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Abstract: Mining has caused considerable damage to vegetation coverage, especially in grasslands. It
is of great significance to investigate the specific contributions of various factors to vegetation cover
change. In this study, fractional vegetation coverage (FVC) is used as a proxy indicator for vegetation
coverage. We constructed 50 sets of geographically weighted artificial neural network models for
FVC and its driving factors in the Shengli Coalfield. Based on the idea of differentiation, we proposed
the geographically weighted differential factors-artificial neural network (GWDF-ANN) to quantify
the contributions of different driving factors on FVC changes in mining areas. The highlights of the
study are as follows: (1) For the 50 models, the average RMSE was 0.052. The lowest RMSE was 0.007,
and the highest was 0.112. For the MRE, the average value was 0.007, the lowest was 0.001, and the
highest was 0.023. The GWDF-ANN model is suitable for quantifying FVC changes in mining areas.
(2) Precipitation and temperature were the main driving factors for FVC change. The contributions
were 32.45% for precipitation, 24.80% for temperature, 22.44% for mining, 14.44% for urban expansion,
and 5.87% for topography. (3) Over time, the contributions of precipitation and temperature exhibited
downward trends, while mining and urban expansion showed positive trajectories. For topography,
its contribution remains generally unchanged. (4) As the distance from the mining area increases,
the contribution of mining gradually decreases. At 200 m away, the contribution of mining was
26.69%; at 2000 m away, the value drops to 17.8%. (5) Mining has a cumulative effect on vegetation
coverage both interannually and spatially. This study provides important support for understanding
the mechanism of vegetation coverage change in mining areas.

Keywords: quantify; GWDF-ANN; FVC; vegetation cover; mining area

1. Introduction

Coal is an important source of energy in the world. For example, China’s primary
energy source is mainly coal [1]. Mining has caused land subsidence, occupation, excava-
tion, and pollution [2,3], considerably reducing vegetation areas. Mining also affects the
inherent growth of vegetation. For example, when dust from open-pit mines falls on the
plant leaf surface, the stomatal conductance of the leaf decreases, and the amount of carbon
dioxide exchange is also reduced. Large-scale mining has severely damaged the grassland
ecosystem [4] and accelerated changes in vegetation coverage [5]. In addition to mining,
many researchers have shown that precipitation, temperature [6–9], topography [10], and
urban expansion [11] are important driving factors altering vegetation coverage in mining
areas. However, the contribution of each factor to the change of vegetation coverage in
mining areas remains unclear. Therefore, it is crucial to accurately quantify the contribu-
tions of the different driving factors in altering the fractional vegetation coverage (FVC) in
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mining areas. The quantitative analysis of these factors may also help reveal the internal
mechanisms of vegetation coverage change in mining areas.

There are two main approaches based on remote sensing used to investigate the
impact of mining on vegetation. One is to use vegetation parameters obtained from satellite
monitoring as proxy indicators. Direct changes in proxy indicators are then used to analyze
the impact of mining on vegetation. Li and Wang used the temporal and spatial changes
in the FVC to reveal the changes in vegetation coverage in the Baorixile mining area, the
Shengli mining area, and the Yellow River basin mining area [12–14]. Li used NDVI to
analyze the impact of mining on vegetation change in Jungar Banner, China, from 2000 to
2017 [15]. Yang used NDVI and LandTrendr algorithms to monitor vegetation disturbance
and restoration in the Kurah coal mining area [16]. However, the proxy parameter for
vegetation is direct change, which is affected by the complex coupling of multiple factors
and cannot be attributed solely to mining.

The other uses statistical methods to construct a regression model based on ordinary
linearity for vegetation parameters and their driving factors. For example, Li used multiple
linear regression, spatial correlation, and partial least square regression to analyze the
impact of mining on the NDVI changes in the grasslands of Chenbarhu Banner, Inner
Mongolia, China [17]. Fu Xiao used the rate of change in greenness (RCV) and the coefficient
of variation (CV) to conduct correlation and stepwise regression analysis in studying the
driving factors for the vegetation change in Xilinhot, particularly mining activities [18].
These studies mainly use a global regression model, in which the relationship between
vegetation parameters and driving factors is assumed to be spatially constant. However,
such a relationship often varies significantly in space because the vegetation coverage in
mining areas may be affected by spatial factors such as climate, topography, and mining.
Each driving factor may also have different effects on FVC at various locations. The
phenomenon of how spatial relationships vary at different geographic locations is called
spatial nonstationarity [19]. Simple linear regression modeling cannot accurately describe
the complex driving processes of these different factors in changing the vegetation coverage
in mining areas.

Therefore, the local modeling method, geographically weighted regression (GWR),
was developed to deal with spatial nonstationarity. GWR has been widely applied in
various fields, such as real estate economics [20,21], land-use science [22,23], ecology [24],
and criminology [25,26]. However, GWR is essentially linear modeling. The geographically
weighted artificial neural network (GWANN) was proposed to address the limitations of the
GWR in describing complex nonlinear processes. GWANN uses the distance attenuation
kernel function and bandwidth to calculate the geographic weight of the observed value
results based on the GWR, solving the problem in spatial nonstationarity modeling. The
model uses ANN to construct a nonlinear function model without making any assumption
in completing complex spatial prediction tasks. It has been used to solve problems such
as real estate valuation [27], agricultural output estimation [28], and wildfire analysis [29].
GWANN has been shown to be significantly better than the GWR when modeling synthetic
data and actual data with nonlinearity and high spatial variance, respectively [27].

