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Abstract: With the development of oriented object detection technology, especially in the area of
remote sensing, significant progress has been made, and multiple excellent detection architectures
have emerged. Oriented detection architectures can be broadly divided into five-parameter systems
and eight-parameter systems that encounter the periodicity problem of angle regression and the
discontinuous problem of vertex regression during training, respectively. Therefore, we propose a
new multi-branch anchor-free one-stage model that can effectively alleviate the corner case when
representing rotating objects, called Surround-Net. The creative contribution submitted in this paper
mainly includes three aspects. Firstly, a multi-branch strategy is adopted to make the detector
choose the best regression path adaptively for the discontinuity problem. Secondly, to address the
inconsistency between classification and quality estimation (location), a modified high-dimensional
Focal Loss and a new Surround IoU Loss are proposed to enhance the unity ability of the features.
Thirdly, in the refined process after backbone feature extraction, a center vertex attention mechanism
is adopted to deal with the environmental noise introduced in the remote sensing images. This type
of auxiliary module is able to focus the model’s attention on the boundary of the bounding box.
Finally, extensive experiments were carried out on the DOTA dataset, and the results demonstrate
that Surround-Net can solve regression boundary problems and can achieve a more competitive
performance (e.g., 75.875 mAP) than other anchor-free one-stage detectors with higher speeds.

Keywords: object detection; anchor-free; multi-branch; sliding ratios; eight-parameter regression

1. Introduction

As one of the most important basic tasks in computer vision, object detection has
attracted the attention of many researchers and has been studied extensively. The main
goal of this task is to find the location of an object in an image and label the category that it
belongs to. It can be used as a key component in many downstream tasks.

With the rise of deep learning technology, object detection has developed quickly.
Architectures can be divided into two-stage and one-stage architectures depending on the
processing stage [1]. For example, the R-CNN family [2–4] and its improvements [5–7]
follow the “coarse-to-fine” pipeline. On the contrary, one-stage architectures, such as the
YOLO family [8–11], SSD [12], and RetinaNet [13], are able to complete detection tasks in
one step. Although they have a good running speed, their accuracy is not high compared
to two-stage architectures. In addition, models can also be divided into the anchor-base
category [2–7,9–14], which requires multiple anchors of different sizes and proportions,
and the anchor-free category [15–18], in which the object is represented as a point. The
former has higher accuracy, while the latter is easier to train and adjust.
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Recently, object detection tasks in arbitrary directions have received more and more
attention. In the field of remote sensing detection, oriented detection can not only identify
densely packed objects but also ones with a huge aspect ratio. Figure 1 shows the limitations
of horizontal object detection.

Figure 1. (a) Horizontal detection boxes may lead to missed detections (red boxes) and (b) introduce
unwanted ambient pixels.

Most oriented object detectors are adapted from horizontal object detectors, and
they can be broadly divided into five-parameter models [19–25] and eight-parameter
models [26–30]. The five-parameter models add an angle parameter (x, y, w, h, θ) and
achieve great success. However, these detectors inevitably suffer from the angle boundary
problem during training. As shown in Figure 2a, assuming that the center coordinates
of the two boxes coincide (without loss of generality), the red box (Prediction, −1/2π)
needs to match the brown box (Ground-truth, 3/8π), something that can be achieved
by adjusting the angle and size. An ideal regression method rotates the prediction box
counterclockwise without resizing it. However, due to the boundary characteristics of the
angle, the prediction box can not achieve its purpose because of the sudden change. Instead,
it must rotate 3/8π clockwise and adjust its size simultaneously. SCRDet [25] introduces
IoU-Loss to enable the model to find a better regression method, but it cannot eliminate it.

Figure 2. Boundary problems in five-parameter models (a) and eight-parameter models (b–d).

The eight-parameter models were proposed to solve the angle problems that are
present in the five-parameter models. They cover the detection task using a point-based
method by directly predicting four vertices. However, such a direct method introduces
new problems. First, it is necessary to sort the vertices when calculating the regression loss.
Otherwise, the almost identical rectangle will still produce a colossal Loss (as shown in
Figure 2b); secondly, as described in Figure 2c, the sorted order may still be sub-optimal.
In addition to regression, along with a clockwise method (green line), there is an ideal
regression method (brown line). RSDet [31,32] proposes comparing the Loss after moving
the vertexes one unit clockwise and one unit counterclockwise. However, this approach
only solves part of the problem. When faced with the situation shown in Figure 2d,
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no matter how the adjustments are made, there are still sub-optimal paths (two longer
regression paths always exist).

