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Abstract: Object detection possesses extremely significant applications in the field of optical remote
sensing images. A great many works have achieved remarkable results in this task. However, some
common problems, such as scale, illumination, and image quality, are still unresolved. Inspired
by the mechanism of cascade attention eagle-eye fovea, we propose a new attention mechanism
network named the eagle-eye fovea network (EFNet) which contains two foveae for remote sensing
object detection. The EFNet consists of two eagle-eye fovea modules: front central fovea (FCF) and
rear central fovea (RCF). The FCF is mainly used to learn the candidate object knowledge based on
the channel attention and the spatial attention, while the RCF mainly aims to predict the refined
objects with two subnetworks without anchors. Three remote sensing object-detection datasets,
namely DIOR, HRRSD, and AIBD, are utilized in the comparative experiments. The best results of
the proposed EFNet are obtained on the HRRSD with a 0.622 AP score and a 0.907 AP50 score. The
experimental results demonstrate the effectiveness of the proposed EFNet for both multi-category
datasets and single category datasets.

Keywords: remote sensing; object detection; eagle-eye fovea network (EFNet); anchor-free; attention
mechanism

1. Introduction

Optical remote sensing images contain a large amount of scene information and
intuitively reflect the shape, color, and texture of objects. Referring to specific algorithms,
object detection of optical remote sensing images aims to search for and locate the objects
of interest, such as aircraft, tanks, ships, and vehicles. Typical applications are urban
planning, land use, disaster survey, military monitoring, and so on [1,2]. With the rapid
development of observation technologies, the resolutions of acquired remote sensing
images are becoming higher and higher. These high-resolution remote sensing images
can provide detailed high-quality information that offers great opportunities to develop
object-level applications. The characteristics and challenges of remote sensing images
are summarized as follows: large scale, diverse direction, various shapes, and complex
background. A multitude of works have aimed to theoretically and practically solve these
problems [3].

The early object-detection algorithms for optical remote sensing images were mostly
based on manually designed features [4–9]. Usually, candidate regions were first extracted,
and then the features were manually designed for the objects. Finally, the object categories
were determined by certain classifiers. Typical strategies were prior region uses, template
matching, feature classification, selective search, etc. From the human perception of the
object location, some methods learned the prior knowledge of candidate regions. This
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strategy is widely used for some representative applications, including segmentation of
ocean and land for ship detection and airport detection for aircraft detection. To separate
the sea surface, Antelo et al. [4] utilized the active contour method by constructing and
minimizing the energy function. Some methods adopted the idea of template matching
and match the candidate feature with the template library of objects. Liu et al. [7] proposed
an aircraft detection method from coarse to fine. First, template matching is used to find
the candidate areas of aircraft, and then principal component analysis (PCA) and a kernel
density function are used to identify each area. Xu et al. [6] generated a ship shape library
based on the Hough transform and used the sliding window method to calculate the feature
similarity between each window region and shape library. The feature classification-based
methods [10,11] usually extract the sliding window features first, and then certain classifiers
are designed to predict the sliding image patches. Zhang et al. [12] used a sliding window
to generate windows of different sizes and aspect ratios and extracted the visual features
for each window. The cascading support vector machine (SVM) is then applied to complete
the extraction process of candidate regions. The frequently used tool of selective search-
based methods is segmentation which applies the similarity-merging strategy to obtain
large areas. Aiming to capture possible object locations, Uijlings et al. [13] applied the
appearance structure to guide the sampling process for the selective search. To reduce the
search space, Liu et al. [14] analyzed the possibility of covering ships by rotated bounding
boxes. In addition, a small number of potential candidates with high scores are found by a
multi-cascaded linear model.

The methods mentioned above mostly adopted the traversal search method possessing
redundant calculation and cannot deal with the complex and changeable environment of
remote sensing images. Therefore, a great many algorithms have also tried to address the
aspect of feature extraction. Feature extraction is the most critical step that directly affects
the performance and efficiency of a detection algorithm. The commonly used features in
object detection of remote sensing images include the color feature, the texture feature, the
edge shape, and the context feature. To overcome the variable characteristics of the sea
environment, Morillas et al. [15] proposed using block color and texture features for ship
detection. In order to detect buildings, Konstantinidis et al. [16] combined the first module-
enhanced HOG-LBP features and the second module region refinement processes. The
texture feature is a visual feature that describes the homogeneity of the image, reflecting the
slow change or periodic change of the object surface structure. Brekke et al. [17] conducted
oil-spill detection based on the different texture characteristics between the sea surface
area and the sea surface oil-slick area. In addition, the edge features reflect the object
edge and shape information. To facilitate object detection, edge shape features are usually
required to be invariant in scale, translation, and rotation. Sun et al. [18] extracted SIFT
features from the sliding window and used the bag of words (BoW) model for classification.
Cheng et al. [19] extracted binarized normed gradients (BING) for each window and used
weighted SVM classifiers to improve the calculating speed. Tong et al. [20] also used
SIFT features for the ship candidate areas. After extracting candidate ships, Shi et al. [21]
extracted HOG (histograms of oriented gradients) features for each region. Then an
AdaBoost classifier was adopted to screen and classify candidate regions. To improve the
rotation invariance of the HOG feature, Zhang et al. [22] utilized part models to generate
rotation invariance features. Moreover, the context feature, which mainly represents the
spatial position relation of sequential topology adjacency between different instances, is
also worthwhile [23–25]. On the basis of active contour segmentation, Liu et al. [23]
introduced an energy function method to complete the separation of the sea. The ships
are detected using context analyses and shape description. Using Markov random fields
(MRF), Gu et al. [24], modeled the spatial position relations of objects to discriminate the
object categories.