Vegetation coverage can be evaluated using the FVC determined using satellite im-
agery [30]. FVC is the ratio of the vertical projection of vegetation (e.g., leaves, stems,
branches) on the ground in each pixel, which directly reflects the amount of vegetation
in the target area [31,32]. FVC describes and measures vegetation growth and is the most
important and sensitive indicator for vegetation coverage change [33,34].

In this study, we developed the geographically weighted differential factors-artificial
neural network (GWDF-ANN). It is a mixed methodology based on the GWR and ANN,
which constructs a nonlinear model while considering the nonstationarity of variables.
Most importantly, this approach can quantify the contributions of different driving factors
to the FVC. We applied the above methods to the various driving factors (i.e., temperature,
precipitation, topography, mining, and urban expansion) and quantified each driving
factor’s contribution on FVC in the Shengli Coalfield of Inner Mongolia for 2004–2020.
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2. Methods
2.1. Geographically Weighted Artificial Neural Network

The artificial neural network is a computing model consisting of many neurons and
one-way connections [35]. Each neuron i represents a specific output function called an
activation function. The connection between the two neurons i and j are controlled by
the weight wij, which is the weighted value of the signal through the connection. These
neurons are usually organized in layers, and each neuron is directionally connected to the
neuron in the next layer. GWANN is different from the traditional ANN. It consists of an
input layer, a hidden layer, and an output layer. A network with a single hidden layer can
better approximate any continuous function on the closed subset and bounded subset of
n-dimensional Euclidean space, given enough hidden neurons.

An input neuron is a grid cell that contains location information, y-value, and x-
values. In this paper, y-value refers to FVC, and x-values refer to temperature, precipitation,
topography, mining, and urban expansion. The modeling process of GWANN is shown
in Figure 1. Many input neurons from the input layer pass into the hidden layer and
are then aggregated and converted in the hidden layer using Equation (1). The output
of neuron i is calculated using Equation (2). In neurons, people often use a nonlinear
hyperbolic tangent activation function, which has the necessary conditions for calculating
the network’s continuous and differentiable error gradient [36], as shown in Equation (3).
The output for each neuron is then passed to the output layer. Each output neuron of
the output layer is assigned to a location in the geographic space and predicts a global
observed value. However, the observed value is still not accurate enough. To simulate an
exact nonlinear relationship model, the connection weight of the ANN must be adjusted.

Layerj = ∑
i∈Sj

wijoi (1)

oi = Φ(Layerj) (2)

f (x) =
ex − e−x

ex + e−x (3)

where Layerj is the network input of neuron j, wij is the connection weight between neuron
i and j, oi is the output of neuron i, Sj is a group of neurons that have output connection
with neuron j, Φ is the activation function, f(x) is the transfer value after activation of the
neuron, and x is the parameter value before neuron activation.

Two main steps are usually required to adjust the ANN. First, backpropagation is used
to calculate the error signal for the observed value of each neuron [37]. Unlike traditional
ANN, GWANN uses a geographically weighted error function instead of a quadratic error
function to calculate the error signal. GWANN weighs the difference between the output
neuron and the target value (y-value) according to the spatial distance between the location
of the output neuron and the observed value. These weights can be interpreted as the
GWR model. When the output neuron’s position is closer to the observed value, it is
given a higher weight than those farther from the observed value. The geographically
weighted error function is defined as Equation (4), and the backpropagation error signal is
determined using Equation (5).
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Figure 1. The modeling process of GWANN. N1, N2, N3, and N4 are the multiple input neurons
composing the input layer. The rectangles on the left represent the attributes of each input neuron
(y-value and x-values), and Y0 is the prediction.

Gradient descent is used to adjust the connection weight in the second step, as in
Equation (6). We use Nesterov’s acceleration gradient [38], which significantly improves
training performance [39] and makes training more robust. These two steps are repeated
until the termination condition is reached (e.g., the error rate is lower than a predetermined
threshold) and the GWANN model construction is completed. Finally, the modeling is
completed, and we obtain the prediction(Y0). The GWANN can be implemented on RStudio
software. An R package providing an implementation of GWANN can be obtained from
https://github.com/jhagenauer/gwann (accessed on 1 July 2021) [27], the purpose of
which was to predict Y0 in this study.

E =
1
2

n

∑
i=1

vi(ti − oi)
2 (4)

δj =

{
Φ′(Layerj)vi(oj − tj) if j is an output neuron
Φ′(Layerj)∑

k
δkwjk otherwise (5)

∆wij = −η
∂E

∂wij
= −ηδjoi (6)

where oi is the output of neuron i, oj is the output of neuron j, ti is the target value of neuron
i, tj is the target value of neuron j, vi is the geographically weighted distance between
the observed value and the position of output neuron i, vj is the geographically weighted
distance between the observed value and the location of output neuron j, n is the number of
output neurons, Layerj is the network input of neuron j, Φ’ is the derivative of the activation
function, δ is the value of neuron j error signal, wjk is the connection weight between neuron
j and k, wij is the connection weight between neuron i and j, E is the error function, and η is
the learning rate.

https://github.com/jhagenauer/gwann
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2.2. Geographically Weighted Differential Factors-Artificial Neural Network

The GWANN can be used for value prediction but not in exploring the contributions
of driving factors. Hence, we developed the geographically weighted differential factors-
artificial neural network (GWDF-ANN), which can be obtained from https://figshare.com/
s/3d06bb3dc4660396d539 (accessed on 15 November 2021). In GWDF-ANN, we adapted
the existing architecture (GWANN) and we added a bias for each driving factor before
prediction. The idea of differentiation is then utilized to quantify the contribution of each
factor. The steps are as follows.