After analyzing the above ranking and regression discontinuity problems, we propose
a multi-branch eight-parameter model called Surround-Net. It decomposes the prediction
process into multiple branches to take all cases into account in an anchor-free and one-
stage way. To improve the model’s consistency during testing and training, a modified
multi-branch-aware adaptive Focal Loss function [13] is creatively proposed so that the
classification branch selection can be trained simultaneously. A size-adaptive dense pre-
diction module is proposed to alleviate the imbalance between the positive and negative
samples. Moreover, to enhance the model’s performance during localization, this work also
presents a novel center vertex attention mechanism and a geometric soft constraint. The
results further show that Surround-Net can solve the sub-optimal emerge problem present
in previous models and can achieve a competitive result (e.g., 75.875 mAP and 74.071 mAP
in 12.57 FPS) in an anchor-free one-stage way. Overall, our contributions are as follows:

1. A multi-branch anchor-free detector for oriented object detection is proposed and
solves the sorting and suboptimal regression problems encountered with eight-
parameter models;

2. To jointly training branch selection and class prediction, we propose a modified Focal
Loss function, and a size-adaptived dense prediction module is adopted to alleviate
the imbalance between the positive and negative samples;

3. We propose a center vertex attention mechanism to distinguish the environment area
and use soft constraints to refine the detection boxes.

2. Materials and Methods

First, we will provide an overview of the content structure. The architecture of our
proposed anchor-free one-stage model is introduced in Section 2.1. Section 2.2 elaborates
on the multi-branch structure and the adaptive function design for dense predictions
as well as on the multi-branch adaptive Focal Loss for joint training. The prediction of
the circumscribed rectangle and sliding ratios are discussed in Section 2.3, and the soft
constraints for refinement are introduced in that section as well. Finally, we describe how
to encode a rotating detection box using all of the predicted values. The center vertex
attention mechanism for feature optimization is introduced in Section 2.4.

2.1. Architecture

As shown in Figure 3, the whole pipeline can be divided into the following four
cascading modules: the feature extraction module, the feature combination module, the
feature refine module, and the prediction head module. Initially, we use 1–5 convolutional
ResNet-101 (ResNet-152 for better performance) layers and resize the final output feature
map to 1/4 of the original input image size. In the up-sampling process, we first use
3 × 3 convolutions to resize the small-scale feature maps with rich semantic information
to the same size as the feature maps from the previous levels. At the same time, the
concatenate operation is performed on the feature map from a previous level that contains
more delicate details via a 3× 3 convolution layer. After completing one concatenation layer,
it is followed by a 1 × 1 convolutional layer to enhance the fusion of the channel elements
in the feature map. Before entering the next up-sampling stage, batch normalization [33]
and Leaky ReLU [34] were used to normalize the feature map and improve its nonlinear
fitting ability. At the tail of the feature combination, an attention module is proposed to
refine the feature map. This part will be detailed in Section 2.4. Inspired by TSD [35], we
also added additional convolutional layers for each prediction head in a decoupled manner.

There are three detection heads that follow the following refined feature map: the
multi-branch selection and classification head, the circumscribed rectangle prediction head,
and the sliding ratio prediction head. For the multi-branch selection and classification
head, the number of filters is 4 × C, where C is the number of categories and 4 is the
number of different branches; for the circumscribed rectangle prediction head, the number
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is 4, representing the four distances (l, r, t, b) from the center point to their corresponding
circumscribed rectangle; for the sliding ratio prediction head, the number is 2, representing
the two required ratios.

Figure 3. The overall architecture and the oriented bounding box descriptions of the proposed method.

As shown in Figure 4a–d, we divided the rotating bounding boxes obtained from the
circumscribed rectangle into four cases corresponding to the multi-branch selection head.

Figure 4. Subfigure (a–d) detail the four possible regression branches. Subfigure (e) and subfigure
(f) can be regarded as special cases whose sliding ratios are close to 0.

The yellow star represents the midpoint of the boundary of the circumscribed rectangle.
According to the coordinates falling on the boundary, the regression process can be divided
into the following two cases: Figure 4a–d. In the first case, starting from a vertex of the
circumscribed rectangle and sliding in the horizontal and vertical directions, a rotating
bounding box can be obtained optimally. In the second case, the sliding vertices can
be selected either counterclockwise or clockwise. This once again represents an optimal
regression method and achieves the same results as RSDet [31,32]. The cases corresponding
to Figure 4e,f can be regarded as the prediction of the horizontal bounding box whose
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sliding ratios are close to 0. Therefore, using the multi-branch regression method, the
suboptimal regression problem shown in Figure 2b–d is solved. Section 2.2 describes
how to use multi-branch prediction to find the best regression method in the above four
regression branches.

