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Abstract: Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product is one of the
prevailing datasets for global snow monitoring, but cloud obscuration leads to the discontinuity of
ground coverage information in spatial and temporal. To solve this problem, a novel spatial-temporal
missing information reconstruction model based on U-Net with partial convolutions (PU-Net) is
proposed to recover the cloud gaps in the MODIS Normalized Difference Snow Index (NDSI) products.
Taking the Yellow River Source Region as a study case, in which the snow cover is characterized by
shallow, fast-changing and complex heterogeneity, the MODIS NDSI product in the 2018–2019 snow
season is reconstructed, and the reconstruction accuracy is validated with simulated cloud mask
and in situ snow depth (SD) observations. The results show that under the simulated cloud mask
scenario, the mean absolute error (MAE) of the reconstructed missing pixels is from 4.22% to 18.81%
under different scenarios of the mean NDSI of the patch and the mask ratio of the applied mask, and
the coefficient of determination (R2) ranges from 0.76 to 0.94. The validation based on in situ SD
observations at 10 sites shows good consistency, the overall accuracy is increased by 25.66% to 49.25%
compared with the Aqua-Terra combined MODIS NDSI product, and its value exceeds 90% at 60% of
observation stations.

Keywords: MODIS; NDSI; cloud removal; partial convolution; reconstruction; U-Net

1. Introduction

Snow cover, as an important component of the cryosphere, plays an important role
in the global climate and heat budget [1–3]. High albedo and thermal insulation of snow
surface changes energy balance of land surface, affecting global atmospheric circulation [4].
Moreover, snow cover is also a sensitive indicator of climate changes, which directly affects
many physical and hydrological processes [5]. As an important freshwater supply, glaciers
and snowmelt provides freshwater for about 17% of the world’s population, of which more
than 600 million people are nourished by mountain meltwaters [6]. Agriculture and animal
husbandry are also largely influenced by snow cover [7,8].

The development and advances in space information technologies enable satellite
remote sensing to become an effective means of snow monitoring [9]. The Moderate Reso-
lution Imaging Spectrometer (MODIS) sensor has been widely used in snow monitoring
since the launch of Terra satellite in 1999 and Aqua satellite in 2002 [10,11]. Extensive
studies have evaluated the quality of MODIS snow cover products over various regions
of the world, and the results show that it has good qualified performance under clear sky
conditions when compared with in situ observations and snow cover estimated from other
higher-resolution remote sensing images [12–15].

However, the MODIS snow product is long suffered from cloud obscuration [11],
which leads to the discontinuity in space and time and severely limits its application in
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the fields of hydrological cycle, climate change, etc. [16,17]. In order to derive cloud-free
snow cover products, several methods have been developed to eliminate the cloud pixels
in the MODIS snow cover products, which can be classified into spatial methods, temporal
methods, spatial-temporal methods, and multi-source fusion methods [18]. Spatial methods
assign the value of cloud pixels based on spatially selected non-cloudy pixels [19–21]. How-
ever, if the fraction of cloud cover is high, spatial methods always leads to unsatisfactory
cloud removal effect [22]. Temporal methods such as Terra and Aqua combination [23,24],
seasonal filter [25], and multi-day combination [26] recover cloudy pixels using information
within a time window. Unluckily, the reconstruction accuracy in snow-transitional periods
tends to be hampered since temporal methods assumes that the snow cover remains con-
stant or experiences simple linear or non-linear changes in a given temporal interval [27].
The spatial-temporal methods are essentially successive or alternate combinations of spatial
and temporal methods, which utilize their complementary advantages [28]. Multi-source
fusion methods entail the optical, microwave, and/or in situ observations, which can
completely remove all cloud contaminations, but the performance is severely affected by
the spatial resolution, complementarity, and accuracy of the input data [29]. As reported
by Wang et al. [30], the performance of multi-source fusion methods using MODIS and
AMSR-E is more dependent on the accuracy of AMSR-E itself.

The cloud removal methods mentioned above aim classically at the MODIS collection
5 (C5) product, which provides the fraction snow cover (FSC) and the binary snow cover
data. However, in 2016, the MODIS collection 6 (C6) product was published, in which only
the Normalized Difference Snow Index (NDSI) snow cover data were provided. Therefore,
it is urgent to develop new cloud removal methods based on the MODIS C6 product.
Jing et al. [22] proposed a Gaussian-kernel-function-based two-stage fusion framework to
eliminate cloud gaps in the MODIS NDSI product, and the accuracy had been validated
over the Tibetan Plateau. Chen et al. [31] developed a spatial and temporal adaptive
reflectance fusion model to generate cloud-free MODIS NDSI products. Their model
was tested in Northeast China and proved to be effective in cloud removal. The above-
mentioned approaches can directly recover NDSI without converting it to FSC in advance,
but when the cloud fraction is high, the limited ground information can influence the
accuracy of the predicted result.

Deep neural networks, which learn meaningful hidden representations and semantic
priors in an end-to-end fashion, have been used in image inpainting in recent studies [32].
Several studies have applied deep neural networks to reconstruct missing pixels in satellite
remote sensing products, such as soil moisture [33] and land surface temperature [34].
However, as far as we know, deep learning networks have not been explored in the
reconstruction of missing information in snow cover products. This might be because,
when compared with other surface variables such as land surface temperature and soil
moisture, the spatial-temporal variation in snow cover is more complex, which is not
only affected by environmental factors but also includes a series of complex physical and
chemical processes of the snow cover itself. Convolutional neural network (CNN), which
is one of the most popular deep learning algorithms, has shown strong power in image
processing and inpainting [35]. However, traditional CNN cannot deal with images with
missing regions directly, which needs pre-processing steps, such as the initial missing pixels
with a fixed value [36] or through interpolation methods using the value of adjacent or
nearby pixels [37], and this will inevitably introduce new error sources. Thus, his paper
presents an innovative spatial and temporal information fusion framework for filling the
cloud gaps in MODIS NDSI product based on U-Net, i.e., a type of CNN, with partial
convolutions, which do not need any missing region initialization method and utilizes both
spatial and temporal information of the ground.