First, we use the FVC and five driving factors (temperature, precipitation, topography,
mining, and urban expansion) (xi) to build the GWANN model and predict Y0. Second, a
bias (∆xi) is added to the xi, which is calculated using Equation (7). The bias is added to a
specific driving factor for all input neurons, while the other driving factors for each input
neuron are kept constant. The bias does not affect the learning in the hidden layer of other
inputs in computing the contribution of one factor. The setting of the bias is carried out
in a series of experiments. If the bias is greater than 0.001, the contribution of the driving
factor always changes. But if the bias is less than 0.001, the contribution of the driving
factor hardly varies. From experiments, we found that 0.001 is the threshold value at which
the contribution of the driving factor tends to stabilize. The bias is added separately for
each driving factor and then input into the model to predict Y (Yxi). The partial derivative
for each driving factor is then calculated separately, using Equation (8). Finally, the partial
derivative results are normalized using Equation (9), and the contribution of each driving
factor to Y is obtained. The modeling process of GWDF-ANN is shown in Figure 2.

4 xi= xi ∗ 0.001 (7)

Gxi =
Yxi −Y0

∆xi
(8)

Wxi =
Gxi

n
∑

i=1
Gxi

(9)

where xi is the value of the driving factor i, ∆xi is the bias of xi, Gxi is the partial derivative
of xi, Yxi is the prediction after adding a bias to xi, Y0 is the prediction of original data, n is
the number of driving factors, and Wxi is the contribution of the xi factor.

Figure 2. Cont.

https://figshare.com/s/3d06bb3dc4660396d539
https://figshare.com/s/3d06bb3dc4660396d539
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Figure 2. The modeling process of GWDF-ANN. N1, N2, N3, and N4 are the multiple input neurons
composing the input layer. The first rectangular box shows the model after the first driving factor
has been added with a bias to x1 (x1 + ∆x1). The Yx1 represents the predicted result after adding a
bias. The second rectangular box shows the model after the first driving factor has been added with a
bias to x2 (x2 + ∆x2). The Yx2 represents the predicted result after adding a bias. We do not show all
the driving factors. The last rectangular box shows the model after the first driving factor has been
added with a bias to x5 (x5 + ∆x5). The Yx5 represents the predicted result after adding a bias.

3. A Case Study
3.1. Study Area

Shengli Coalfield is located in Xilinhot, Inner Mongolia, China (115◦18′~117◦06′ E,
43◦02′~44◦52′ N), as shown in Figure 3. It belongs to the mid-temperate semiarid conti-
nental monsoon climate. From 2004 to 2020, the monthly 24 h average temperature ranges
from −18.4 ◦C in January to 22.4 ◦C in July, with an annual mean temperature of 2.76 ◦C.
Most of the 250 mm (9.84 inches) annual rainfall occur in July and August. The average
precipitation and temperature from January to December 2004–2020 are shown in Figure 4a.
In winter, northwest winds predominate, while south and southeast winds are more preva-
lent in summer. Xilinhot’s usable pasture area is 1,369,000 hectares and is a significant
processing and production base for green livestock products in China. The grasslands are
composed of meadow grassland, typical grassland, and dune grassland. Xilinhot is also
rich in mineral resources, with more than 30 billion tons of proven coal reserves.
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Figure 3. The geographical location of Shengli Coalfield in Xilinhot, Inner Mongolia, China.
(a) Location of Xilinhot in China; (b) boundaries of the mine and urban areas in Xilinhot; (c) ex-
tent of the study area; (d) drone image of the mining area; (e) drone images of the grassland.

Figure 4. (a) The average precipitation and temperature from January to December during 2004−2020;
(b) the correlation coefficient between FVC and precipitation and temperature.

The Shengli Coalfield is a lignite coalfield with the thickest coal seam, and it holds the
largest reserves (estimated at 22.7 billion tons) in China. Its thick coal seam, shallow burial,
and simple geological structure are suitable for centralized development. The coal quality
is well suited for power generation, liquefaction, and chemical industries. The coalfield is
located three kilometers north of Xilinhot. In 2004, Shengli Coalfield started the mining
project and entered the large-scale construction phase in 2006.

A field survey was carried out in April 2020, in which drone images of the study area
were taken and discussed with the residents. We found that the impact of mining activities
on the vegetation two kilometers away from the coalfield boundary was minimal. While
a larger area would have been more favorable, we were hampered by data acquisition
constraints. In this paper, we selected a portion of the Shengli Coalfield to investigate the
effects of mining and other factors on the vegetation using our proposed approach. We set
a two-kilometer buffer and selected five directions (directions 1–5, Figure 3c) with uniform
and random distribution to acquire more representative results. Given that the south of the
Shengli Coalfield is mainly urban communities with little vegetation coverage, we did not
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include the south direction in this study. The placement of direction 5 was determined by
considering the land cover, which was incompatible with the other four. Each direction
was set up with ten analysis units placed at 200 m intervals. GWDF-ANN models were
constructed separately for each analysis unit.

