (c,g) 2002, and (d,h) 2003.

Figure 9. Box and whisker plots comparing p values according to the t-test (α = 0.05) and Nash–
Sutcliffe model efficiency (NSME) values for the simulated (S) and measured (M) cotton lint yields of
field #30 over time. Error bars and boxes represent the 10th, 25th, 75th, and 90th percentiles of the
yield data, showing the median (solid line) and mean (×), where circles indicate outliers.
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Table 2. Comparison statistics of p (t-test at α = 0.05), mean absolute error (MAE), root mean square
deviation (RMSD) and Nash–Sutcliffe model efficiency (NSME) for the simulated and observed cotton
yields of the fields #26, #28, and #30.

Field # Year
Mean (Median) ± 1 SD

p MAE RMSD NSME
Simulated Observed

kg ha−1 Unitless kg ha−1 Unitless

26 2000 961.5 (994.1)
± 146.3

961.2 (975.1)
± 237.4 0.978 168.6 212.1 0.201

2001
1518.9

(1576.2) ±
178.0

1526.7
(1597.7) ±

266.4
0.595 117.8 161.2 0.633

2002
1384.8

(1417.1) ±
196.9

1369.6
(1397.3) ±

264.3
0.313 121.8 164.5 0.612

2003
1230.0

(1277.0) ±
183.9

1243.8
(1312.6) ±

270.3
0.357 132.1 204.2 0.429

28 2000
1088.1

(1122.8) ±
160.8

1063.2
(1131.8) ±

296.0
0.091 160.8 200.9 0.538

2001
1446.8

(1496.3) ±
184.8

1428.9
(1471.8) ±

297.9
0.256 157.7 201.1 0.544

2002 945.3 (1001.6)
± 233.9

919.7 (933.4)
± 295.9 0.130 134.8 169.8 0.670

2003
1038.6

(1045.8) ±
190.3

1049.4
(1053.4)±

311.2
0.509 141.0 172.1 0.694

30 2000 604.4 (613.9)
± 143.4

604.6 (595.7)
± 109.3 0.979 139.5 173.9 −1.535

2001
1104.5

(1101.6) ±
146.0

1107.9
(1121.9) ±

185.4
0.749 141.7 180.3 0.053

2002 949.7 (980.3)
± 208.9

953.1 (974.3)
± 267.3 0.823 190.4 243.8 0.167

2003 952.7 (941.9)
± 167.4

950.2 (944.8)
± 235.0 0.848 122.9 155.7 0.561

4. Discussion

This study evaluated and tested a crop modeling system that integrated proximal and
remote sensing information to simulate the spatiotemporal variations in cotton growth
and lint yield. The current simulation study using the updated RSCM cotton system
demonstrated that it is possible to simulate temporal variations in cotton growth and lint
yield in fields at different locations and with various irrigation systems. Furthermore, the
simulation results using the Landsat satellite imagery showed that RSCM cotton could
reproduce spatiotemporal variations in lint yield induced by different field conditions
and climate variability. In addition, our findings verified the ability of RSCM cotton to
use LAI data to minimize the inaccuracies between the simulated and observed canopy
growth variables.

The ability to perform mid-season calibration allowed RSCM cotton to reproduce
cotton growth and lint yields using proximally or remotely sensed data. This process also
required minimal environmental data input [10,23]. Furthermore, the method has been
validated for use for several staple crops using inputs from various proximal or remote
sensing platforms from a range of fields [18–20]. Thus, the modeling system could facilitate
the monitoring of growth conditions for multiple crops and may be able to accurately
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predict yield. However, limitations exist because of the model’s strong dependency on
proximal or remote sensing data. Hereafter, we discuss the reliance of RSCM cotton on
the timing, spatial resolution, and area coverage information provided by the remotely
sensed data.

We estimated LAI from VI using an empirical modeling approach reliant on inputs
from remotely sensed data. We assumed that the LAI and NDVI relationships at the
proposed cotton fields were consistent with the experimental data obtained at PSWCL
over three years (2003–2005). VI has been frequently used as an indicator of the canopy
conditions of crops and has delivered the information required to accurately determine
crop growth and yield [4,33,34]. However, VI data collected too early or too late during the
growing season may yield poor estimates of the actual canopy conditions. Furthermore,
similar to the RSCM system, VI data are not accurate when only single data points are
provided as input [35]. However, agreement between the simulation and field measure-
ments could be achieved when several evenly distributed data points representative of
crop conditions over the growing season were provided. Therefore, the timing of remote
sensing data acquisition is crucial for increasing simulation accuracy.