However, the adaptation range and robustness of traditional object-detection algo-
rithms are limited, making them difficult to apply in complex environments of remote sens-
ing images. With the thriving development of deep learning, the deep features extracted by
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a neural network have a stronger semantic representation ability and discrimination [26,27].
In light of the improvement of diversified object directions, some object-detection methods
enhance the training image samples [28,29]. Cheng et al. [30] optimized a new objec-
tive function by introducing regularized constraints to achieve rotation invariance. Later
on, Cheng et al. [31] also added a rotation-invariant regularizer to convolutional neural
network (CNN) features by an objective function that can force tight mapping of feature
representations to achieve rotation invariability. The ORSIm detector [32] adopted a novel
space-frequency channel feature (SFCF) to deal with the rotation problem. This method
comprehensively considers the rotation-invariant features from both the frequency do-
main and the spatial domain. To provide for small-scale objects [33,34], Zhang et al. [35]
up-sampled candidate regions that were extracted in the previous stage. Replacing the
convolution, Liu et al. [36] used dilated convolution to reduce parameters on the same
receptive field. However, dilated convolution could cause the loss of local information.
Wang et al. [37] improved the loss function to increase the training weight of small objects
by combining with shallow information. The R3Det [38] improved the positioning accuracy
of dense objects by adding fine-tuning modules to ensure the alignment of object features
and object centers. Some works also aim to improve the adaptation of various object
scales [39–43]. Based on the Faster R-CNN [44], Zhang et al. [41] introduced a candidate
region extraction network to detect objects of different scales. A full-scale object-detection
network (FSD-NET) was proposed in [42], and this network contained a backbone with
a multi-scale enhanced network. In [43], a global component to a local network (GLNet)
was also proposed, and the spatial contextual correlations were encoded by the long short-
term memory with a clip. Given that the horizontal bounding boxes are not friendly to
oriented objects, a large number of works adopted oriented quadrangles to surround the
objects [45–49]. Zhu et al. [46] proposed an adaptive-period-embedding (APE) method
to represent oriented objects of aerial images. Instead of regressing the four vertices of
oriented objects, an effective and simple framework was proposed in [48]. In this frame-
work, the vertex of horizontal bounding boxes on each corresponding side is glided to the
oriented object. Different remote-sensing sensors possess the benefits of complementary
information, hence the works [50,51] are based on deep neural networks and integrate
several features to obtain an overall performance improvement.

The human visual mechanism possesses the ability to focus on a saliency region
with obvious visual features, ignoring irrelevant background. Therefore, the attention
mechanism is the most frequently used technique to improve the semantic representa-
tion [52–54]. To reduce the detection area, Song et al. [55] utilized color, direction, and
gradient information to extract visual features and extracted ship regions according to
saliency characteristics. To determine a potential airport, Yao et al. [8] adopted saliency
regions to extract scale invariant feature transform (SIFT) features. In [56], the authors
proposed a convolutional block attention module which consists of a channel attention
module and a spatial attention module. Wang et al. [57] used a multi-scale attention
structure with a residual connection to meet the scale change. For multi-category detection,
Wang et al. [45] also adopted a semantic attention-based network to extract the semantic
representation of the oriented bounding box. In light of the densely distributed objects, the
SCRDet [58] added a pixel attention mechanism and channel attention mechanism. With
respect to the loss funtion, Sun et al. [59] proposed an adaptive saliency-biased loss (ASBL)
for the both image level and the anchor level. In addition, the SCRDet++ [60] indirectly
used the attention mechanism to improve the boundary differentiation of dense objects.
Similarly, the work [61] used the density saliency attention to detect clustered buildings.

Although there are many good attention-based approaches for the object detection
of remote sensing images, the robust problem is not yet completely solved. Therefore, in
this paper, we propose a novel structure aiming to learn more robust and accurate object
classification and positioning for remote sensing images. This framework is inspired by the
eagle-eye, which has its complementary and exchangeable mechanism between the two
foveae. The main contributions are as follows:
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(1) We propose a new architecture named the eagle-eye fovea network (EFNet) to detect
objects in remote sensing images. This architecture is inspired by the vision attention
mechanism and the cascade attention mechanism of eagle-eyes.

(2) Two eagle-eye fovea modules, front central fovea (FCF) and rear central fovea (RCF),
are included in the EFNet. The FCF mainly aims to learn the candidate–object knowl-
edge based on the channel attention and the spatial attention, while the RCF aims
mainly to predict the refined objects with two subnetworks without anchors.