3.2. Fractional Vegetation Coverage

In this study, FVC was used as a proxy for vegetation coverage change. FVC can
be calculated by the Normalized Difference Vegetation Index (NDVI) using the pixel
dichotomy model. First, Landsat Collection 2 surface reflectance products were accessed
on Google Earth Engine (GEE) from 2004 to 2020. All Collection 2 surface reflectance
products were created with a single-channel algorithm jointly produced by the Rochester
Institute of Technology (RIT) and National Aeronautics and Space Administration (NASA)
Jet Propulsion Laboratory (JPL). This 30 m spatial resolution product is derived from
Landsat 5 TM and Landsat 8 OLI sensors and has undergone radiation calibration and
atmospheric correction.

We selected satellite imageries from July 1 to September 30, when vegetation grows
vigorously. The masking and the removal of clouds on the images were implemented
on the GEE. Cloud removal was achieved using the QA quality band of Landsat and
filtering the pixel values by bit manipulation. Masking was then used to remove clouds,
cloud shadows, and snow pixels. The processed satellite images were synthesized using
the maximum function in GEE. The maximum algorithm reduces image collection by
calculating the maximum values at each pixel across the stack of all matching bands from
July to September for each year. In other words, we used this reduction function for the
images of every year. Years 2008, 2012, and 2018 were excluded due to excessive cloudiness.
The information of satellite imageries is shown in Table 1.

We then calculated the NDVI for each pixel in each year using Equation (10). We
corrected the NDVI for Landsat 5 TM to Landsat 8 OLI to resolve sensor differences between
satellites. Previous studies have proposed methods to calibrate Landsat 5 TM, Landsat
7 ETM+, and Landsat 8 OLI [40–42]. We followed their procedure and selected some sample
plots in Xilinhot to calibrate these sensors. We extracted the NDVI from TM and ETM+ for
the same dates and performed regression analysis on the two NDVI groups to obtain the
correction equation for TM to ETM+. The same method was used to calibrate ETM+ to OLI.
Finally, the TM was corrected to OLI.

We then calculated the FVC according to the pixel dichotomy model using Equation (11).
Pixel dichotomy assumes that ground pixels exist in a linear mixture of vegetation and soil.
The pixel’s NDVI value is only affected by vegetation coverage. We selected plots that were
completely bare. The NDVI pixel values from 2013 to 2020 were sorted in descending order,
and the 95% percentile was used as NDVIsoil. The NDVIveg and NDVIsoil are stable from
year to year with the long time series. We then selected some with complete vegetation
cover during the peak growing season. The NDVI values in these plots were sorted in
ascending order, and the 95% percentile was selected as NDVIveg. The long time series of
pixel values can ensure the interannual stability of NDVIveg and NDVIsoil. The NDVIveg
and NDVIsoil values are suitable since the different satellite sensors were corrected for
consistency. The use of the 95% percentile pixel values reduces anomalous noisy pixels.
The NDVIsoil was calculated to be 0.08, while NDVIveg was 0.7.

NDVI =
ρnir − ρred
ρnir + ρred

(10)

FVC =
NDVI−NDVIsoil

NDVIveg −NDVIsoil
(11)

where ρnir is the surface reflectance in the near-infrared band, ρred is the surface reflectance
in the red band, NDVIsoil is the NDVI for pure bare soil pixel, and NDVIveg is the NDVI for
pure vegetation pixel.
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Table 1. Information of satellite imageries.

Sensor Year Path/Row Date Number

Landsat 8 OLI

2020
124/29 9 July 25 July 10 August 26 August 11 September 27 September

16124/30 9 July 25 July 10 August 26 August 11 September 27 September
125/29 16 July 1 August 2 September 18 September

2019
124/29 7 July 23 July 8 August 24 August 9 September 25 September

16124/30 7 July 23 July 8 August 24 August 9 September 25 September
125/29 14 July 31 July 31 August 16 September

2017
124/29 1 July 17 July 18 August 3 September 19 September

16124/30 1 July 17 July 18 August 3 September 19 September
125/29 8 July 24 July 9 August 25 August 10 September 26 September

2016
124/29 14 July 30 July 21 August 16 September

14124/30 14 July 30 July 21 August 16 September
125/29 5 July 21 July 6 August 22 August 7 September 23 September

2015
124/29 12 July 28 July 13 August 29 August 14 September 30 September

18124/30 12 July 28 July 13 August 29 August 14 September 30 September
125/29 3 July 19 July 4 August 20 August 5 September 21 September

2014
124/29 9 July 25 July 10 August 26 August 11 September 27 September

16124/30 9 July 25 July 10 August 26 August 11 September 27 September
125/29 16 July 1 August 2 September 18 September

2013
124/29 6 July 22 July 7 August 23 August 8 September 24 September

16124/30 6 July 22 July 7 August 23 August 8 September 24 September
125/29 13 July 30 July 30 August 15 September

Landsat 5 TM

2011
124/29 1 July 17 July 18 August 3 September 19 September

16124/30 1 July 17 July 18 August 3 September 19 September
125/29 8 July 24 July 9 August 25 August 10 September 26 September

2010
124/29 14 July 30 July 21 August 16 September

14124/30 14 July 30 July 21 August 16 September
125/29 5 July 21 July 6 August 22 August 7 September 23 September

2009
124/29 11 July 27 July 12 August 28 August 13 September 29 September

18124/30 11 July 27 July 12 August 28 August 13 September 29 September
125/29 2 July 18 July 3 August 19 August 4 September 20 September
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Table 1. Cont.