Crop models are usually created to simulate crop responses to changes in the sur-
rounding environment, thus helping to establish practices for ideal growth and optimum
crop management [36]. Previously, efforts have been made to establish parameter estimate
protocols for crop modeling to simplify the models and to minimize differences between
simulations and measurements [23,37]. A properly calibrated crop model can precisely
reproduce crop growth and productivity, as well as environmental factors such as soil
water content [37]. The RSCM system can easily perform these functions, and is designed
to simulate crop growth and productivity with simple input prerequisites that integrate
proximal or remote sensing data. There have been many attempts to establish similar inte-
grated crop modeling systems for various staple crops, including rice [10] and wheat [18].
The proposed RSCM cotton system could simulate cotton growth and productivity with
statistically significant precision. We showed that RSCM cotton produced simulated LAI
and lint yield values that were in statistically significant agreement with the corresponding
measured values across multiple locations and irrigation treatment conditions. Therefore,
the integrated cotton-modeling system has potential for application in simulation case
studies of other cultivation and management systems. This system could be applied to
determine appropriate planting and N treatments and to model geospatial variations in
growth and productivity by employing pixel-based, two-dimensional simulations. The
results of the current study also suggest that the RSCM system could be applied to cotton
growth and lint yield monitoring using operational satellite information.

Crop monitoring tasks using satellite remote sensing involve two conflicting crite-
ria for data acquisition: a high pixel resolution and large coverage area. Although the
RSCM cotton system can be applied to cotton growth simulation over large areas, it has
limited simulation performance because of its inaccurate representation of plant canopy
conditions. This inaccuracy was mainly attributable to the low ground resolution of
satellite images with mixed pixels. The orbital height, swath width, and revisit time of
a satellite system affect the spatial resolution of satellite imagery [2,38]. It is also chal-
lenging to acquire satellite images over large areas within a short period of time using
satellite platforms aboard very high-ground resolution sensors, e.g., GeoEye-2 (https://
www.aerospace-technology.com/projects/geoeye-2-satellite/, accessed on 1 February 2022)
and WorldView-3 (https://earth.esa.int/eogateway/missions/worldview-3, accessed on
1 February 2022). These satellite systems are generally designed for observing relatively
narrow swaths. Other satellite sensors with a coarse ground resolution, e.g., MODIS
(https://modis.gsfc.nasa.gov/, accessed on 1 February 2022), benefit from higher revisit
rates and more comprehensive area coverage. However, these satellite sensors do not
capture the detailed spectral characteristics of homogeneous crop conditions as they have
low ground resolution [39]. Therefore, identifying the optimum ground resolution for
applying satellite data to the RSCM cotton system is necessary for practical modeling

https://www.aerospace-technology.com/projects/geoeye-2-satellite/
https://www.aerospace-technology.com/projects/geoeye-2-satellite/
https://earth.esa.int/eogateway/missions/worldview-3
https://modis.gsfc.nasa.gov/
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applications. The data regarding spectral crop characteristics from satellite images can
be determined with homogeneous types from mixed pixels using simple data processing
strategies. Following this, the RSCM cotton system could be used to produce an effective
crop information delivery system that utilizes satellite imagery data with a rapid data
processing pipeline. In this context, Landsat imagery, which has a pixel resolution of 30 m
and a swath width of 185 km, would be ideal for monitoring and mapping agricultural
lands and crop productivities in medium-sized farms [40,41], in comparison with the other
medium resolution satellite images including those from MODIS. The mission of Landsat
was to help land managers, researchers, and policymakers make informed decisions about
natural and agricultural resources and the environment.

We observed that the simulated lint yields often had fewer field variabilities than the
corresponding measured values in this study. One of the reasons for this disagreement was
the lack of sensitivity of the wavebands regarding the spectral resolution used in the satellite
images collected for the crop canopy. The RSCM system, which employs remote sensing
imagery, requires accurately quantified image data to generate specific growth information
on the crop of interest during its growing season [10,35]. Once this issue is resolved, the
application of RSCM is likely to increase. A relatively sophisticated and dependable satellite
sensor should be used to complement radiometrically well-calibrated imagery. Increasing
the resolution of remote sensing images can help increase the applicability of this system
for monitoring crop growth conditions and productivity [40]. Determining the optimum
wavelength ranges for the highest spectral resolution was out of the scope of the current
study, but would be a worthwhile direction for a future study.