The rest of this paper is organized as follows. Section 2 gives descriptions of our study
area and the relevant data used in this study. The detailed model design and validation
methodology are presented in Section 3. Section 4 gives the results of our model. The
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choice of time window and loss function is discussed in Section 5. Finally, the conclusions
and directions for possible improvements are given in Section 6.

2. Study Area and Data
2.1. Study Area

The Qinghai–Tibetan Plateau is surrounded by the Earth’s highest mountains and is
known as the roof of the world [38]. Studies have shown that the thermal and dynamical
effects of its unique terrain directly or indirectly affect the atmospheric circulation and
climate systems in the Northern Hemisphere [39–41]. The study area (Figure 1), i.e., the
Yellow River Source Region (95◦53′26′′E–103◦24′43′′E, 32◦9′31′′N–36◦33′33′′N), is located
in the northeast of the Qinghai–Tibet Plateau, covering an area of about 1.36 × 105 km2.
Most of the study area is above 3000 m, and the elevation decreases from west to east, with
the highest being 6212 m and the lowest being 1961 m. The study area consists of a variety
of landforms such as mountains, basins, valleys, meadows, lakes, glaciers, and permafrost
areas. Alpine vegetation is widely distributed in this region, such as alpine meadow, alpine
swamp meadow, and alpine grassland, which accounts for more than 70% of the total
area [42,43]. The study area has a drainage area of 123,700 km2 [44] and makes outstanding
contributions to the water resources of the Yellow River Basin, among which snow melt
water is an important water supply. The snow cover in study area is fast-changing and
exhibits significant spatiotemporal heterogeneity [45]. The permanent snow cover and
glaciers are mainly distributed in the northern Qilian Mountains, Bayankala, and southern
A’nyêmaqên [46]. To sum up, the complex conditions of regional climate and underlying
surface makes the snow cover in the study area highly heterogeneous and changes rapidly,
which makes it difficult to be accurately estimated.

Figure 1. Elevation of the Yellow River Source Region and position of meteorological stations.

2.2. Data
2.2.1. MODIS C6 Snow Cover Products

The MODIS C6 snow cover products (MOD10A1 and MYD10A1) are acquired from the
Terra and Aqua satellites. Compared with previous versions, C6 has great improvements
including better handling of confusion between cloud and snow, an improved atmospheric
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calibration and restoration of band 6 of Aqua [31]. The MODIS C6 snow cover products
include raw NDSI data, NDSI snow cover, snow albedo, and quality control flags, among
which the NDSI snow cover is used in this study. The NDSI snow cover data are coded
as integers, which have valid pixels with values ranging from 0 to 100(%), as well invalid
pixels indicating missing data, no decision, night, inland water, ocean, cloud, detector
saturated, and fill. The tiling system of the MODIS C6 snow cover products are integerized
sinusoidal grids with a total of 36 horizontal tiles and 18 vertical tiles. The spatial resolution
is 500 m, and the temporal resolution is 1 day.

In this study, two tiles, i.e., tile horizontal 25 vertical 5 (h25v05) and horizontal 26 vertical
5 (h26v05), during the 2018–2019 snow season (1 November 2018 to 31 March 2019) were
collected from NASA’s EOSDIS “Earthdata” (https://earthdata.nasa.gov/ accessed on 21
September 2021). First, two tiles were moisaicked to cover the entire study area. Second, the
mosaic images were projected to the ellipsoid WGS84 geographic coordinates. After that, we
reclassified all of the invalid pixels (i.e., missing data, no decision, night, inland water, ocean,
cloud, detector saturated, and fill) as cloud cover and assigned a value of 250, while leaving
the valid pixels unchanged.

2.2.2. Meteorological Snow Depth (SD) Data

Daily SD observations of 10 meteorological stations from 1 November 2018 to 31 March
2019 are collected from China Meteorological Data Service Centre (http://data.cma.cn
accessed on 6 August 2021). The in situ SD was measured automatically at the station at
8 a.m. The locations of the stations are depicted in Figure 1.

3. Methodology

In this study, we built a U-Net with partial convolutions (PU-Net) which utilizes both
spatial and temporal information to reconstruct the cloud gaps in the MODIS NDSI product.
The following section gives descriptions on U-Net, partial convolution, our model structure,
the model training procedure, as well as the validation methodology.

3.1. U-Net

U-Net, which stems from the so-called “fully convolutional network”, was first in-
troduced by Ronneberger et al. [47] for biomedical image segmentation. In the original
papaer, U-Net is expressed as an expansion of traditional CNN, which has a u-shaped
architecture and consists of a contracting path followed with an expansion path, and do not
have any fully connected layers. The contracting path consists of repeated convolutions
followed by a rectified linear unit (ReLU) and a max pooling operation for downsampling.
In the expansion path, every step includes an upsampling of the feature map, a 2 × 2 up
convolution to halve the number of feature channels, a concatenation with corresponding
feature map from the contracting path, and convolution operations followed by ReLU [47].
The structure of a U-Net, although not typical, can be found in Figure 2.

3.2. Partial Convolution

CNN has been widely used in image inpainting [36,37] and satellite imagery recov-
ery [48] scenarios. However, the traditional convolution operation requires the input pixels
to be all valid, which needs a ‘hole-initialization’ method to initialize the invalid pixels in
the input images with appropriate values [32]. This preprocessing procedure introduces
extra error sources. To deal with this negative effect, we use partial convolution layers [32]
in our model to utilize only the information of valid pixels.

The partial convolution layer consists of a partial convolution operation and a mask
update function. Different from the traditional convolution operation, partial convolution
uses a binary mask matrix M to mark the invalid pixels. This mask matrix should have
the same size with the input patches, and at each location, 1 means this pixel is valid and 0
stands for invalid. The partial convolution at every location can be expressed as:

https://earthdata.nasa.gov/
http://data.cma.cn
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x
′
=

{
WT(X�M) sum(1)

sum(M)
+ b, if ‖M‖1 6= 0

0, otherwise
(1)

where � denotes the element-wise multiply operation, X is the matrix of the input patch,
1 is the matrix with same shape as M and all elements being 1, W is the weights of the
convolution filter, and b is the corresponding bias. The sum(1)/sum(M) is a scaling factor
according to the valid pixel fraction. Obviously, the output of partial convolution operation
only depends on the valid pixels.