Sensor Year Path/Row Date Number

2007
124/29 6 July 22 July 7 August 23 August 8 September 24 September

16124/30 6 July 22 July 7 August 23 August 8 September 24 September
125/29 13 July 30 July 30 August 15 September

2006
124/29 3 July 29 July 4 August 20 August 5 September 21 September

17124/30 3 July 29 July 4 August 20 August 5 September 21 September
125/29 10 July 27 July 27 August 12 September 28 September

2005
124/29 16 July 17 August 2 September 18 September

14124/30 16 July 17 August 2 September 18 September
125/29 7 July 23 August 7 August 24 August 9 September 25 September

2004
124/29 13 July 29 July 14 August 30 August 15 September

16124/30 13 July 29 July 14 August 30 August 15 September
125/29 4 July 20 July 5 August 21 August 6 September 22 September
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3.3. Driving Factors

For this study, temperature, precipitation, topography, mining, and urban expansion
were selected as driving factors. Precipitation and temperature data were obtained from
the China Meteorological Data Network (http://data.cma.cn (accessed on 1 January 2021))
(station number 54,102). We collected the monthly cumulative precipitation (unit: mm)
and monthly average temperature (unit: ◦C) for Xilinhot in 2004–2020 (except 2008, 2012,
and 2018) from station number 54,102. Numerous studies have shown that vegetation
response to climate and precipitation may exhibit varying time lag effects for different
regions [43,44]. It remains unclear how precipitation and temperature correlate with the
FVC in the study area at different months of the year. Therefore, we performed a Pearson
correlation analysis on temperature, precipitation, and FVC for each month. The correlation
coefficients between FVC and precipitation and temperature are presented in Figure 4b.
The results show that the cumulative precipitation from July to September and the average
temperature from July to September have the highest correlations with the FVC at 0.660
and −0.616, respectively. Hence, they were selected as driving factors.

The topography data were derived from the digital elevation model (DEM) of the Shut-
tle Radar Topography Mission (SRTM), released by NASA in 2014. The spatial resolution is
30 m. Since topography does not significantly change year to year and annual topography
data is unavailable, the same topography data was used for each year (see Figure 5). The
mining factor was determined using the annual coal production, and the shortest Euclidean
distance between the grid cell and the mining boundary and is calculated by Equation (12).
Aside from the Shengli Coalfield, we also accounted for the effect of the West No. 2 Mine.
This Euclidean distance refers to the shortest distance from each grid cell to each mine
boundary. Coal production refers to the total output of the Shengli Coalfield and the West
No. 2 Mine. The urban expansion was quantified using the annual urban population of
Xilinhot and the shortest Euclidean distance between the grid cell and the mining boundary,
as shown in Equation (13).

Figure 5. The spatial distribution of topography.

Annual coal production was provided by the National Energy Investment Group Co.,
Ltd. (Beijing, China). Coal production did not increase annually. The annual coal produc-
tion from 2004 to 2020 is shown in Figure 6a. The urban population was obtained from the
Xilinhot Statistical Yearbook, while the mining and urban boundaries were generated using
Landsat imageries. In this study, we quantified mining and urban expansion from 2004 to
2020 (except 2008, 2012, and 2018). The quantitative results for the mining factor in 2020

http://data.cma.cn
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are presented in Figure 6b. The results for the urban expansion factor in 2020 are shown in
Figure 7.

Xmine =
MA

EDmine + 1
(12)

Xurban =
NP

EDurban + 1
(13)

where MA is the mined amount (unit: 104 m3), EDmine is the shortest Euclidean distance
between the grid cell and the boundary of the mining area (unit: km), NP is the urban
population of Xilinhot, and EDurban is the shortest Euclidean distance between the grid cell
and the urban boundary (unit: km).

Figure 6. (a) Coal production from 2004 to 2020; (b) quantitative results of the mining factor in
2020 (normalized).

Figure 7. Quantitative results of the urban expansion factor in 2020 (normalized).
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3.4. Model Building

We set a two-kilometer buffer in the study area and delineated the buffer zone uni-
formly and randomly in five directions (directions 1–5, Figure 3c). Each direction had ten
analysis units placed at 200 m intervals. The analysis unit was composed of 81 grid cells,
separated by 30 m. Each unit was a circular area with a 90 m radius and was used to train a
model; 50 driving models were established.

Before model training, we normalized the FVC, temperature, precipitation, topography,
mining, and urban expansion factors for 2004–2020 (except 2008, 2012, and 2018) using
Equation (14). The normalized data were then extracted to the corresponding grid cells
(y-value and x-values). In this case, the input values were mapped on a 0–1 range with
no dimension.

Zi =

xi − max
1≤i≤n

(xi)

max
1≤i≤n

(xi)− min
1≤i≤n

(xi)
(14)

where Zi is the normalized value of the Z factor in grid cell i, xi is the original value of the
grid cell i, and n is the number of grid cells.

The 15-year grid cells (y-value and x-values) for each analysis unit were input into the
model as the input layer. The FVC value (Y0) was predicted for each analysis unit. The
input data were then modified. Biases were added to the five driving factors (xi + ∆xi)
and were input back into the model to predict the FVC value (Yxi) for each driving factor.
Finally, the GWDF-ANN method was used to obtain the contribution of each grid cell.
The average value of all the grid cells in each analysis unit was calculated to determine
the contribution of the analysis unit. The procedure was repeated for each analysis unit
to obtain the contribution (W) of the different analysis units. Each analysis unit uses an
independent GWDF-ANN model.