2.2. Potential Points of the Object

According to Figure 3, it can be seen that the output of the multi-branch selection
and classification head is a heat map in R4C×W×H for an input RGB image in R3×H′×W ′ ,
where H′ and W ′ are the height and width of the image and H = H′/4, W = W ′/4.
We expanded the prediction channel and replaced the classification score with the PQES
(prediction quality estimated score) (this will be explained in detail later) to measure
whether the rotated bounding box obtained through the current branch had the highest IoU
(Intersection-over-Union) with the ground truth. To improve the model’s generalization
ability to cope with possible artificial labeling errors [36] and overfitting, we employed an
adaptive modified Gaussian kernel function to label smooth the center of the object with
the surrounding positions. The kernel of the modified Gaussian function is the following:

Km = exp

(
− (x− xm)

2 + (y− ym)
2

2δ2

)
(1)

δ =
1
2

min(Wboxm , Hboxm)

Z1
(2)

(xm, ym) is the center coordinate of mth object on the feature map. Wboxm and Hboxm

are the width and height of the ground-truth bounding box. The element-wise maximum
value strategy in which the same category overlaps was adopted. We charged the value of
min(Wboxm , Hboxm) to cover five standard deviations under the Gaussian distribution, so
the value of Z1 was set to 5. Considering that the pixels contained in the actual object in
the remote sensing image account for a small proportion of all of the pixels in the image,
the imbalance between positive and negative samples will be severe. Therefore, the dense
prediction method [17,28] was also adopted. However, different from the former, we
considered using an adaptive logarithm strategy to alleviate the gap in the size between
categories. This was followed by a shape-adaptive positive sample expansion kernel
as follows:

δplus =
1
2

α1log2(min(Wboxm , Hboxm))

Z1
(3)

The positive sample expansion function follows the following two principles: (1) the
coverage is less than or equal to Km; (2) the ground-truth boundary cannot be exceeded.
We treat min(Wboxm , Hboxm) as dis and α1 as x; the above principles can be expressed in a
mathematical formula as follows:{

f (x, dis) = dis− xlog2(dis) ≥ 0
dis > 1

(4)

∂ f (x, dis)
∂x

= − ln dis
ln 2

< 0 (5)

The partial derivative of the original function of the variable x is always less than 0,
which is a monotonic downward trend. The partial derivative for another variable dis is
as follows:

∂ f (x, dis)
∂dis

= 1− x
dis ln 2

(6)

1− x
dis ln 2

= 0 and dis =
x

ln 2
(7)
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Substitute the value of (7) into (4) and let the equation equal 0 as follows:

x
ln 2
− xlog2

( x
ln 2

)
= 0 (8)

x = 1.8844 (9)

Find the second partial derivative with respect to the variable dis as follows:

∂2 f (x, dis)
∂dis2 =

x
dis2 ln 2

(10)

Substituting Equations (6) and (8) into Equation (9), we can obtain as follows:

∂2 f (x, dis)
∂dis2 = 0.3679 > 0 (11)

Because the second derivative is greater than 0, it is reasonable to set the value of α1 to
1.88. Figures 5 and 6 show the growth of the corresponding dense prediction intervals as
the size of the ground-truth box increases.

Figure 5. Schematic diagram of the growth of the proposed adaptive dense prediction function.

Figure 6. Schematic diagram of positive sample expansion area under five different ground-truth
bounding box sizes. Subfigures (a–d) represent the corresponding dense prediction regions under
different inscribed circle diameters.

We calculated the Loss for each position in the multi-branch selection and classification
head tensor, and the targets to be learned can be defined as follows:

IoUheat−map = α3 IoU1 + (1− α3)IoU2 (12)

ground− truthheat−map = α2 IoUheat−map + (1− α2)Km (13)

IoUheat−map is the PQES (prediction quality estimated score) mentioned at the be-
ginning. IoU1 is the Intersection-Over-Union (IoU) between the predicted circumscribed
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bounding box and the real circumscribed bounding box; IoU2 is the IoU between the
predicted rotating bounding box and the ground truth. For all of the negative samples,
the entire IoUheat−map is set to 0. The α2 and α3 are the weight factors determined in the
subsequent experimental section. Taking the idea of Focal Loss [13], we propose a new
modified multi-branch-aware adaptive Focal Loss function to train the model. The ground
truth of the Lheat−map can likewise be fetched dynamically during the following training
process (refer to Equations (12) and (13)):

Lheat−map =

{
−l ∗ (l ∗ log p + (1− l) ∗ log(1− p)), l > 0 && l ∈ positive set

− θtotal−θpositive
4∗θtotal−θpositive

∗ µ1 ∗ pµ2 ∗ log(1− p), l = 0
∣∣∣∣∣∣ l ∈ negative set

(14)

where l is the supervised value, and p is the prediction. θtotal and θpositive represent the
number of all of the samples and positive samples in the feature map, respectively. We
need to scale down the contribution of negative samples. µ1 and µ2 follow the Varifocal
Loss [37] setting to make µ1 = 0.75, µ2 = 2.