After each partial convolution operation, the mask matrix M should be updated in
the following way: If the convolution can generate its output using at least one valid input
value, the mask value at this location is marked as valid. This procedure is expressed as:

m
′
=

{
1, if ‖M‖1 6= 0
0, otherwise

(2)

and through the successive implementation of the partial convolution layers, the mask will
eventually become all ones.

3.3. MODIS NDSI Gap-Filling Framework Based on PU-Net
3.3.1. Preprocessing for Gap-Filling

Prior to building our PU-Net reconstruction model, preprocessing methods for MODIS
NDSI product can be applied to remove parts of the cloud gaps. This includes two procedures,
namely, the Aqua–Terra combination method and Adjacent Temporal Filter (ATF). In the
Aqua–Terra combination procedure, daily MODIS NDSI products from Aqua and Terra were
combined and the priority was assigned to Terra, as validation results have shown it has
better retrievals than Aqua [49]. ATF is a widely accepted temporal method for snow cover
recovering, which rests on the assumption that the snow cover will persist on land surface
for a certain period of time [28], and its accuracy has been confirmed by researchers through
applying different option on composition days [25,50]. After Aqua–Terra combination and
ATF, more snow information can be delivered to PU-Net for NDSI reconstruction. In this study,
the Aqua–Terra combination and ATF method were carried out before PU-Net. However,
using PU-Net itself directly is capable of reconstructing the NDSI for all gap pixels.

3.3.2. Gap-Filling Framework

A new MODIS NDSI missing pixel reconstruction model based on PU-Net is proposed
in this study. The PU-Net was built through replacing all convolution layers with partial
convolution layers in a traditional U-Net. Our U-Net consists of four encoder layers and
four decoder layers, with skip-links between corresponding layers. Each encoder layer
includes a partial convolution operation (PConv), a mask update operation, and a batch
normalization operation. The kernel size of each partial convolution operation is 3 × 3, the
stride is 2, the activation function is ReLU, and the optimizer used in our PU-Net is Adam
(for readers not familiar with these terms, please refer to reference [51–53]). The detailed
architecture of the proposed PU-Net is depicted in Figure 2.

If the current day is date T, the input of the proposed PU-Net is the spatiotemporal
MODIS NDSI patches from date T−3 to date T + 3 and the corresponding mask patches.
The patch size in this study was 64 × 64 (which means a region of 32 km × 32 km), so the
shapes of the input NDSI and input mask were all 64 × 64 × 7. The model output was the
reconstructed NDSI patch at date T, with shape of 64 × 64.

The loss function used in our model consisted of three parts: the ‘inside-mask’ loss
Lmask, the ‘outside-mask’ loss Loutside, and the mask boundary loss Lmb.
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Figure 2. The structure of proposed PU-Net NDSI reconstruction model.

The ‘inside-mask’ loss Lmask refers to the L2 paradigm penalty for the difference
between the reconstructed NDSI gap pixels and that of the reference truth values inside a
patch. This is the major criterion for evaluation because our ultimate goal is to reconstruct
the NDSI value of gap pixels. However, the prediction of our NDSI reconstruction model
should also not disturb the original valid pixels. Thus, the ‘outside-mask’ loss’ Loutside gives
the model this restriction, which is the L2 paradigm penalty for the disturbance of valid
pixels in a patch:

Lmask =
∥∥(1−M)� (NDSIrec − NDSIorig)

∥∥2
2 (3)

Loutside =
∥∥M� (NDSIrec − NDSIorig)

∥∥2
2 (4)

The final part of the loss function Lmb introduces smoothing factor to the prediction at
boundaries between valid and invalid pixels. The Lmb is expressed as:

Lmb =
1
N ∑

xrec∈P,xorig∈Q

∣∣xrec − xorig
∣∣2 (5)

where xrec and xorig are adjacent pixels inside and outside a gap area within a patch,
respectively, P is the one-pixel margin inside masked region, Q is the one-pixel margin
outside masked region, and N is the total number of pixels inside P and Q.

The total loss Ltotal is the linearly weighted combination of Lmask, Loutside, and Lmb
with their corresponding weights. The value of α, β, and γ are 10, 1, and 0.1, respectively,
which are determined through the trial-and-error method:

Ltotal = αLmask + βLoutside + γLmb (6)

3.4. Model Training and Application

In the training procedure, large numbers of MODIS NDSI patches need to be generated
to train the reconstruction model. The generation of training data included two steps: patch
selection and mask simulation. The purpose of the patch selection step was to pick out
complete MODIS NDSI patches as the reference truth scenes, which were later also applied
with a simulated mask in the mask simulation step. In this way, we obtained both the
masked incomplete patches and their corresponding unmasked complete patches, which
were used as training samples for the proposed model. The flow chart of the proposed
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PU-Net is shown in Figure 3. In this study, the time window for the spatial-temporal NDSI
patch group was 7 days (from date T− 3 to date T + 3), thus i was set to 3.

Figure 3. Flow chart of proposed PU-Net NDSI reconstruction model.