4. Results
4.1. Modeling Results and Accuracy

Models were generated for the different analysis units. We selected the predicted
FVC results (Y0) of the first analysis unit in each direction and compared them with the
actual FVC results (y-value), as shown in Figure 8. The predicted FVC values are similar
to the actual results. RMSE and MRE were used as the model evaluation indicators, and
the calculation methods are shown in Equations (15) and (16). The RMSE and MRE are
typical accuracy evaluation indicators widely used in evaluating modeling accuracy in
geospatial modeling [45,46]. The results of the RMSE and MRE are shown in Table 2. The
average RMSE for the 50 groups of models is 0.052. The minimum RMSE for analysis unit
16 is 0.007, and the highest RMSE for analysis unit 10 is 0.112. The average MRE value is
0.007. The lowest MRE for analysis unit 6 is 0.001, while the highest MRE for analysis unit
46 is 0.023. The results suggest that the GWDF-ANN model is suitable for quantifying the
change of FVC in mining areas.

RMSE =

√
1
n

n

∑
i=1

(FVCpredi − FVCtrue i

)2
(15)

MRE =
1
n

n

∑
i=1

|FVCpred i
− FVCtrue i |

FVCtruei

(16)

where n is the total number of grid cells in training data, FVCpredi
is the FVC value of grid

cell i predicted by the model, and FVCtruei is the actual FVC of grid cell i.
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Figure 8. The comparison of actual FVC and predicted FVC results. (a–e): Directions 1–5.

Table 2. Model accuracy.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

RMSE 0.0577 0.0567 0.0654 0.0642 0.0506 0.0493 0.0548 0.0554 0.0853 0.1117
MRE 0.0064 0.0084 0.0061 0.0035 0.0019 0.0014 0.0040 0.0006 0.0023 0.0162

Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19 Model 20

RMSE 0.0537 0.0621 0.0190 0.0173 0.0262 0.0066 0.0334 0.0148 0.0935 0.0141
MRE 0.0095 0.0056 0.0076 0.0032 0.0085 0.0044 0.0061 0.0078 0.0080 0.0015

Model 21 Model 22 Model 23 Model 24 Model 25 Model 26 Model 27 Model 28 Model 29 Model 30

RMSE 0.0468 0.0930 0.0139 0.0954 0.0142 0.0630 0.0597 0.0709 0.0805 0.0963
MRE 0.0218 0.0042 0.0058 0.0025 0.0076 0.0083 0.0039 0.0087 0.0086 0.0020

Model 31 Model 32 Model 33 Model 34 Model 35 Model 36 Model 37 Model 38 Model 39 Model 40

RMSE 0.0706 0.0688 0.0178 0.0230 0.0167 0.0522 0.0256 0.0352 0.0931 0.0888
MRE 0.0038 0.0068 0.0042 0.0073 0.0043 0.0096 0.0078 0.0085 0.0057 0.0072

Model 41 Model 42 Model 43 Model 44 Model 45 Model 46 Model 47 Model 48 Model 49 Model 50

RMSE 0.0494 0.0598 0.0671 0.0223 0.0246 0.0660 0.0399 0.0883 0.0143 0.0569
MRE 0.0074 0.0078 0.0034 0.0120 0.0093 0.0234 0.0056 0.0126 0.0056 0.0130

4.2. FVC Spatial Changes and Quantitative Results of Driving Factors

Figure 9 shows the spatial distribution of FVC values within two kilometers from the
Shengli Coalfield. The FVC values are in the 0–1 range; the higher the value, the greater
the vegetation coverage. From 2004 to 2010 (except 2008), FVC decreased annually. The
average FVC was 0.48, 0.40, 0.37, 0.34, 0.34, and 0.30, decreasing by 37.02% in six years. The
FVC had a short-term increase from 2011 to 2013 and then decreased from 2013 to 2019.
The lowest FVC value was 0.30, occurring in 2010, and the highest was 0.63 in 2020.

We calculated the average contributions of all the analysis units in the five directions.
We found that the most prominent driving factor for FVC is precipitation (32.45%), followed
by temperature (24.80%), mining (22.44%), and urban expansion (14.44%). The topography
had the lowest contributions, with 5.87%. When combined, precipitation and temperature
drive more than half (57.25%) of the FVC changes.
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Figure 9. The spatial distribution of FVC from 2004 to 2020 (except 2008, 2012, and 2018).

We then computed the average factor contributions of the ten analysis units for a
given year at varying distances from the boundary of the mining area, and the results are
displayed in Figure 10. The contribution of each driving factor shows similar characteris-
tics. Over the years, the contributions of the different driving factors constantly changed.
Precipitation and temperature have a downward trend, while mining and urban expansion
have an increasing trajectory. The topography contributions remained unchanged.

Figure 10. The contribution of driving factors from 2004 to 2020. (a–e): Directions 1–5. Topo represents
the factor of topography; Pre represents the factor of precipitation; Temp represents the temperature
factor; Mine represents the factor of mining, and Urban represents the factor of urban expansion.
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To compare the contribution of a particular driving factor in different years, take
direction 1 as an example. Precipitation had the highest contribution at 37.28% in 2004 and
the lowest contribution in 2019 at 30.68%. Temperature’s contribution was at 25.37% in
2004 and it contributed the least in 2020 at 21.88%. The mining effect increased year by year,
closely following temperature. Temperature’s contributions in 2016, 2017, and 2020 were
comparable. The trend suggests that temperature has become the second major driving
factor. The contribution of mining from 2004 to 2020 increased from 18.38% to 22.23%, in
which the fastest growth occurred in 2010–2011, rising by 10.04 percentage points. Urban
expansion had a relatively flat growth trend and had declined in specific years. Still, urban
expansion’s overall contributions have grown over the years, increasing from 12.73% in
2004 to 15.77% in 2020. For topography, the interannual contributions had very little change,
only fluctuating within a 1% variation range.