2.3. Size Regression of Rectangle

For the regression of the circumscribed rectangle, we calculate the four distances
(l, r, t, b) to the circumscribed rectangle bounding box from the feature points and use the
GIoU [38] for training. The loss functions can be documented as follows:

Lcreg = LossGIoU
(
bboxpre, bboxm

)
(15)

bboxpre and bboxm reprinted the mth predicted circumscribed bounding box and the
real one. Utilizing the two sliding ratios, we can deduce the coordinates of the final rotating
bounding box. Using the regression method seen in Figure 4a as an example, the process
looks similar to what is observed in Figure 7 as follows:

xtr1 = xtr − p1(l + r)↔ ytr1 = ytr (16)

xtr2 = xtr ↔ ytr2 = ytr + p2(t + b) (17)

xbl1 = xbl ↔ ybl1 = ybl − p2(t + b) (18)

xbl2 = xbl + p1(l + r) ↔ ybl2 = ybl (19)

Figure 7. Example of a regression process for a rotating bounding box.
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We used the Sigmoid function [39] in the model and multiplied it by a constant 0.5 to
make the sliding ratios within (0,0.5) meet the following conditions ( a ∼ d means the four
regression ways in Figure 4): {

p1a∼d ≤
1
2

p2a∼d ≤
1
2

(20)

For training the sliding ratios, a new form of IoU Loss combined with Smooth L1
Loss [4] and GIoU [38] Loss called Surround-IoU Loss is adopted as follows:

Lrreg =
LossSmoothL1

(
ratiospre, ratiosground−truth

)
∣∣∣LossSmoothL1

(
ratiospre, ratiosground−truth

)∣∣∣ LossGIoU
(
bboxpre

r, bboxm
r) (21)

bboxpre
r and bboxm

r represent the mth predicted rotating bounding box and the ground
truth. Furthermore, the shape of the rotating bounding box cannot safely ensure a
rectangular shape. As displayed in Figure 8, the soft constraints satisfy the following
geometric properties:

Figure 8. Soft constraints. (a,b) detail two rotating bounding box situations. Take point O as the
center of the circle and BB′ as the diameter. According to Thales’ theorem, the angle ∠BAB′ is a
right angle.

(xl − xt, yl − yt) represents vect→l , and (xr − xt, yr − yt) represents vect→r; the rest are
vecr→b and vecr→t. Thus, the soft constraints can be written in the following form:

(xl − xt, yl − yt) · (xr − xt, yr − yt) = 0 (22)

(xb − xr, yb − yr) · (xt − xr, yt − yr) = 0 (23)

Lso f t = LossSmoothL1(vect→l · vect→r, 0) + LossSmoothL1(vecr→b · vecr→t, 0) (24)

2.4. Center Vertex Attention

Typically, the size of a circumscribed rectangle is always greater than a horizontal
one (as shown in Figure 9). As such, inspired by CBAM [40], a center vertex attention
strategy should be adopted to improve the ability of the model to identify different points.
We arranged the attention mechanism based on the mask at the following two sites: the
center point and the four vertices of the rotating bounding box. The module architecture is
portrayed in Figure 10.

FO represents the original feature map, FF represents the refined feature map, MC
represents the center vertex region generated by the modified Gaussian function. The
following equation expresses the fusion process and the target to be learned:

FF = Wc × Fc + FO (25)
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Mask =

{
Km, Center point

1
2 ∗ Km, Vertex point

(26)

Figure 9. The circumscribed rectangle is not equivalent to the horizontal bounding box. Red box:
horizontal bounding box. Green box: rotating bounding box. Blue box: circumscribed rectangle.

Figure 10. Center vertex attention module.

We use the same Loss function as CenterNet [16] for supervision. Moreover, SENet [41]
has also been employed as the auxiliary channel attention network, and the value of the
reduction ratio is 16.

The total loss function Ltotal can be written as follows (where N represents the number
of positive samples in an input image, and λ is a hyperparameter for balance):

Ltotal =
1
N ∑Lheat−map +

λ

N ∑
(
Lcreg ∗

(
Lso f t + Lmask

)
+ Lrreg

)
(27)

3. Result and Discussion

We evaluated our model on the DOTA dataset within the PyTorch 1.7.1 + cu110 [42]
framework. The training processing was deployed on a workstation with an NVIDIA
Quadro RTX 5000 16 GB GPU and an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz. The test
processing was completed on an NVIDIA Quadro RTX 4000 GPU with 8 GB of memory.