(3) The two central foveae possess the complementary mechanism. The experimental
results in three public datasets for object detection in remote sensing images demon-
strates the effectiveness of the proposed architecture and method.

The remaining sections of this paper are organized as follows. Some related works
are reviewed in Section 2. The proposed methodology is introduced in Section 3. Section 4
shows the experimental results. A discussion follows in Section 5. Finally, Section 6 includes
our conclusion.

2. Related Work
2.1. The Mechanism of Eagle Eye

The eagle possesses extremely keen vision which can be used to locate prey. Once the
prey is found, the eagle will quickly track the prey until it is captured [62–65]. The eagle’s
keen vision is inseparable from its foveae. The density of photoreceptors in an eagle’s
foveae is several times higher than that of human eyes. The resolution of an eagle’s eyes is
positively correlated with the density of photoreceptors [66].

An eagle has two foveae in each eye, one deep and one shallow. The deep fovea has
higher visual acuity than the shallow fovea. Figure 1 shows the structure of an eagle’s
eyes and the two foveae. Since each eagle eye has two central fovea and their observation
directions are different, the field of vision (FOV) of the eagle eye is very large. The FOV of
the eagle eye in the horizontal direction (excluding the blind area) can reach 260 degrees.
In the vertical direction, the FOV of the eagle eye also can reach 80 degrees. In the process
of predation, the flight path of the eagle is generally not straight because the eagle is
usually far away from the prey during predation, which requires the eagle’s side vision [67].
Therefore, the eagle can easily observe rabbits on the ground from thousands of meters in
the air. Inspired by the eagle’s eyes, Abimael et al. [68] designed a parallel structure with
two CNN submodules to detect moving objects. The authors claimed that the one CNN
was used to perceive the context from videos, and the other CNN was used to focus on the
small objects or details.

However, the foveae of eagles cannot observe objects at the same time. Rather, they
constantly switch from one to another, and the deep foveae observe objects on the side,
while the shallow foveae observe objects on the front.

The switch mechanism of FOV is more like a cascade structure, not a parallel structure.
Moreover, the eagle’s viewpoint is similar to the remote sensing observation such as used
by aircraft or satellites. Hence, the eagle-eye mechanism can give us some inspiration to
explore a possible method of parallel structure for remote sensing object detection.

2.2. The Attention Module of CBAM

The attention mechanism is the most frequently used technique to improve semantic
object saliency [53]. To suppress the characteristics of a complex background, an improved
attention region proposal network (A-RPN) was used to predict the object’s location. As
shown in Figure 2, the feature maps are fed into the convolutional block attention module
(CBAM) network [56].
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Figure 1. The structure of eagle eye with two foveae [62].
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Figure 2. The architecture of the CBAM.

The CBAM is composed of two complementary modules, including a channel attention
module and a spatial attention module. These modules can suppress the features of a com-
plex background and highlight the features of objects. Among them, the channel attention
module focuses on what the object is by assigning greater weight to channels containing
more object information and smaller weight to channels containing more background
information.

In Figure 2, the input feature maps are denoted as F ∈ RC×H×W . After the channel
attention module, the channel attention map Mc ∈ RC×1×1 will be obtained, and the input
feature F is weighted by Mc to obtain refinement feature F

′
. The spatial attention map

Ms ∈ R1×H×W will then be obtained through the spatial attention module. The final output
F
′′

will be calculated by multiplying Ms(F
′
) and feature F

′
. These formula derivations are

as follows:

F
′ ∈ Mc(F)⊗ F, (1)

F
′′ ∈ Ms(F

′
)⊗ F

′
, (2)

where ⊗ represents the multiplication of the corresponding elements of the matrix, C
represents the number of channels for the input feature, and W and H represent the width
and height of the feature map.
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The channels with useful object feature information will be selected, while the spatial
attention module can tell the network where the objects are and helps the network locate
objects in the feature maps. First, feature F was obtained after a 3× 3 convolution of the
input feature map. Next, feature F

′′
will be obtained by the CBAM. Therefore, the A-RPN

can carry out more accurate object classification and position regression. The CBAM is
regarded as a universal module and can easily be connected to the convolutional blocks.

3. The Proposed Methodology

In this section, the proposed eagle-eye fovea network (EFNet) will be introduced
in detail. The architecture of the EFNet is shown in Figure 3. First, the whole network
architecture is introduced in Section 3.1. The structures of the two main components
are introduced in Sections 3.2 and 3.3, respectively. The object classification and the box
prediction are introduced in Sections 3.3.1 and 3.3.2.

FPN

Rear Central Fovea

Output

Resnet
+ 

CBAM

Front Central Fovea

Classification

Box 
Prediction

Figure 3. The architecture of the proposed methodology. The proposed framework mainly contains
two attention modules: front central fovea (FCF) and rear central fovea (RCF). The FCF and RCF are
complementary for object detection.