The interannual contributions of each driving factor in the five directions had similar
fluctuation characteristics, with the fifth direction being slightly different. The contribution
of mining in direction 5 increased significantly interannually. In 2004, the major contribut-
ing factors were precipitation (32.42%), mining (25.47%), and temperature (24.75%). For
2020, mining (31.52%), precipitation (28.75%), and temperature (21.43%) were the main
contributors. During the early stages of mining in 2004, its contribution was the second
leading driving factor, surpassing that of temperature. However, over the years, tempera-
ture’s role gradually diminished while mining’s influence increased. From 2004 to 2020,
contributions from mining increased from 25.47% to 31.52%, growing by 23.77 percentage
points. After 2016, mining surpassed precipitation and became the leading driving factor.

Interannually, the contributions from precipitation and temperature show a fluctuating
trend. The increase in the contribution of the precipitation is accompanied by the decrease
in the influence of temperature. Likewise, the reduction in the contribution of precipitation
is accompanied by the increase in the contribution of temperature. In direction 4, the
contribution of precipitation showed a downward trend in 2004–2006, 2014–2017, and
2019–2020, and an upward trend in other years. Temperature showed an upward trajectory
in 2004–2006, 2014–2017, and 2019–2020, and had a downward trend in other years.

We then took the average contribution of each factor in the ten analysis units at varying
distances from the boundary of the mining area in the same direction. We calculated the
change in the contribution of each factor in different directions, and the results are shown
in Figure 11. The contribution of driving factors in direction 5 is noticeably different from
other directions. In direction 5, the contribution of mining increased significantly, while the
contributions of precipitation, temperature, urban expansion, and topography decreased.

Figure 11. The contribution of driving factors in different directions.
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We computed the mean contribution of each factor in the ten analysis units at different
distances from the boundary of the mining area in the same direction for 2004–2020 (except
2012 and 2018). We drew pie charts detailing the factor contribution of different directions
(see Figure 12). Precipitation had the maximum contribution of 33.50% in direction 1
and a minimum of 30.94% in direction 5. For temperature, the maximum contribution
was in direction 2 at 25.61%, and the minimum in direction 5 at 22.76%. The maximum
contribution of mining in direction 5 is 28.36%, and the minimum in direction 1 is 20.93%.
Urban expansion had the largest share of contribution in direction 4 at 14.89% and the
smallest in direction 5 at 12.88%. For topography, the maximum contribution was 6.13% in
direction 1 and the minimum at 5.06% in direction 5.

Figure 12. The pie chart of driving factor contribution in different directions. (a–e): Directions 1–5.
Topo represents the factor of topography; Pre represents the factor of precipitation; Temp represents
the factor of temperature; Mine represents the factor of mining, and Urban represents the factor of
urban expansion.

The contributions of the various driving factors varied for the different directions.
In directions 1–3, the order of driving factors from highest to lowest contribution was
precipitation, temperature, mining, urban expansion, and topography. In direction 4,
the ranking from highest to lowest was precipitation, temperature, mining, topography,
and urban expansion. In this direction, the topography influence exceeded that of urban
expansion. In direction 5, the order from highest to lowest contribution was precipitation,
mining, temperature, urban expansion, and topography. Mining surpassed temperature to
become the number two leading driving factor, second only to precipitation.

4.3. Contribution Analysis of the Mining Factor

We took the average value of mining contribution for each analysis unit from 2004
to 2020 (except 2008, 2012, and 2018) and analyzed the mining contributions at varying
distances from the Shengli Coalfield boundary. We plotted the mean values for the different
directions, and the results are presented in Figure 13. In all five directions, the contribution
of mining showed apparent distance attenuation. As the distance from the boundary
of the Shengli Coalfield increased, the contribution from mining exhibited a downward
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trend. This means that the farther away a point is from the mining area, the lower the
contribution of mining. The maximum contribution of mining in the five directions is 26.69%
at 200 m from the mining area boundaries, which drops to 17.8% at 2000 m, decreasing
by 33.31%. As the distance from the mining area boundary increases from 200 m to
2000 m, the contribution of mining in directions 1–5 decreases by 0.09, 0.10, 0.09, 0.08, and
0.08, respectively.

Figure 13. The contribution of the mining factor at different distances from the boundary of
Shengli Coalfield.

5. Discussion

The GWDF-ANN method proposed in this study quantifies the contribution of driving
factors to changes in the FVC. In particular, this study explores the impact of mining on
FVC. Some results need further explanation and discussion.