In the patch selection step, we traversed the MODIS NDSI image over the entire
2018–2019 snow season in the study area to obtain the complete NDSI patches. After a
complete patch on date T was found, we picked out the NDSI patches at this corresponding
location from date T− 3 to date T + 3 to form the spatial-temporal NDSI patch group.
Moreover, the corresponding spatial-temporal mask group between date T− 3 to date
T + 3 of this spatial-temporal NDSI patch group was also generated according to its pixel
value. After traversing from the 2018–2019 snow season, 2695 complete patches with mean
NDSI value no less than 10, 500 complete patches with mean NDSI value between 0 to 10,
and 500 complete patches with mean NDSI equals to 0 were selected to form the training
set. The purpose of this was to ensure that all types of snow cover pixels were included
in the training sample and that all types were balanced as much as possible. In total,
3695 spatial-temporal NDSI patch groups along with their corresponding spatial-temporal
mask patch groups are selected after the patch selection step. In this study, the patch size
was 64 × 64 for both NDSI and mask patches.
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In the mask simulation step, we also traversed the MODIS NSDI images of the entire
study area and selected incomplete patches with a size of 64 × 64 as mask patches. From
these mask patches, we randomly chose 1000 with mask ratio from 0 to 0.1, . . . , and 0.9
to 1.0, respectively. After a mask patch on date T was chosen, the mask patches at this
corresponding location from date T− 3 to date T + 3 were also generated and picked out.
After this, we obtained 10,000 mask patches groups in total for mask simulation. These
simulated mask groups were randomly selected and applied to the spatial-temporal NDSI
patch groups, and were jointed with the corresponding mask groups (Figure 3). After
finishing mask simulation, the spatial-temporal mask patch groups and NDSI patch groups
corresponding to date T− 3 to date T + 3 for the target patch groups on the given date T
were generated.

In this study, the proposed PU-Net model for MODIS NDSI missing information
reconstruction is built on Keras-Tensorflow platform. The batch size was set to 40 for each
training step. The training epoch was 200, and the learning rate was set to 0.0002. For
readers not familiar with these terms, their descriptions can be found in reference [54].

3.5. Validation Methodology

To validate the reconstruction accuracy of our model, the most appropriate approach is
to use the meteorological station observed SD as ground truth. However, the SD observed
by meteorological stations cannot depict the snow information over the entire study area
because most stations locate in valleys with low elevation (Figure 1), which results in
the sparse distribution of observed SD, and there is no record for some high-mountain,
inaccessible regions. Thus, in addition to the validation with in situ SD observation, another
validation methodology based on simulated cloud masks was adopted. The cloud masks
from some cloudy MODIS NDSI images are extracted and applied to the cloud-free MODIS
NDSI images, which is regarded as the ground truth [23,28].

3.5.1. Simulated Cloud Mask

To validate our model accuracy on patch scale, similar to the generation of train-
ing dataset in Section 3.4, we generated the validation patch dataset which consisted of
34,491 spatial-temporal NDSI patch groups from date T− 3 to T + 3 (where the patch on
date T is complete and 2449 with mean NDSI larger than 10 on date T, 500 from 0 to 10 on
date T, and 500 equal to 0 on date T), as well as their corresponding spatial-temporal mask
patch groups. Similarly, the 10,000 randomly chosen mask patches groups (1000 with mask
ratio from 0 to 0.1, . . . , and 0.9 to 1, respectively) in Section 3.4 were randomly selected
and applied to the validation patches. The training dataset and the validation dataset were
independent and have no intersections.

To testify the accuracy of our model on the entire study region, the MODIS NDSI
images after 5-day ATF from date T1 − 3 to date T1 + 3 over the entire study area were
chosen to be applied with simulated mask, where the T1 was selected to have no or least
cloud cover among the 2018–2019 snow season. The corresponding simulated mask was
extracted from the 5-day ATF-ed MODIS NDSI images at from date T2 − 3 to date T2 + 3,
where the T2 was at the day as T1 of the previous year, i.e., T2 = T1 − 365.

The performance evaluation criteria for simulated mask scenario are the mean absolute
error (MAE) and coefficient of determination (R2) over the masked region, which is defined as:

MAE =
1

‖1−M‖1
‖(1−M)� (NDSIrec − NDSItruth)‖1 (7)

R2 =

(
1

‖1−M‖1 − 1

‖1−M‖1

∑
i=1

(
xi

rec − xi
rec

σrec
)(

xi
truth − xi

truth
σtruth

)

)2

(8)

where M is the mask matrix, 1 is the matrix with same shape as M and all elements
being 1, NDSIrec is the reconstructed MODIS NDSI, NDSItruth is the Aqua–Terra combined
MODIS NDSI (ground truth), xi

rec is the reconstructed NDSI at the i-th cloud pixel, xi
truth
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is the ground truth NDSI at corresponding pixel, σrec is the standard deviation of the
reconstructed NDSI over the masked region, and σorig is the standard deviation of the
ground truth NDSI over the masked region.

3.5.2. Validation with In-Situ SD Observation

The Aqua–Terra combined NDSI, MODIS NDSI after 5-day ATF, and PU-Net recon-
structed MODIS NDSI are compared with the in situ observed SD at 10 meteorological
stations among the Yellow River Source Region (Figure 1). The validation strategy of the
confusion matrix [55] (Table 1) were applied to evaluate our results.

Table 1. Confusion matrix for validating MODIS NDSI with in situ SD observations.

Observed SD

No Snow (<ε1 cm) Snow (≥ε1 cm)

MODIS NDSI
No Snow (<ε2) a b

Snow(≥ε2) c d
Cloud e f

In the table, pixels are classified into four categories: correctly rejected, omission error,
commission error, and correctly hit. Their pixels numbers are represented by a, b, c, and d,
respectively. e and f are the number of pixels regarded as cloud in MODIS NDSI images
when the meteorological station considers no snow and snow. ε1 and ε2 are thresholds for
SD and NDSI to distinguish a pixel between covered by snow or not. In our study, ε1 and
ε2 are set to 3 and 40%, respectively.

Four validation indices based on confusion matrix are expressed as follows:

OA = (a + d)/(a + b + c + d + e + f )× 100% (9)

MU = (b/(a + b + c + d))× 100% (10)

MO = (c/(a + b + c + d))× 100% (11)

where OA is the overall accuracy, which stands for the partition of MODIS pixels being
correctly classified. MU and MO indicate number of snow events which are underestimated
and overestimated, respectively. In perfect condition, the validation indices should be
OA = 1, MU = 0, and MO = 0.

4. Experiment Results

In this section, we give the results of PU-Net reconstructed NDSI and its validation
during the 2018–2019 snow season. The results are shown in the following three aspects:
visual results of reconstruction, validation with simulated mask, and validation with in
situ SD observations.