3.1. Network Architecture

Inspired by the two central foveae of eagle eyes and the precision conversion mecha-
nism, we developed a similar vision network for object detection in remote sensing images.
The proposed EFNet consists of two eagle-eye central foveae: front central fovea (FCF)
and rear central fovea (RCF). The framework of the proposed methodology is shown in
Figure 3. For an image, the feature maps will be obtained through a backbone network
which is added to an attention module CBAM. This module, as the FCF, will be used to
improve the saliency of the candidate objects in the feature pyramid networks (FPN). The
FoveaBox, as the RCF, is used to propose the most possible object areas which will be used
for classification and box prediction.

It was introduced in Section 2.1 that eagles cannot use both foveae to simultaneously
observe objects, but they can switch between the two foveae at any time. The deep fovea
is used to observe objects on the side, and the shallow fovea is used to observe objects on
the front. This mechanism can be regarded as the cascade mechanism. Inspired by this
mechanism, the FCF and RCF are also a cascade distribution. Therefore, these two central
foveae are designed to possess the complementary ability for object detection in remote
sensing images.

3.2. Front Central Fovea

In this subsection, we will introduce the structure of the front central fovea (FCF). It is
verified that CBAM is possessing universal applicability across different architectures and
different tasks and can be seamlessly integrated into other CNN architectures to enhance
the network. Therefore, the CBAM is integrated into the Resnet block [69] in our structure,
shown in Figure 4.
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The channel attention module focuses on what the object is. The average pooling
(AvgPool) and maximum pooling (MaxPool) are utilized to extract two kinds of features
denoted as Fc

avg and Fc
max. When these features are fed into the middle shared network

layer and applied in the shared network layer behind Fc
avg and Fc

max, respectively, the
corresponding elements of the two features will be obtained. Then, the channel attention
map Mc ∈ RC×1×1 is obtained by sigmoid activation function as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))),
(3)

where σ represents the sigmoid function, W0 ∈ C/r×C, and W1 ∈ C×C/r. The MLP repre-
sents the multi-layer perceptron of the shared network. The features between W0 and W1
are processed by the ReLU. Finally, Mc(F) is multiplied by its input features to obtain a
fine feature map F

′
adjusted by channel attention.

Channel 
Attention 
Module

Spatial 
Attention 
Module

Feature Maps Refined Feature Maps

MsMc

Resnet Block + CBAM

Conv.

Previous
Block

Next
Block

Figure 4. This diagram shows the position where the CBAM module is integrated with the Res-
Block [69]. The CBAM is applied to the convolution output of each block.

The spatial attention module focuses on where the object is, i.e., the spatial location
of the defect on the input feature map. The input of spatial attention is the output F

′
of

the channel attentional power module, and the feature map is obtained through average
pooling and maximum pooling Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W . Using a 7 × 7

convolution kernel and sigmoid function, the new space attention feature map Ms is
obtained as follows:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))

= σ( f 7×7([Fs
avg; Fs

max])),
(4)

where the σ denotes the sigmoid activation function, and f 7×7 is the 7× 7 convolution
kernel.

3.3. Rear Central Fovea

The rear central fovea is described in this subsection, and this module mainly refers
to the FoveaBox [70]. The FoveaBox is an accurate, flexible, completely anchor-free object-
detection framework. Unlike previous anchor-based methods, the FoveaBox directly learns
the possibility of an object’s existence and bounding box coordinates without reference
to anchor points. This is achieved by: (a) class-sensitive semantic maps that predict the
object possibility; (b) generating bounding boxes for each location that might contain an
object. As a result, the rear central fovea of the framework mainly utilizes the setting of the
FoveaBox. The FoveaBox has five feature levels which derive subnets Pl (l = 3, 4, . . . , 7),
respectively, and each level output feature map with scale 1

2l . Due to the wide range of
object scales, the FoveaBox adopts different levels to predict objects of different sizes. The
dimensions of the seven levels are set as Sl = 4lS0, which range from 322 to 5122. S0 = 16
(l = 3, 4, . . . , 7). To control the overlapping area between different levels, parameter η is
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added to adjust the scales of different levels. By adjusting parameters [ Sl
η2 , Slη

2], one object
may be detected at multiple levels.

The object prediction performs in each single FPN level. Two branch networks of
the object prediction network are shown in Figure 5. Two branch networks are adopted
for the different levels. One is for predicting categories, and the other is for predicting
boundary boxes. The output of the classification subnet is W × H× C (C is the count of the
feature level channels), and the output of the box prediction subnet is W × H × 4. Next,
the non-maximum suppression (NMS) is adopted for each category with a threshold 0.5.
Finally, 100 predictions with the highest score are selected for each image.

Single 
FPN 

Feature

H×W×C

H×W×4H×W×256

H×W×256 H×W×256

H×W×256

×4

×4

Classification 
Network 

Box Prediction  
Network 

Figure 5. Two branch networks of the object prediction network.