The main driving factor of FVC around the mining area is not mining but precipitation,
followed by temperature. In this study, the average contributions of precipitation and
temperature from 2004 to 2020 in all analysis units were 32.45% and 24.80%, respectively.
Since the study area was set as a buffer zone, two kilometers away from the mine boundary,
the spatial heterogeneity of temperature and precipitation was almost absent. Therefore, the
temperature and precipitation driving factors for each analysis unit were the same station
data. The differences in temperature and precipitation were mainly between years. For
example, the cumulative precipitation from July to September was high in 2004 and 2020
(274.3 mm and 268.4 mm) and low in 2014 and 2017 (93.9 mm and 93.1 mm). These values
are consistent with our results, as in direction 1, the contribution of precipitation factor was
high in 2004 and 2020 (37.28% and 33.27%) and low in 2014 and 2017 (32.07% and 32.93%).
We found that more than 50% of the vegetation changes had been driven by precipitation
and temperature and that the sum of their contributions reached 57.25%. Many studies have
shown that vegetation change is very responsive to precipitation and temperature [47–50],
consistent with the results of this study. In arid and semiarid grasslands, the contribution
of precipitation on FVC is significantly greater than that of temperature.

In addition to climate factors, this study quantified the impact of mining and urban
expansion. Hui and Aman Fang found that mining significantly degrades vegetation
coverage [51,52], but its specific contribution to vegetation coverage change has not been
thoroughly explored. From 2004 to 2020, the contribution of mining within two kilome-
ters around the boundary of the Shengli Coalfield was 22.44%. Mining causes severe
degradation in groundwater levels and noticeable soil desertification, resulting in harsh
environments for vegetation growth. Coal mine dust falling on plant leaf surface may
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also affect plant growth and cause other serious problems. Around the mining area, FVC
degradation caused by mining is apparent.

The city’s rapid expansion and industrialization have resulted in decreased FVC. From
2004 to 2020, the contribution rate of urban expansion within two kilometers from the
Shengli Coalfield is 14.81%. From 2004 to 2020, the urban area of Xilinhot expanded by
129.184 km2, and the urban population increased by 42,697 people. Urban expansion
reduces the dependence of plant growth on climate factors and has a particular impact on
FCV, consistent with Song’s and Noa’s findings [53,54].

As for the topography, its influence on FVC is relatively small, and its interannual
contribution remains unchanged. The topography showed little change from year to year,
and its differentiation is mainly spatial. There is a 45 m elevation difference in the study
area, high in the west and low in the east. However, the impact of topographic factors does
not significantly change in different directions. This may be because the elevation of the
mining area does not have a particular contribution to the vegetation.

The effects of mining have noticeable spatial and temporal variations. Temporally,
the value of the mining factor varies with the coal production. The findings also show
that the contribution of mining to FVC continued to increase annually, even as coal pro-
duction decreased in certain years. In 2009, 2011–2015, and 2019, while coal production
in the Shengli Coalfield declined from the previous year, the contribution of mining did
not decrease. Hence, the results suggest that the impact of mining on FVC may have a
cumulative effect in time. Years of continuous mining have exacerbated the adverse effects
of mining operations on FVC.

Spatially, the further away from the mine boundary, the lower the value of the mining
driving factor. The contribution of mining shows distance attenuation around the mining
area. Within 200 m from the periphery of the mining area, mining’s contribution was
26.69%; at 2000 m, it dropped to 17.84%. As the distance from the mining area increases,
the contribution of mining decreases until it reaches some point where the value is zero.
This suggests that the impact of mining on FVC may be limited. For example, Aman Fang
studied the influence area of Bao’s coal in eastern Inner Mongolia [51]. The scope of mining
influence on FVC needs to be further explored.

The contribution of mining in direction 5 was significantly higher than in other direc-
tions. This may be because the Shengli Coalfield is close to the West No. 2 Mine (about
three kilometers away), affecting the FVC. The West No. 2 Mine started operations in
2006, and by 2020, the cumulative coal produced was 825,110,800 m3, about 0.91 times the
cumulative coal production of the Shengli Coalfield. The high mining impact in direction 5
was likely caused by the cumulative effect of the Shengli Coalfield and the West No. 2 Mine.

Changes in the FVC are caused by the coupling of multiple factors. We only considered
the contribution of precipitation, temperature, mining, urban expansion, and topography.
Aside from these factors, overgrazing may have a considerable impact on the FVC [55].
Ecological environment restoration policies such as vegetation reclamation have also been
found to significantly affect the FVC in mining areas [56,57]. Subsequent studies can
analyze other parameters affecting vegetation coverage in mining areas, including grazing
activities, environmental protection policies, evaporation, and soil types. In addition, there
are currently few quantitative studies on mining and urban expansion. How to scientifically
quantify the impact of mining and urban expansion requires further exploration.

6. Conclusions

This study proposed the GWDF-ANN to quantify the contributions of different driving
factors on FVC changes in mining areas. Based on the results, some conclusions were
reached, as follows.

(1) For the 50 models, the average RMSE was 0.052 and the average MRE was 0.007. The
GWDF-ANN model is suitable for quantifying FVC changes in mining areas.
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(2) Precipitation and temperature were the main driving factors for FVC change. The con-
tributions were 32.45% for precipitation, 24.80% for temperature, 22.44% for mining,
14.44% for urban expansion, and 5.87% for topography.

(3) The contributions of precipitation and temperature on vegetation cover exhibited
downward trends, while mining and urban expansion showed positive trajectories.
For topography, its contribution remains generally unchanged.

(4) The contribution of mining showed apparent distance attenuation. At 200 m away,
the contribution of mining was 26.69%; at 2000 m away, the value drops to 17.8%.

(5) Mining has a cumulative effect on vegetation coverage both interannually and spatially.

In the future, more driving factors, such as grazing and soil quality, can be considered
to improve model accuracy.
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