4.1. Visual Results of Reconstruction
4.1.1. Results on Patches

To directly show the visual reconstruction results of PU-Net, several NDSI patches
from validation dataset are chosen to be reconstructed by our model. The applied simulated
mask, the masked Aqua–Terra combined NDSI patch, the PU-Net reconstructed NDSI
patch, the complete Aqua–Terra combined NDSI patch (reference truth), and the elevation
patch from digital elevation model (DEM) are presented in Figure 4. The applied masks
have mask ratio ranges from 11% to 45%, which is in accordance with the cloud fraction of
the Aqua–Terra combined MODIS NDSI data in the study area.
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Figure 4. Examples of reconstruction results on single patches randomly chosen from 2018–2019
snow season. The applied mask (Mask, (a1–a4)), masked NDSI patch (Masked, (b1–b4)), PU-Net
reconstructed NDSI patch (PU-Net, (c1–c4)), reference truth NDSI patch (Truth, (d1–d4)), and the
corresponding elevation patch (Elevation, (e1–e4)) are presented.

From Figure 4, we can clearly see that PU-Net can completely remove all cloud gaps
in the NDSI patches. The reconstructed patches can well preserve the spatial distribution
of snow on the reference truth NDSI patches, and the distribution of reconstructed pixels
have spatial continuity with merely no abrupt changes. Compared with the elevation
data, the reconstructed patches can restore the shape of ridges and mountains well, which
proves that the spatial distribution of snow on the reconstructed patches is reasonable.
The difference between reconstructed and reference truth NDSI mainly located in the area
with large gradients in NDSI. PU-Net tends to smoothen these change processes. This is
because the strong spatial heterogeneity of snow makes drastic and frequent changes in
NDSI difficult to predict. In addition, the introduction of mask boundary loss also adds a
smoothing term to the prediction.

4.1.2. Results on Study Area

To further show the visual results of our reconstruction model on entire study area,
the Aqua NDSI image, Terra NDSI image, Aqua–Terra combined NDSI image, MODIS
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NDSI image after 5-day ATF, and PU-Net reconstructed MODIS NDSI image at 6 March
2019 are presented, which is shown in Figure 5. The cloud fractions of Aqua NDSI image,
Terra NDSI image, Aqua–Terra combined NDSI image, MODIS NDSI image after 5-day
ATF, and the PU-Net reconstructed NDSI image are 95.7%, 91.4%, 88.7%, 38.9%, and 0%,
respectively. The ATF method can remove parts of the cloud gaps, but it still left us with
large areas of cloud in the middle of the study area. Our reconstruction model can remove
all cloud gaps, and the reconstructed NDSI shows good continuity. From Figure 5, it is
clear that PU-Net can be applied to areas with a large scale. Compared with Figure 1, the
reconstructed snow cover mainly distributes in high-altitude areas and mountain ridges,
which is consistent with the expected distribution characteristics of snow. These results
prove that the spatial distribution of NDSI reconstructed by our model is reasonable.

Figure 5. NDSI over the study area at 6 March 2019. Subplots are (a) Aqua NDSI, (b) Terra NDSI,
(c) Aqua–Terra combined NDSI, (d) NDSI after 5-day ATF, and (e) reconstructed NDSI from PU-Net.

4.2. Validation with Simulated Mask
4.2.1. Validation on Patches

To evaluate the reconstruction accuracy, all patches in the validation dataset with date
from 1 November 2018 to 31 March 2019 are used for validation. Simulated masks are
randomly selected to be applied to these patches, and the MAE, as well as the R2, of the
masked region between the reconstructed patch and the corresponding complete Aqua–
Terra combined patch are collected. The results are categorized according to the mask ratio
of the simulated mask, and the mean NDSI of the complete Aqua–Terra combined patch,
which are listed in Tables 2 and 3.

Table 2 indicates the following: (1) Generally, PU-Net show good performance when
the mean NDSI of the complete Aqua–Terra combined patch is less than 50%, where the
MAE of the reconstructed regions are kept below 13%. (2) With the increase in patch
mean NDSI, the MAE of the reconstructed area first increases then decreases. Our model
performs slightly worse when the mean NDSI is from 50% to 70%, but the MAE under
this condition could be limited to no more than 18.81%. When the mean NDSI is larger
than 70%, the MAE of the reconstructed region decreases to values between 9.59% and
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13.53%. This is because when the mean NDSI is close to 100%, the snow cover on this patch
is more likely to be dense and stable, which is easier to be reconstructed. On the other hand,
when the mean NDSI is around 60%, the heterogeneity of snow cover is more obvious, thus
affecting the accuracy of our model. (3) The reconstruction accuracy slightly decreases with
the increase in the mask ratio. This is reasonable because the higher the mask ratio, the
less spatial information we can obtain directly from the patch on date T, which means the
model has to rely more on the spatial and temporal information from the patch on date
T− 3 to date T + 3 (exclude date T) to reconstruct the masked area.

Table 2. MAE of the masked region between reconstructed NDSI patch and corresponding complete
NDSI patch during the 2018–2019 snow season. The results are categorized according to the mask
ratio of applied mask and the mean NDSI of the corresponding complete NDSI patch.

MAE (%) Mean NDSI (%)
0 (0, 10] (10, 20] (20, 30] (30, 40] (40, 50] (50, 60] (60, 70] (70, 80]

Mask
Ratio (%)

(0, 10] 4.69 5.40 8.22 9.39 8.65 11.04 18.81 13.83 9.59
(10, 20] 4.37 5.32 8.94 10.14 10.63 11.85 16.47 16.49 13.16
(20, 30] 4.40 5.25 9.67 10.31 10.39 12.33 15.66 16.27 12.58
(30, 40] 4.30 5.22 9.45 10.52 10.79 12.48 15.76 16.52 13.50
(40, 50] 4.31 5.11 9.82 10.74 10.78 12.26 15.68 16.17 13.53
(50, 60] 4.27 5.14 9.94 10.24 10.68 12.55 17.71 15.92 13.00
(60, 70] 4.24 5.10 10.04 10.39 10.56 12.17 17.10 17.12 12.05
(70, 80] 4.22 5.14 10.08 10.45 10.40 12.35 16.89 16.77 11.89
(80, 90] 4.22 5.08 10.30 10.33 10.43 12.60 16.26 16.47 11.80
(90, 100] 4.22 5.13 10.61 10.47 10.42 12.42 16.17 16.61 11.44

Table 3. R2 of the masked region between reconstructed NDSI patch and corresponding complete
NDSI patch during the 2018–2019 snow season. Results are categorized according to the mask ratio
of applied mask and the mean NDSI of the complete Aqua–Terra combined NDSI patch.