3.3.1. Object Classification

It is difficult to allocate positive and negative samples when the method is anchor-free,
so the multi-level prediction can be used to solved or effectively reduce to the problem of
object overlap. The anchor-based methods need to calculate the Intersection over Union
(IoU) based on the positive and negative samples. As an anchor-free method, the FoveaBox
does not need to calculate IoU. The FoveaBox directly maps ground-truth to the feature
maps of the corresponding level. The formula is as follows:

x
′
1 =

x1

2l , y
′
1 =

y1

2l ,

x
′
2 =

x2

2l , y
′
2 =

y2

2l ,

c
′
x = x

′
1 + 0.5(x

′
2 − x

′
1),

c
′
y = y

′
1 + 0.5(y

′
2 − y

′
1),

(5)

where (x1, y1, x2, y2) is a valid box of the ground-truth, and 2l is the down sampling factor.
While (x

′
1, y

′
1, x

′
2, y

′
2) is the mapping box of the target feature pyramid Pl , (c

′
x, c

′
y) is the

center position the mapping box.
In addition, not all regions corresponding to ground-truth are positive samples, as

shown in the Figure 5. Although the ship is large, the real positive sample is the red
area in the middle, which is also the essence of FoveaBox. As a result, a shrunk factor
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σ is introduced, which can dynamically set the positive sample areas according to the
parameters as follows:

xpos
1 = c

′
x − 0.5(x

′
2 − x

′
1)σ, (6)

ypos
1 = c

′
y − 0.5(y

′
2 − y

′
1)σ, (7)

xpos
2 = c

′
x + 0.5(x

′
2 − x

′
1)σ, (8)

ypos
2 = c

′
y + 0.5(y

′
2 − y

′
1)σ. (9)

where (xpos
1 , ypos

1 , xpos
2 , ypos

2 ) is the positive area by shrunk factor σ. For the negative sample,
the authors set σ2. In the experiments, σ1 = 0.3 and σ2 = 0.4. The areas between 0.3 and 0.4
are not involved in the training stage. Since the negative samples and the positive samples
are unbalanced, focal loss is utilized in the training stage.

3.3.2. Box Prediction

In the box prediction, the transformation function is utilized to carry out the coordinate
transformation as follows:

tx1 = log
2l(x + 0.5)− x1

z
, (10)

ty1 = log
2l(y + 0.5)− y1

z
, (11)

tx2 = log
x2 − 2l(x + 0.5)

z
, (12)

ty2 = log
y2 − 2l(y + 0.5)

z
, (13)

where z =
√

Sl . The (x1, y1, x2, y2) are the ground-truth, and (tx1 , ty1 , tx2 , ty2) stands for
the prediction output. The smooth L1 loss is used for the box prediction.

4. Experiments and Results
4.1. Dataset

Three publicly available object-detection datasets of remote sensing images are used to
evaluate the proposed methods in the experiments. Some examples of the DIOR, HRRSD,
and AIBD are shown in Figure 6.

The first dataset is DIOR [71] which is a large-scale benchmark dataset for remote
sensing object detection. The DIOR is sampled from Google Earth and released by the
Northwestern Polytechnical University, China. The dataset contains 23,463 images and
20 object classes with 192,472 instances. The 20 object categories are airplane, baseball field,
basketball court, airport, bridge, chimney, expressway service area, dam, expressway toll
station, ground track field, harbor, golf course, overpass, stadium, storage tank, ship, tennis
court, vehicle, train station, and windmill. The spatial resolutions of the images range
from 0.5 m to 30 m, and the image scale is 800× 800 pixels. This dataset possesses four
characteristics: (1) large number of object instances and images; (2) various object scales;
(3) different weathers, imaging conditions, seasons, etc.; (4) high intra-class diversity and
inter-class similarity.

The second dataset is HRRSD [72] which was released by the University of Chinese
Academy of Sciences in 2019. The HRRSD contains 21,761 image samples obtained from
Google Earth and Baidu map, with spatial resolution ranging from 0.15 m to 1.2 m. The
count of the object instances is 55,740 covering 13 object categories. The categories are
separately airplane, baseball diamond, crossroad, ground track field, basketball court,
bridge, ship, storage tank, harbor, parking lot, tennis court, T junction, and vehicle. The
highlight of the dataset is the balanced samples across categories, with nearly 4000 for
each category. In addition, the sample count of the train subset is 5401, and those of the
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validation subset and the test subset are 5417 and 10,943. The ‘train-val’ subset is the union
set of the train subset and the validation subset.

The third dataset is AIBD which is specially self-annotated for the task of building
detection. The AIBD which was first introduced in [73] contains a single object category:
building. The sample scale of the samples is 500× 500, and the total count of the samples is
11,571, with the same number of annotation files. Based on the COCO metric, the building
instances are divided into large-scale instances, medium-scale instances, and small-scale
instances. The counts of the large-scale instances, medium-scale instances, and small-
scale instances are 16,824, 121,515, and 51,977, respectively. The color characteristics are
distinct from each other with tremendously different backgrounds. The pixel number of
the buildings ranges from tens to hundreds of thousands. The geometric shapes of the
instances are diversiform and consist of some irregular shapes, such as U-shape, T-shape,
and L-shape. The original images of AIBD are from the Inria Aerial Image Data (https:
//project.inria.fr/aerialimagelabeling/, accessed on 1 August 2020) which are mainly used
for semantic segmentation. Five urban cities are selected for both train set and test set, and
about 81 km2 areas with 36 image tiles are selected for each city. The train set and the test
set both contain 180 image tiles covering 405 km2. The image resolution of the image tiles
is 5000× 5000 with 0.3 m geographic resolution.