3.1. DOTA Dataset

There were two detection tasks that were introduced to the DOTA dataset [43]. Task1
operates with the oriented bounding boxes (OBB) as the ground truth, and Task2 employs
the HBB. Task1 was used for rotation detection. The dataset contains 2806 aerial images
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of various scales and orientations, ranging from 800 × 800 to 4000 × 4000. There are
188,282 target instances in total that are split into the following 15 categories: plane, baseball
diamond (BD), bridge, ground track field (GTF), small vehicle (SV), large vehicle (LV),
ship, tennis court (TC), basketball court (BC), storage tank (ST), soccer ball field (SBF),
roundabout (RA), harbor, swimming pool (SP), and helicopter (HE). In order to satisfy the
Surround-Net size requirements, the original input images and the corresponding labels
needed to be adjusted. The step size was fixed to 100 pixels, and the window size was
set to 600 pixels. After clipping there were 69,337 images in the training–verification set
and 35,777 images in the test set. The decentralized detection results were combined by
retaining the top 300 heat map values (the threshold is set to 0.1). Figure 11 shows part of
the DOTA dataset (note that these images have been cropped).

Figure 11. Visualization of the images in the DOTA dataset.

3.2. Evaluation Indicators

We adopted the same acceptance criteria used in PASCAL VOC2007 [44] and employed
means average precision (mAP) to evaluate the performance.

Precision =
TP

TP + FP
(28)

recall =
TP

TP + FN
(29)

accuracy =
TP + TN

TP + FN + FP + TN
(30)

The P–R curves can be drawn according to the precomputed precision and recall of
the detection results. The average precision (AP) metric is calculated by the area under the
P–R curve; hence, the higher the AP value, the better the performance, and vice versa. The
AP is defined as follows:

AP =
∫ 1

0
P(R)d(R) (31)

Here, P and R represent the single-point values of precision and recall, respectively.
Mean average precision (mAP) is the average of the AP in each category as follows:

mAP =
1
C

C

∑
C=1

AP (32)

3.3. Result
3.3.1. Mask Representations

Figure 12 visualizes part of the comparison between the raw images and mask
representations.
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Figure 12. Raw image and corresponding attention mask representations.

The white part of the figure represents the area where the value is not zero. In the
source zone, the number is moving closer to one. In other areas, the number could be
obtained using Equation (26).

3.3.2. Parameters Setting

In this section, a series of ablation experiments are performed on the DOTA valida-
tion dataset to determine the value of the hyperparameters used in Surround-Net. It is
important to note that we used ResNet-50 as the backbone network for ablation exper-
iments and set the number of training epochs to 50. The input images were resized to
a resolution of 600 × 600. There were the following three hyperparameters: the weight
factor λ of Ltotal , the weight factor α2 of the IoUheat−map, and the weight factor α3 of the
ground− truthheat−map.

1. Ltotal weight: We first analyzed the impact of the hyperparameters of the total loss on
the detection performance. We refer to the design methods of the Loss weight in some
mainstream multitasking learning models [2–13] and conducted the tests between 0.1
and 2 under the same experimental conditions. As shown in Table 1, λ achieved the
best performance when the value was 1.25. It was also observed that the detector’s
performance decreases to varying degrees when the selected value is too high or too
low. After adopting the GIoU and normalizing the Smooth L1, the Lrreg was unified
with Lheat−map in the same order of magnitude. As such, there is no necessity to
downscale the regression loss. Otherwise, the model would over focus on a single task
and damage the detector’s performance. Therefore, it is reasonable to employ 1.25 as
the value of the hyperparameter λ and adopt this value in the following experiment;

2. The values of α2 and α3: These two hyperparameters can be found in Equations (12)
and (13). Parameter α2 is used to counterbalance the value generated by the modified
Gaussian kernel and the IoU between the prediction box and the ground truth box.
Likewise, the parameter α3 was also utilized to make a trade-off between the two
different s IoU styles. One is between two horizontal bounding boxes, and the other is
between two rotating bounding boxes. We restrain the range between 0 and 1 to satisfy
the IoU range. Starting from intuition, parameters α2 and α3 were set to 0.5 when
testing λ. Therefore, it was necessary to investigate whether other combinations could
better enhance the detector’s performance. We first experimented with parameter
α2 and fixed the α3 to 0.5. As shown in Table 2, the detector was able to achieve the
best performance when parameter α2 was 0.5, and there was a slight difference when
other values were specified. This indicates that the proposed model can maintain
classification and location consistency. In other words, the model will not have a
wide gap between the classification and location scores. Similarly, the test results for
the parameter α3 are exhibited in Table 3. However, we discovered that increasing
the proportion of IoU between the horizontal bounding box results in the detector
demonstrating a new optimal performance. In actuality, because a slight angular de-
flection can seriously reduce the IoU between rotating bounding boxes, the regression
difficulty of rotating bounding boxes is more significant than that of horizontal bound-
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ing boxes, consistent with the phenomena observed in DAL [24]. Accordingly, we
employed the final hyperparameters in the following experiment:α2 = 0.5, α3 = 0.7.