R2 Mean NDSI (%)
(0, 10] (10, 20] (20, 30] (30, 40] (40, 50] (50, 60] (60, 70] (70, 80]

Mask
Ratio (%)

(0, 10] 0.92 0.90 0.88 0.91 0.85 0.76 0.82 0.90
(10, 20] 0.94 0.89 0.86 0.86 0.84 0.77 0.78 0.83
(20, 30] 0.92 0.89 0.87 0.86 0.84 0.79 0.78 0.84
(30, 40] 0.92 0.89 0.86 0.87 0.84 0.80 0.78 0.83
(40, 50] 0.92 0.89 0.88 0.88 0.83 0.79 0.78 0.82
(50, 60] 0.91 0.88 0.87 0.87 0.82 0.78 0.78 0.81
(60, 70] 0.92 0.88 0.87 0.88 0.83 0.80 0.77 0.84
(70, 80] 0.91 0.89 0.88 0.88 0.83 0.80 0.77 0.85
(80, 90] 0.91 0.88 0.88 0.87 0.83 0.78 0.78 0.87

(90, 100] 0.91 0.88 0.87 0.88 0.84 0.79 0.78 0.87

The results of R2 in Table 3 also indicate that PU-Net has good reconstruction accuracy.
(1) Overall, the R2 is larger than 0.8 when the mean NDSI of the complete Aqua–Terra
combined patch is less than 50% or larger than 70%. Particularly, when the mean NDSI of
the complete Aqua–Terra combined patch is between 0 and 10%, the R2 exceeds 90%. These
show that the reconstructed NDSI of PU-Net has good consistency with the Aqua–Terra
combined MODIS NDSI. (2) When the mean NDSI of the complete Aqua–Terra combined
patch is fixed, our model performs best when the mask ratio is under 10%. This is because
the less area that is being masked, the more available snow information can our model
have. With the increase in the mask ratio, the R2 has no significant increasing or decreasing
trend, which indicates that our model can make use of temporal information on date T− 3
to date T + 3 (exclude date T); thus, it is not very sensitive to the mask ratio. (3) Similar to
the results of the MAE, the R2 is better for both small and large values of NDSI than for the
intermediate values, which indicates our model gives more reliable reconstruction results
when the patch shows less snow heterogeneity.
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4.2.2. Validation on Entire Study Area

To examine our reconstruction performance under the scenario of simulated mask over
the entire study area, we choose the MODIS NDSI products after 5-day ATF on 10 October
2018, 29 November 2018, and 30 March 2019 as ground truth because the MODIS NDSI
products after 5-day ATF on these days have no or the least clouds among the 2018–2019
snow season. The mask ratios for the MODIS NDSI products after 5-day ATF on these
3 dates are 0.27%, 0.34%, and 0%, respectively. To simulate the real cloud state over the
entire study area, the cloud masks on 10 October 2017, 29 November 2017, and 30 March
2018 are extracted for mask simulation, and their mask ratios are 29.0%, 40.7%, and 18.4%,
respectively, which can represent the cloud fraction of the MODIS NDSI product after
5-day ATF. After reconstructed by PU-Net reconstruction model, the output MODIS NDSI
gap-filled images are compared to the unmasked MODIS NDSI at the corresponding date,
with the MAE and R2 of the masked region being calculated. The results are shown in
Tables 4 and 5.

Table 4. MAE of reconstructed MODIS NDSI at chosen date with simulated mask.

MAE (%) MODIS NDSI Date
10 October 2018 29 November 2018 30 March 2019

Mask Date
10 October 2017 12.906 - -
29 November 2017 - 14.369 -
30 March 2018 - - 12.106

Table 5. R2 of reconstructed MODIS NDSI at chosen date with simulated mask.

R2 MODIS NDSI Date
10 October 2018 29 November 2018 30 March 2019

Mask Date
10 October 2017 0. 844 - -
29 November 2017 - 0. 813 -
30 March 2018 - - 0.851

From Table 4, we can see that the MAE of the reconstructed cloud regions is less than
15% for all three simulated mask scenarios. Our model performs best on 30 March 2019,
with an MAE of 12.106%. This is partly because the mask on 30 March 2018 has the smallest
mask ratio compared to the others. The reconstruction accuracy for 27 November 2018 is a
little worse, but the MAE can be still kept less than 15%. This is because the cloud mask on
27 November 2017 forms large blocks and gathers in the east side of the study area, where
the elevation is lower and the snow cover changes fast. The MAE of the reconstructed
NDSI on 10 October 2018 is 12.906%. The R2 in Table 5 show similar characteristics, with 30
March 2019 having the best accuracy and 27 November 2018 having the worst. Overall, the
R2 is larger than 0.8 on all 3 days, which also indicates the reconstructed NDSI is consistent
with the MODIS NDSI product.

To give a direct visual result, Figure 6 shows the reconstruction performance on 30
March 2019 with a simulated mask on 30 March 2018. From the figure, we can see that
PU-Net can completely remove all clouds and gaps in the MODIS NDSI product, and the
snow patterns under cloud gaps can be successfully recovered. In addition, the areas with
high NDSI corresponds well to the regions with elevation higher than 4500 m in Figure 1.
Subplot (e) in Figure 6 depicts the PU-Net reconstructed NDSI minus NDSI after 5-day
ATF (Diff), from which we can see the absolute difference is kept below 10% over most
reconstructed regions. In the regions to the west border of the study area, compared with
the NDSI after 5-day ATF, PU-Net tends to overestimate NDSI. Since these regions are
located in mountainous areas with elevation higher than 4500 m (Figure 1), it is reasonable
for PU-Net to fill these regions with higher NDSI values.
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Figure 6. Reconstruction performance on 30 March 2019 with simulated mask on 30 March 2018.
The subplots correspond to (a) mask, (b) NDSI after 5-day ATF, (c) masked NDSI, (d) PU-Net
reconstructed NDSI, and (e) PU-Net reconstructed NDSI minus NDSI after 5-day ATF (Diff).