Figure 6. Examples of the three experimental datasets. The examples from top row to bottom row,
respectively, belong to the DIOR [71], HRRSD [72], and AIBD [73].

4.2. Evaluation Metrics

The Average Precision (AP) and its derivative metrics are adopted to quantitatively
evaluate the proposed method. The AP is a comprehensive metric in the task of object
detection and based on the precision and recall as Equations (14) and (15).

precision =
TP

TP + FP
, (14)

recall =
TP

TP + FN
, (15)

https://project.inria.fr/aerialimagelabeling/
https://project.inria.fr/aerialimagelabeling/
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where the terms TP, FP, and FN are true positives, false positives, and false negatives,
respectively. The terms TP, FP, and FN are calculated from the Intersection over Union
(IoU) between the bounding boxes of ground-truth and the bounding boxes of prediction
as follows:

IoU =
Bpred ∩ Bgt

Bpred ∪ Bgt
, (16)

where Bpred denotes the bounding box of prediction , and Bgt is the bounding box of
ground-truth.

The standard COCO metrics, including AP, AP50, AP75, APs, APm, and APl , are briefly
reported in Table 1. For the detection of multi-category objects, the AP usually denotes
mean average precision (mAP) which is obtained by the average of different category APs.

Table 1. The explanations of the COCO metrics.

AP: AP at IoU = 0.50:0.05:0.95 (average over IoU thresholds).
AP50: AP at IoU = 0.50 (equally to PASCAL VOC metric).
AP75: AP at IoU = 0.75 (much strict metric).
APs: AP for small objects which areas are smaller than 322.
APm: AP for medium objects which areas are between 322 and 962.
APl : AP for large objects which areas are bigger than 962.

4.3. Experimental Setup

The comparative algorithms include general object-detection algorithms and do-
main algorithms of remote sensing. Some general object-detection algorithms are Faster
R-CNN [44], SSD [74], YOLO [75], RetinaNet [76], and FoveaBox [70]. Among them, the
Faster R-CNN [44] is the typical representative of the two-stage method, while the SSD [74],
YOLO [75], RetinaNet [76] are the representatives of the single-stage method. In addition,
the FoveaBox [70] is an anchor-free method. Some domain algorithms of remote sensing
are RICAOD [77], RIFD-CNN [31], RICNN-finetuning [30], HRCNN-regression [72], and
FRCNN TC [73]. The general object-detection algorithms are performed on all of the testing
datasets. Because it is difficult to obtain the released codes, some experimental results of
the domain algorithms are mainly cited from existing references.

The percentages of train set, validation set, and test set of DIOR are 0.25, 0.25, and 0.5,
respectively However, the train set and validation set of HRRSD and AIBD are jointly used
to train models. The main comparison experiments are based on the mmdetection platform
(https://github.com/open-mmlab/mmdetection, accessed on 13 June 2021). The platform
possesses four Nvidia GeForce RTX 2080 GPUs. The setting of hyper-parameters for the
comparative methods in the mmdetection is summarized in Table 2.

Table 2. The hyper-parameter setting of the comparative methods.

Method Learning Rate Decay Momentum Classification Loss Bounding Box Loss Optimizer

Faster-RCNN [44] 0.02 0.0001 0.9 CrossEntropy L1loss SGD
YOLOv3-608 [75] 0.001 0.0005 0.9 CrossEntropy MSELoss SGD

SSD-512 [74] 0.002 0.0005 0.9 CrossEntropy SmoothL1 SGD
RetinaNet [76] 0.01 0.0001 0.9 FocalLoss L1Loss SGD
FoveaBox [70] 0.01 0.0001 0.9 FocalLoss SmoothL1 SGD

EFNet 0.01 0.0001 0.9 FocalLoss SmoothL1 SGD

4.4. Results and Analysis

In this section, the experimental results are shown in detail. Some qualitative examples
of the EFNet on three datasets are separately presented in Figures 7–9. The TPs, FPs, and
FNs are indicated by green, red, and yellow boxes, respectively. Those object instances with
small-size and dense appearance could be falsely detected, such as vehicles, ships, and

https://github.com/open-mmlab/mmdetection
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so on, whereas those objects that possess relatively fixed appearance characteristics, such
as the airplanes or storage tanks, are rarely misdetected or missed. For example, the top
instance with a red rectangle in Figure 7 is misdetected as a bridge; it is actually an overpass.
Although the AIBD contains a single category, the variation within the class is huge. We can
see that the detected results are mostly satisfying, not only for common rectangle buildings,
but also for the buildings with irregular shape. The scales of the building instances also
change tremendously.

Figure 7. Qualitative examples on DIOR by EFNet. The TPs, FPs, and FNs are indicated by green,
red, and yellow boxes, respectively.