The RSCM system can be further developed into an information delivery system to
inform decisions regarding crop management and cultivation, thus ultimately increasing
crop productivity. We believe that this improved system would increase the precision of
many agricultural management practices. Future enhancements that could be made to
improve the modeling system include enhancing the forecast capability, both short-term
(within the crop growing season) and long-term. These enhancements would also mean
that the RSCM could be used as a decision support system to improve various management
practices in response to changing environments.

5. Conclusions

The current study demonstrated that the updated RSCM cotton technology could
reproduce spatiotemporal variations in cotton productivity across multiple locations and
irrigation systems. RSCM cotton simulated cotton canopy growth and lint yield, producing
data that agreed with corresponding field measurements without significant differences.
This study introduced the RSCM cotton system for reproducing field-based geospatial vari-
ations in cotton lint yield. We believe that this modeling system is applicable for scouting
cotton growth, evaluating productivity, and acting as a field management support tool,
owing to the integration of proximal and remote sensing information. An advantage of
the RSCM cotton system is that users can operate it with minimal climate data regarding
solar radiation, temperatures, and proximal or remote sensing information. This is pos-
sible because of the integration of proximal or remote sensing information into the crop
modeling technology, an advancement that reduces input requirements. The proposed
RSCM for cotton requires accurately quantified proximal or remote sensing data or im-
agery to improve its ability to monitor crop productivity and, ultimately, to inform field
management decisions.
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Appendix A

Table A1. Parameters for RSCM cotton simulation used in this study.

Parameter Symbol or Acronym Unit Value

Radiation use efficiency ε g MJ−1 3.49
Light extinction coefficient k - 0.9

Specific leaf area S m2 g−1 0.01
Base temperature Tb

◦C 15.6
Leaf area index at transplanting L0 m2 m−2 0.02

Partitioning parameter A a - 0.1
Partitioning parameter B b - 0.00125

Leaf senescence parameter c - 0.00125
Lint partitioning coefficient A Pa - 2
Lint partitioning coefficient B Pb - 3

Table A2. Initial leaf area index (L0), leaf partitioning and senescence (a, b, and c) parameters com-
bined after the mid-season calibration of the remote sensing-integrated cotton model. Measurements
were taken in fields #26, #28, and #33 in Halfway (HW), Texas; the Texas A&M University Agricultural
Research (TAMUAR) farm near Lamesa; and the Plant Stress and Water Conservation Laboratory
(PSWCL) in Lubbock of the Texas High Plains region, USA.

Field Location Year Cultivar L0 a b c

#26, HW 2002 Paymaster 2326 BG/RR 0.00022 0.2607 0.0014 0.0185
#28, HW 2002 Paymaster 2326 BG/RR 0.00026 0.3338 0.0012 0.0408
#33, HW 2002 Paymaster 2326 BG/RR 0.00041 0.3515 0.0011 0.0429

TAMUAR 1999 Paymaster 2326 RR 0.00228 0.4821 0.0007 0.0416
TAMUAR 2001 Paymaster 2326 RR 0.00028 0.0901 0.0022 0.0086

PSWCL 2002 Paymaster 2326 BG/RR 0.01528 0.3856 0.0012 0.0002
PSWCL 2004 Paymaster 2326 BG/RR 0.01939 0.4529 0.0008 0.0223
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Figure A1. Simulated and measured cotton growth at irrigation intervals of (a) 7.5 h and (b) 8.5 h, and
irrigation amounts of (c) 4 mm and (d) 6 mm at the Plant Stress and Water Conservation Laboratory
field, Lubbock, Texas, USA. (e) Comparison between simulated and measured lint yields for the three
years (2003–2005). LAI and AGDM represent leaf area index and above-ground dry mass, respectively.

Figure A2. Geospatial variations in (a–d) observed and (e–h) simulated cotton lint yield at field #28,
Halfway, Texas, USA, in (a,e) 2000, (b,f) 2001, (c,g) 2002, and (d,h) 2003.



Remote Sens. 2022, 14, 1421 16 of 17

Figure A3. Box and whisker plots and comparison of p values according to the t-test (α = 0.05) and
Nash–Sutcliffe model efficiency (NSME) values for the simulated (S) and measured (M) cotton lint
yields of field #28 over time (Figure A2). Error bars and boxes represent the 10th, 25th, 75th, and
90th percentiles of yield data, showing the median (solid line) and mean (×) in the box, with circles
indicating outliers.
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