4.3. Validation with In Situ SD Observation

To further evaluate the performance of PU-Net, we validate the reconstructed NDSI
with in situ observed SD of 10 meteorological stations among the Yellow River Source
Region. Table 6 lists the results of three performance quantitative validation indices over
10 meteorological stations during the 2018–2019 snow season.

From Table 6, we can see that compared with the Aqua–Terra combined NDSI product,
the NDSI product generated by 5-day ATF has significantly higher OA, but the MU is
slightly increased. This indicates that the ATF method can remove part of cloud gaps with
good reconstruction accuracy. After being reconstructed by PU-Net, the OA witnesses an
obvious increase at all 10 sites, while the value of MU and MO could be reduced, compared
with the NDSI product generated by 5-day ATF. Thus, it is clear that the pixels reconstructed
by PU-Net have good accuracy. At the Gonghe, Guide, Maduo, Henan, Ruoergai, and
Hongyuan sites, the OA of our final reconstructed NDSI is higher than 90%, which increases
up to 49.25% compared to the Aqua–Terra combined MODIS NDSI product (at site Maduo).
Even when the Aqua–Terra combined MODIS NDSI product is not very consistent with
the observed SD (at site Maqu), our reconstruction model could still improve the OA to
79.17%.

Figure 7 gives the reconstructed MODIS NDSI as well as the observed SD at site Maqu
and Maduo. It can be seen that, affected by cloud gaps, for both sites, the Aqua–Terra
combined NDSI (in red stars) has no valid NDSI on many dates (the dates of green and blue
stars). After applying the 5-day ATF method, the NDSI on some dates can be recovered (in
green stars), but there are still many remaining dates that cannot be restored (the date of
the blue stars). Finally, through PU-Net, the NDSIs of the dates where the blue stars are
located can be successfully restored, and the temporal variation in NDSI during the whole
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snow season can be completely obtained. Maqu and Maduo represent two different types
of snow cover: the transient, fast changing snow cover and the continuous snow cover
through the whole snow season. The reconstructed NDSI at Maqu shows the characteristics
of violent oscillation, which is consistent with the observed SD. Maduo has a non-zero SD
observation during the whole snow season, and the reconstructed NDSI remains stable
between 60% and 80%. To sum up, Figure 7 show that at both Maqu and Maduo, the
reconstructed NDSI has good consistency with the observed SD, which indicates that our
model has good reconstruction accuracy.

Table 6. Validation indices for MODIS NDSI and observed SD from meteorological stations. Results
using Aqua–Terra combined MODIS NDSI product (MYOD), MODIS NDSI product after 5-day ATF
(ATF), and MODIS NDSI reconstructed by our model (PU-Net) are listed.

MODIS NDSI

MOYD ATF PU-Net

Site OA (%) MU (%) MO (%) OA (%) MU (%) MO (%) OA (%) MU (%) MO (%)

Gonghe 55.63 1.10 6.59 88.32 3.79 4.55 91.30 4.35 4.35
Guide 70.86 0.00 0.93 96.62 0.00 0.69 99.32 0.00 0.68

Xinghai 62.91 0.94 9.43 87.77 4.35 7.25 88.57 4.29 7.14
Maduo 43.71 0.00 7.04 84.62 0.00 7.04 92.96 0.00 7.04

Dari 41.06 7.32 17.07 73.28 11.29 11.29 76.56 12.50 10.94
Henan 62.91 2.86 6.67 89.78 4.41 5.15 90.44 4.41 5.15
Jiuzhi 49.01 5.68 10.23 79.70 7.26 7.26 85.04 7.87 7.09
Maqu 39.74 0.00 28.63 74.17 2.63 19.30 79.17 2.50 18.33

Ruoergai 65.56 2.88 1.92 88.41 5.34 1.53 92.59 5.93 1.48
Hongyuan 64.90 2.78 6.48 90.85 3.55 4.96 91.61 3.50 4.90

Figure 7. Reconstructed NDSI and observed SD at site (a) Maqu and (b) Maduo. The Aqua–Terra
combined NDSI (MOYD) points are drawn in red stars, the NDSI points recovered by 5-day ATF method
(ATF) are drawn in green stars, and the NDSI points reconstructed by PU-Net (PU-Net) are drawn in
blue stars. Black line shows the final reconstructed NDSI. The observed SD are shown with blue bars.

5. Discussion
5.1. The Impact of Time Window on Reconstruction Accuracy

In former parts of this paper, we use the NDSI patches from date T− 3 to date T + 3
to generate the spatial-temporal NDSI patch group at date T; thus, our time window is
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7 days. However, since the snow cover in the Yellow River Source Region has strong spatial-
temporal heterogeneity, its characteristics of fast-changing requires us to be very careful
in the selection of time window. On the one hand, a longer time window captures more
temporal information, but it may also introduce a large amount of misleading information
inconsistent with the actual situation, i.e., snow information on a non-snow pixel and
vice versa. On the other hand, as the time window shortens, the amount of misleading
information could be decreased, but a too short time window may also lead to the fact that
the temporal information is not effectively used. Thus, an appropriate time window should
be considered.