The quantitative results of the comparative methods are respectively shown in
Tables 3–5. The AP and AP50 are the primary metrics for the experimental results. Those
existing results from other references correspond to AP50. For the DIOR with 20 categories,
the best results of AP and AP50 are achieved by SSD-512 with 0.509 AP and 0.769 AP50.
The second place is achieved by the Faster R-CNN. The EFNet is the third place with
0.359 AP and 0.604 AP50. For the HRRSD with 13 categories, the best results of AP and
AP50 are achieved by Faster-RCNN with 0.632 and 0.910. The second place is achieved
by the EFNet with 0.622 AP and 0.907 AP50. On the one-class AIBD, the best results of
AP and AP50 are also achieved by the Faster-RCNN with 0.520 and 0.869. The second
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place is achieved by the EFNet with 0.517 AP and 0.864 AP50. Although the best results
are mostly achieved by the Faster-RCNN of the general object-detection method, it can
be demonstrated that the proposed EFNet is a promising method that has a strong ability
to perform the object detection of remote sensing images. The EFNet is much better than
FoveaBox and is superior to most domain algorithms of remote sensing.

Figure 8. Qualitative examples on HRRSD by EFNet. The TPs, FPs, and FNs are indicated by green,
red, and yellow boxes, respectively.

Table 3. Object-detection results of comparative methods on DIOR.

Method Backbone AP AP50 AP75 APs APm APl

RICAOD [77] VGG16 / 0.509 / / / /
RIFD-CNN [31] VGG16 / 0.561 / / / /

Faster R-CNN [44] Resnet50 0.435 0.692 0.458 0.071 0.268 0.544
SSD-512 [74] VGG16 0.509 0.769 0.555 0.066 0.326 0.622

YOLOv3-608 [75] Darknet53 0.339 0.667 0.300 0.046 0.226 0.410
RetinaNet [76] Resnet50 0.332 0.555 0.339 0.025 0.208 0.427
FoveaBox [70] Resnet50 0.309 0.533 0.313 0.023 0.205 0.379

EFNet Resnet50 0.359 0.604 0.365 0.036 0.239 0.442
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Figure 9. Qualitative examples on AIBD by EFNet. The TPs, FPs, and FNs are indicated by green,
red, and yellow boxes, respectively.

Table 4. Object-detection results of comparative methods on HRRSD.

Method Backbone AP AP50 AP75 APs APm APl

RICNN-finetuning [30] AlexNet / 0.482 / / / /
HRCNN-regression [72] AlexNet / 0.514 / / / /

Faster R-CNN [44] Resnet50 0.632 0.910 0.736 0.357 0.550 0.612
SSD-512 [74] VGG16 0.527 0.873 0.574 0.095 0.421 0.517

YOLOv3-608 [75] Darknet53 0.510 0.890 0.529 0.080 0.403 0.504
RetinaNet [76] Resnet50 0.596 0.893 0.677 0.109 0.492 0.574
FoveaBox [70] Resnet50 0.618 0.904 0.706 0.184 0.518 0.587

EFNet Resnet50 0.622 0.907 0.717 0.124 0.535 0.602

Table 5. Object-detection results of comparative methods on AIBD.

Method Backbone AP AP50 AP75 APs APm APl

Faster R-CNN [44] Resnet50 0.520 0.869 0.566 0.354 0.556 0.549
SSD-512 [74] VGG16 0.466 0.832 0.482 0.348 0.504 0.517

YOLOv3-608 [75] Darknet53 0.418 0.814 0.386 0.314 0.454 0.421
RetinaNet [76] Resnet50 0.448 0.814 0.441 0.323 0.491 0.484
CornerNet [78] Hourglass104 0.340 0.556 0.364 0.149 0.457 0.328

CentripetalNet [79] Hourglass104 0.479 0.818 0.504 0.360 0.515 0.553
FRCNN TC [73] Resnet50 0.515 0.861 0.548 0.383 0.545 0.602
FoveaBox [70] Resnet50 0.513 0.863 0.548 0.395 0.551 0.537

EFNet Resnet50 0.517 0.864 0.556 0.400 0.555 0.540

The PR curves of the comparative methods are separately shown in Figures 10–12.
Only one representative category was selected from each dataset. These curves reveal
that the AP performance of a single category could be significantly different from the AP
performance of the whole dataset. That is to say, the AP scores of one method can be better
in some categories but worse in other categories. The DIOR and HRRSD are multi-category
datasets, so the detailed APs of different categories by EFNet on DIOR and HRRSD are
summarized in Tables 6 and 7. On the DIOR, the APs of different categories are diverse.
The categories of airplane, tennis court, baseball field, and chimney have comparatively
higher APs scores above 0.600, while those of dam, bridge, harbor, and train station have
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comparatively lower APs scores, below 0.200. However, the distributions of APs on HRRSD
are better than DIOR. The comparatively higher APs scores on HRRSD are achieved by
airplane, ground track field, storage tank, and tennis court, and all of the APs are above
0.700. Correspondingly, the comparatively higher APs scores on HRRSD belong to the
categories of bridge, parking lot, T junction, and basketball court. In addition, we selected
one category for each dataset to show the PR curves as the different IoUs between the
predicted boxes and the ground-truths, respectively, in Figures 13–15. These PR curves
are calculated by the EFNet. The category basketball court is selected for the DIOR, while
the category bridge is selected for the HRRSD. The AIBD contains only a single category
building, so the PR curves on AIBD are based on building instances.