Table 1. Test results of different λ on the DOTA validation dataset (468 images).

λ 0.1 0.5 1.0 1.25 2.0
mAP 59.015 61.242 61.292 62.031 61.589

Table 2. Test results of different α2 on the DOTA validation dataset (λ has been fixed to 1.25, and α3

has been fixed to 0.5 temporarily).

α2 0.1 0.3 0.5 0.7 0.9
mAP 61.546 61.877 62.031 61.909 61.223

Table 3. Test results of different α3 on the DOTA validation dataset (λ has been fixed to 1.25, and α2

has been fixed to 0.5).

α3 0.1 0.3 0.5 0.7 0.9
mAP 61.641 61.773 62.031 62.116 61.845

3.3.3. Contributions of Several Modules in Surround-Net

In this section, we conducted ablation experiments to corroborate the contributions of
the following several modules mentioned in Section 2: the soft constraint module, dense
prediction module, and center vertex attention module. When evaluating the module’s
effectiveness, we chose all of the DOTA datasets instead and used ResNet-152 as a backbone.

1. Soft constraint module: The results are shown in Table 4. The data in the first row
describes how we deleted the model’s soft constraint component during the training
process. That is, Lso f t is not calculated. This reveals that the model’s performance
decreases by approximately 0.7% after losing the soft constraint. Indeed, Figure 8
illustrates that soft constraints are essential for generating rectangular bounding boxes
while ensuring right-angle characteristics and assisting in the regression of the sliding
proportion. In addition, to further explore the effectiveness of the soft constraint mod-
ule, we visualized the comparison results without adding this constraint. As shown
in Figure 13, most of the bounding boxes predicted by the model in Figure 13a are par-
allelograms, contrary to the rectangle that we need. In Figure 13b, this phenomenon
has been intensely alleviated;

2. Dense predict module: The second row in the table represents the model’s perfor-
mance without using the dense prediction module. The analysis in Section 2 points
out that if the number of positive samples is not increased then the model will fall into
overfitting because there are too few positive samples. Therefore, it can be observed
from the results that the dense prediction module improves the overall performance
of the model by roughly 1.13%;

3. Center vertex attention module: The penultimate row in the table shows the contri-
bution of the center vertex attention module to the overall performance. Introducing
this module aims to enhance the feature extraction ability to make the model better
focused on the object position and its four vertices of the corresponding rotating
bounding box. It is evident that the addition of the attention module resulted in
a 1.501% gain in the overall performance of the model, which further explains the
necessity of an attention module in the detection tasks using remote sensing images.

3.3.4. Analysis of Surround IoU

In this section, we evaluate the effectiveness of Surround IoU Loss by comparing the
stability of the Loss curve. For this experiment, the complete DOTA training set was chosen,
and the number of iterations was uniformly set to 100 for comparison purposes. The Loss
curve in Figure 14a depicts that a direct Smooth L1 LossSmoothL1(·) was employed.
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Table 4. Results of the ablation experimental on the full DOTA dataset.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HE mAP

w/o Soft
constraint 88.39 81.45 50.23 69.28 70.33 75.63 81.63 90.69 87.72 84.83 60.24 63.05 66.25 69.98 63.32 73.54

w/o Dense
predict 88.28 81.13 50.39 69.19 70.09 75.51 80.51 90.50 87.39 84.21 60.28 63.87 65.84 69.12 62.15 73.23

w/o
C-VAttention 88.17 80.97 49.49 68.98 69.95 75.35 80.13 90.46 86.95 83.94 59.71 62.42 65.88 69.02 63.12 72.97

Ours 89.41 81.75 50.45 69.48 70.97 75.48 82.45 90.79 88.62 85.02 61.87 63.98 67.148 69.42 64.15 74.07

The abbreviations of the names are defined as: PL: plane, BD: baseball diamond, BR: bridge, GTF: ground
field track, SV: small vehicle, LV: large vehicle, SH: ship, TC: tennis court, BC: basketball court, ST: storage
tank, SBF: soccer ball field, RA: roundabout, HA: harbor, SP: swimming pool, HE: helicopter, and mAP: means
average precision.

Figure 13. Visualization of the detection results before (a) and after (b) using the soft constraint method.

Figure 14. Comparisons of loss curves during training. Subfigure (a) represents the use of Smoothl1
Loss only, and subfigure (b) represents the use of Surround-IoU loss.

It should be noticed that the downward trend is not gentle, and there is a “mutation”
at around the 7th iteration and the 12th iteration. Based on the analysis in Section 2, this
is because direct vertex coordinate regression cannot reflect the relative position difference
between the detection boxes. Therefore, we borrow the idea of calculating the Loss in a
rotating bounding box in SCRDet [25] by introducing normalization and IoU information. The
image in Figure 14b shows the Loss during the training process after replacing the original
Loss function with Surround IoU, and it is obvious that the Loss curve becomes more flattened
than the former.