In this section, we test the reconstruction accuracy under 3 time window options:
5 days (from T− 2 to T + 2), 7 days (from T− 3 to T + 3), and 9 days (from T− 4 to T + 4).
For each time window option, MAE of the masked region between reconstructed NDSI
patch and reference truth Aqua–Terra combined NDSI patch during the 2018–2019 snow
season are calculated and collected, which are shown in Figure 8. It is clear that among
the three different time window scenarios, the results from time window 7 days are the
best. The results from time window at 5 days are always the worst, which indicates that
the too-small time window cannot obtain enough snow information for reconstruction.
The option with a time window at 9 days can generate some better results when the mean
NDSI of the patch is larger than 60%, but overall, it underperforms in the option with
the time window at 7 days. This is partly because when mean NDSI is high, the snow on
this patch is more likely to be stable and last for a longer time. Therefore, a larger time
window can better capture this information. On the other hand, when there is no snow
or the snow cover is unstable, a too-large time window will introduce more misleading
information and results in larger error, so the overall accuracy of 9-day time window is not
very satisfactory. The results show that too-small or too-large time window will all lead
to lower reconstruction accuracy and the performance under the option of a 7-day time
window is relatively better. Thus, the final setting of the time window in our PU-Net is
7 days. It should be noted that the setting of the time window is dependent on the inherent
characteristics of snow cover and cloudiness of the study area; thus, for other regions, the
time window should be reconsidered, i.e., persistent snow cover and persistent cloudiness
likely favors the use of a longer time window (and vice versa).

Figure 8. MAE between reconstructed NDSI value and reference true value of the masked pixels
during the 2018–2019 snow season for (a) 5-day time windows, (b) 7-day time windows, and (c) 9-day
time windows.

5.2. The Impact of Loss Function on Reconstruction Accuracy

The loss function controls the optimization of the learning parameters in the back
propagation step, thus is crucial to the performance of our reconstruction model. In
Section 3.3, we introduce the loss function in our model as the combination of L2 paradigm
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penalty inside mask, L2 paradigm penalty outside mask, and mask boundary loss. In
most data reconstruction or regression approaches based on deep learning, the L1 or L2
penalty is employed in the loss function, such as image inpainting for irregular holes [32],
satellite product retrieval [56], and the reconstruction of soil moisture [33]. Thus, which
one is more suitable for our model should be discussed. The mask boundary loss Lmb
introduces smooth factors into the loss function, which gives the reconstructed NDSI a
better spatial continuity and less sudden changes. However, this loss factor is seldom used
in the reconstruction of snow products. Thus, the impact of mask boundary loss on the
reconstruction accuracy is also discussed.

In this section, we present four loss functions with different combinations:

1. Loss1: L1 penalty with mask boundary loss;
2. Loss2: L1 penalty without mask boundary loss;
3. Loss3: L2 penalty with mask boundary loss;
4. Loss4: L2 penalty without mask boundary loss.

Their expressions are listed as follows. The values of α, β, and γ are set equal to the
same setting in Section 3.3, and the loss function used in Section 3.3 is the following Loss3:

Loss1 = αLmask′ + βLoutside′ + γLmb (12)

Loss2 = αLmask′ + βLoutside′ (13)

Loss3 = αLmask + βLoutside + γLmb (14)

Loss4 = αLmask + βLoutside (15)

where
Lmask′ =

∥∥(1−M)� (NDSIrec − NDSIorig)
∥∥

1 (16)

Loutside′ =
∥∥M� (NDSIrec − NDSIorig)

∥∥
1 (17)

Similarly, to compare the performance of the reconstruction model itself, we apply
the evaluation on patches of the 2018–2019 snow season with simulated mask, which is
described in Section 4.2. The MAE of the reconstructed MODIS NDSI using different loss
functions are listed in Figure 9.

It is clear that the MAE under loss function Loss1 and Loss2 is significantly larger than
that of Loss3 and Loss4, which indicates that the L2 penalty is more suitable for our PU-Net
model. The reason for this might be that the L2 loss function is more sensitive than the L1
loss function to outliers in the estimation. Since our goal is to reconstruct NDSI, we do not
want the predicted pixels to have too large differences with the target, and more punitive
losses should be given to these kinds of predictions. Thus, the L2 paradigm loss suits
our PU-Net model better. As for the mask boundary loss, obviously, the MAE under loss
function Loss1 and Loss3 is smaller than that of Loss2 and Loss4, respectively, which shows
that the introduction of the mask boundary loss can effectively improve the reconstruction
accuracy. When the mean NDSI of the patch is larger than 50, the loss function Loss4
outperforms Loss3 under certain conditions of the mask ratio, but overall, the performance
of Loss3 is better than Loss4. Thus, the final loss function chosen for our model is Loss3, as
described in Section 3.3.
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Figure 9. MAE between reconstructed NDSI value and reference true value of the masked pixels
during the 2018–2019 snow season for (a) Loss1: L1 penalty with mask boundary loss, (b) Loss2: L1
penalty without mask boundary loss, (c) Loss3: L2 penalty with mask boundary loss, and (d) Loss4:
L2 penalty without mask boundary loss.

6. Conclusions

The MODIS NDSI product suffers from a large percentage of cloud contamination,
which is the main limitation to the wide use of this product. In addition, traditional deep
learning methods for image recovery cannot solve the problem of invalid regions without
’hole-initialization’ methods. Thus, to address the temporal discontinuity and spatial
incompleteness, we proposed a novel spatial-temporal NDSI reconstruction model based
on U-Net with partial convolutions, namely, PU-Net. To evaluate the accuracy of PU-Net
reconstructed NDSI, (1) visual results of reconstruction, (2) validation with simulated mask,
and (3) validation with in situ SD observations are presented. The determination of the
time window for our reconstruction model as well as the appropriate loss function are
also discussed. The validation results show that the reconstructed NDSI from our model
show high accuracy and reliability through validation with simulated mask and has good
consistency with in situ observations.

Although the proposed PU-Net reconstruction model performs well, there are still
limitations and drawbacks that need to be improved. Possible improvement could be
achieved through (1) introducing auxiliary information into the model, such as terrain,
land use, surface temperature, etc.; (2) adaptively selecting time windows according to
the characteristics of the snow cover; and (3) further optimizing the model’s structure and
parameters. This work could be further applied to other satellite observations other than
snow cover, such as land surface temperature and vegetation fraction.
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