Figure 10. The PR curves of category basketball court for comparative methods on DIOR. These
curves are the different IoUs between predicted boxes and ground-truths.

Figure 11. The PR curves of category bridge for comparative methods on HRRSD. These curves are
the different IoUs between predicted boxes and ground-truths.
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Table 6. The APs of different categories by EFNet on the dataset DIOR.

Category AP Category AP Category AP

airplane 0.646 airport 0.217 baseball field 0.744
basketball court 0.524 bridge 0.088 chimney 0.659

dam 0.160 Expressway-Service-area 0.247 ship 0.330
golffield 0.281 groundtrackfield 0.393 harbor 0.084
overpass 0.203 Expressway-toll-station 0.347 stadium 0.235

storagetank 0.592 tenniscourt 0.737 trainstation 0.077
vehicle 0.332 windmill 0.280

Table 7. The APs of different categories by EFNet on the dataset HRRSD.

Category AP Category AP Category AP

bridge 0.493 tennis court 0.739 T junction 0.476
airplane 0.701 parking lot 0.399 harbor 0.679

ground track field 0.786 vehicle 0.654 basketball court 0.431
storage tank 0.807 crossroad 0.606 baseball diamond 0.630

ship 0.682

Figure 12. The PR curves of category building for comparative methods on AIBD. The AIBD contains only
one building category. These curves are the different IoUs between predicted boxes and ground-truths.



Remote Sens. 2022, 14, 1743 17 of 22

Figure 13. The PR curves of category basketball court on DIOR. The basketball court is one of
the categories of DIOR. These curves are achieved by the EFNet as the different IoUs between the
predicted boxes and the ground-truths.

Figure 14. The PR curves of category bridge on HRRSD. The bridge is one of the categories of HRRSD.
These curves are achieved by the EFNet as the different IoUs between the predicted boxes and the
ground-truths.
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Figure 15. The PR curves of category building on AIBD. The AIBD contains only one category:
building. These curves are achieved by the EFNet as the different IoUs between the predicted boxes
and the ground-truths.

5. Discussion

In this section, we will discuss some concerned questions and the future improvements.
From the experimental results above, we can find that the proposed framework can be
well-used for both multi-category datasets and a single category dataset. The results also
reveal that the vision attention mechanism with two foveae modules is beneficial to object
detection and can promote the development of the interpretation of the remote sensing
observation images.

5.1. Effects of the Data Complexity

From the experiment results, we can find that the comparatively higher APs scores are
usually obtained by the instances in which apparent shapes are close to their ground-truths.
In contrast, the instances that have large ratios of length to width usually receive lower APs
scores. The bounding boxes of the instances with large ratios of length to width contain
much background of large areas, which reduces the feature discrimination of the objects.
On the whole, the quantitative results on HRRSD are the highest among the three testing
datasets, while the lowest is DIOR. More categories in DIOR can make the processing much
more difficult than with the HRRSD and AIBD. Although the AIBD has only one class, the
instance count and the within-class scatter are large. Therefore, the quantitative results on
AIBD are lower than HRRSD.

5.2. Effects of the Data Annotations

The annotations of testing datasets are not accurate enough, which may cause some
problems in quantitative scores. For example, the top instance with the red rectangle in
Figure 7 is misdetected as a bridge, while the label of ground-truth shows it is an overpass.
In fact, it is more reasonable to assign multiple labels to this object instance because one
overpass can also be regarded as a bridge at another time. Therefore, these shortcomings
caused by the manual annotation strategy should be noted.
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5.3. Limitations and Future Improvements

The experimental results demonstrate that the proposed method is effective in remote
sensing object detection. However, the proposed method fails to surpass the general Faster
R-CNN [44] in the quantitative comparison. One of the biggest limitations of the proposed
method is the lack of optimal quantitative scores. In addition, the internal interpretability
problem between the FCF and the RCF is another issue, which is common in the field of
deep learning. Moreover, the Faster R-CNN is a two-stage method, and the calculation cost
is relatively high. Therefore, how to improve the internal network interpretability and the
ability of real-time processing of the proposed framework are two research topics in the
future.

6. Conclusions

In this paper, we propose an eagle-eye fovea network (EFNet) for remote sensing object
detection. This is inspired by the vision attention mechanism and the cascade attention
mechanism of eagle eyes. The core modules of the EFNet are the front central fovea (FCF)
and the rear central fovea (RCF). These two foveae have complementary characteristics. The
FCF mainly aims to learn the candidate object knowledge based on the channel attention
and the spatial attention, while the RCF mainly aims to predict the refined objects with two
subnetworks without anchors. The results reveal that the vision attention mechanism with
two foveae modules is beneficial to object detection. The EFNet can be used for both multi-
category datasets and a single category dataset, which is qualitatively and quantitatively
demonstrated by the experimental results on the three datasets.
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