3.3.5. Analysis of Multi-Branch Regression

This subsection discusses the impact of the proposed multi-branch prediction structure
on model performance. According to the discussion in Section 2, there are the following
four types of regression branches: oriented primary diagonal slender rectangular regres-
sion, oriented minor diagonal rectangular slender regression, oriented primary diagonal
rectangular regression, and oriented minor diagonal rectangular regression. The model’s
validity can be verified by masking some branches artificially. In the following experiments,
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we compared the performance by means of shielding in the Figure 4a,b branch and in the
Figure 4c,d branch. The results and visual analysis are provided in Table 5 and Figure 15.

Table 5. The experimental results of shielding different regression branches.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HE mAP

Shielded
branch a~b 88.89 81.26 42.68 69.13 51.39 55.25 64.67 86.48 83.21 84.88 54.13 63.71 51.70 67.17 62.72 67.15

Shielded
branch c~d 78.86 67.72 50.32 68.25 70.73 75.32 81.82 90.18 88.45 66.65 61.66 50.44 67.01 69.31 57.67 69.63

SurroundNet 89.41 81.75 50.45 69.48 70.97 75.48 82.45 90.79 88.62 85.02 61.87 63.98 67.148 69.42 64.15 74.07

Figure 15. Visual results comparison of shielding regression branches.

We completed the testing process by zeroing the different branches on the prediction
tensor and picking a new maximum value in the remaining branches. According to the
results in Table 5, keeping only some of the branches will significantly impair the model’s
performance. It is observed that if only the branches in Figure 4a,b are kept, the AP values
of the large vehicle, small vehicle, ship, and harbor categories show a relatively colossal
drop compared to the best performance. However, if only the branches in Figure 4c,d are
kept, then the AP values for the roundabout, basketball court, and storage tank categories
show the same decline. In the first row of pictures in Figure 15, the first two represents the
prediction results for when only branches c-d are kept, and the last two represent the results
obtained when only branches a–b are kept. Compared to keeping all of the branches in the
second row, the detection boxes for the harbor and large vehicle categories only showed
regression in directions c–d, showing a high level of redundancy. Moreover, in the large
vehicle category, many objects are missed by NMS [45]. In the last two pictures in the first
row, since the regression can only be carried out in the a-b directions, the obtained detection
boxes cannot completely cover the target, resulting in a shallow IoU with the ground
truth. It can be seen from the results in the second row, which multi-branch regression can
adaptively select the appropriate detection box.

3.3.6. Comparisons with State-of-the-Art Detectors

In this part, we compare Surround-Net with other state-of-the-art detectors on the
DOTA dataset and obtain the FPS results shown in Tables 6 and 7. Furthermore, we
randomly selected some of the detection results shown in Figure 16.



Remote Sens. 2022, 14, 1751 15 of 19

Table 6. Evaluation results of detection on the DOTA test dataset. ’*’ means using multi-scale training and multi-scale testing. ‘†’ means that only multi-scale testing
was used.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HE mAP

Faster R-CNN-O(A) [20] 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05
SCRDet(A) [25] 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
RSDet (A) [31] 90.13 82.01 53.83 68.52 70.21 78.73 73.60 91.22 87.13 84.71 64.31 68.21 66.14 69.31 63.74 74.12

Gliding Vertex(A) [26] 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
CSL(A) [21] 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

R3Det *(A) [19] 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
ReDet *(A) [46] 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

Oriented R-CNN *(A) [47] 89.84 85.43 61.09 79.82 79.71 85.35 88.82 90.88 86.68 87.73 72.21 70.80 82.42 78.18 74.11 80.87

O2DNet(AF) [28] 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DRN(AF) [48] 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
SAR(AF) [27] 90.89 82.67 49.75 69.90 68.07 72.31 81.24 90.27 88.19 82.43 62.08 66.43 66.20 68.34 63.48 73.48

CenterRot(AF) [49] 89.74 83.57 49.53 66.45 77.07 80.57 86.97 90.75 81.50 84.05 54.14 64.14 74.22 72.77 54.56 74.00
MEAD(AF) [50] 88.42 79.00 49.29 68.76 77.41 77.68 86.60 90.78 85.55 84.54 62.10 66.57 72.59 72.84 59.83 74.80
CFA *(AF) [51] 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05

BBAV *(AF) [30] 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36
AROA *(AF) [52] 88.33 82.73 56.06 71.58 72.98 77.59 78.29 88.63 83.33 86.61 65.93 63.52 76.03 78.43 61.33 75.41
DAFNe *(AF) [53] 89.40 86.27 53.70 60.51 82.04 81.17 88.66 90.37 83.81 87.27 53.93 69.38 75.61 81.26 70.86 76.95

SurroundNet-101(AF) 88.92 81.02 49.42 68.13 69.28 73.51 80.29 88.56 86.45 83.04 60.18 62.62 66.12 68.69 63.66 72.66
SurroundNet-152(AF) 89.41 81.75 50.45 69.49 70.97 75.49 82.46 90.80 88.64 85.02 61.87 63.98 67.15 69.42 64.15 74.07

SurroundNet-152 †(AF) 90.03 83.66 52.70 70.50 74.19 77.33 84.79 90.91 89.34 86.79 63.68 66.37 71.68 70.53 65.68 75.88

Number 101 indicates that the backbone network is ResNet101, and 152 indicates that the backbone network is ResNet152.
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Table 7. Inference speed comparisons with other methods.

Methods SCRDet R2CNN BBAVector SurroundNet-152 O2DNet-101
FPS 2.23 2.73 10.32 12.57 13.89

All models were tested under the same conditions. GPU: Quadro RTX 4000 × 1. Input resolution: 800 × 800.

Figure 16. Visualization of the detection results on the DOTA dataset.

During the experiment, Surround-Net used both ResNet-101 and ResNet-152 as the
backbone and multi-scale testing to achieve the best performance. As shown in Table 6,
the detectors are divided into the following two groups: anchor-based (A) and anchor-free
(AF) detectors. Table 6 indicates that ResNet-152 performs better than ResNet-101, so there
is a heavy dependence on feature extraction.

Overall, although lower than some anchor-based two-stage models and anchor-free
models, Surround-Net still obtained competitive results (75.88 mAP) and maintained a high
processing speed (12.57 FPS), resulting in a performance trade off. In particular, compared
to the eight-parameter models [26–32], Surround-Net still achieves state-of-the-art results,
confirming the correctness of the method in solving boundary problems. Table 7 shows
the FPS results that were obtained under the same test conditions. It can be seen that
Surround-Net-152 still has 12.57 FPS, showing the efficiency of our model. Figure 16 reflects
that Surround-Net can not only complete high-precision detection for horizontal objects
but also achieve excellent results when applied to objects with a high aspect ratio.
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4. Final Discussion and Conclusions

After analyzing the ranking problems and regression discontinuity problems in the
five-parameter and eight-parameter models, we introduced a new one-stage anchor-free
model with multi-branch prediction for oriented detection tasks. In order to maintain
consistency between classification, localization, and branch selection, we replaced the
original classification label with the corresponding PQES (prediction quality-estimated
score). Further, we added center vertex spatial attention to ensure that our model fully
utilizes features to distinguish the foreground from the background. The soft constraint was
also proposed to refine the bounding box. At the same time, to improve the prediction recall
and to alleviate the imbalance between positive and negative samples in the anchor-free
model, we also adopted a dense prediction strategy.

In the experiment, we first discussed the impact of the weights of the Loss function.
The experiments show that the Loss weight λ should be 1.25, and in PQES, the weights of
α2 and α3 should be set to 0.5 and 0.7. Further, we investigated the influence of our three
proposed modules. The soft constraint module results in a performance enhancement of
0.7%, and more importantly, it enables the model to output a rectangular detection box that
meets the geometric requirements. The dense prediction module improves the performance
by 1.13%, while the attention mechanism model improves it by 1.501%. In order to enhance
the smoothness of the Loss curve, we adopted the Surround IoU Loss by incorporating
location information to train the sliding ratio. In addition, we also conducted experiments
and discussions on the effectiveness of multi-branch prediction, which showed that a single
regression method will damage the detector’s performance in terms of oriented detection.
Finally, we compared the results with the state of the art and visualized the detection results.
It can be seen that the model proposed in this paper achieved values of 75.88 mAP and
74.07 mAP at 12.57 FPS, which is a competitive result and represents a trade-off between
performance and running speed.

However, it should be noted that there is still a slight gap between Surround-Net
and the state of the art. In the anchor-based and two-stage models [19–21,25,26,31,46,47]
listed in Table 6, the best Surround-Net performance is in a position that is higher than the
middle of the ranking list. In the anchor-free and one-stage models [27,28,30,48–53], the
values representing the best performance in our work are only lower than those achieved
by DAFNE [53]. However, when multi-scale testing technology is not used and Resnet-101
is used as the backbone, the performance of Surround-Net-101 (72.66%) is better than that
of DAFNE-101 [53] (70.75%). In addition, we found a few missed detections (which occur
in the first two pictures in the last line of Figure 16) in some specific categories (Small
Vehicle and Ship). It is because the output feature map undergoes 4-fold down-sampling,
and some objects may share the same center. As such, reducing the probability of missed
detection is particularly important for our future research.
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