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Abstract: The Landsat time-series dataset is one of the most widely used datasets for land surface
research due to its long time-series and Land Surface Reflectance (LSR) product. Though the United
States Geological Survey (USGS) provides Landsat LSR products for later Landsat 4–5 Thematic
Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land
Imager (OLI), no early Landsat 1–5 Multispectral Scanner System (MSS) LSR product is generated
currently, limiting the research traced back to the 1970s. Atmospheric correction is one of the necessary
preprocesses for generating LSR products. However, it is challenging for MSS images, not only
because the image quality is lower and bands are different compared with the current sensors, but
also because of the multiple effects of other preprocesses, such as radiometric calibration. Based on the
Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) model, we propose a novel
framework for generating Landsat 1–5 MSS LSR data of China. Ground-based visibility records are
introduced to replace the images-based aerosol optical depth (AOD) to effectively generate MSS LSR
data of the 1970s. We evaluate the generated MSS LSR data by the cross-validation of the simultaneous
observation of MSS and TM sensors in Landsat 4 and Landsat 5 using Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) surface reflectance product as the truth value. The evaluation
result shows that the generated MSS LSR data is comparable with the later Landsat TM LSR product,
with slightly larger uncertainties. In addition, it shows that the non-atmospheric factors (e.g., the
difference of relative spectral responses of TM and MSS, the georegistration errors, the radiometric
calibration uncertainty, and image noises) bring larger uncertainties than the atmospheric factors
(e.g., the AOD retrieval method by visibility) to the cross-validation results. We apply the MSS LSR
data generated by the proposed framework on time series analysis in the regions of interest (ROIs)
of the spectral-stable land cover in China for all the MSS sensors. The application demonstrates the
potential and promise of the MSS LSR data generated by the proposed framework.

Keywords: early Landsat MSS; atmospheric correction; uncertainties analysis; time series

1. Introduction

As one of the most successful remote sensing datasets, the Landsat time-series dataset
is widely used in land surface research, thanks to its long time-series and products [1]. Using
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) for TM/ETM+
of Landsat 4, 5, and 7 and Land Surface Reflectance Code (LaSRC) for OLI of Landsat 8,
a global on-demand atmospherically corrected surface reflectance product capability is
reached currently [2–4]. However, the Landsat 1–5 Multispectral Scanner System (MSS)
images acquired from July 1972 are not as easy to use as the later Landsat data due
to the challenges of radiometric calibration [5,6], georegistration [7,8], and atmospheric
correction [9,10]. Since surface reflectance is always considered a necessary and minimum
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standard for analysis-ready data among most research now [1], the lack of MSS land surface
reflectance (LSR) data, especially the lack of atmospheric correction of MSS, limits the
application of remote sensing extending to the 1970s, as the Landsat MSS dataset is the
only multi-spectral global observation record using remote sensing in the 1970s.

In the early years, statistical methods for atmospheric correction were proposed for
specific remote sensing images, such as invariant-object methods [11], histogram matching
methods [12,13], and dark object subtraction methods [14,15]. These methods are com-
monly based on solid assumptions, sometimes considered in doubt [16,17]. Afterward,
atmospheric correction methods were significantly improved by incorporating a physically-
based procedure [18]. Atmospheric correction using a physically-based procedure can be
divided into two problems, building radiative transfer (RT) models and estimating input
parameters of RT models.

With the development of MODTRAN [19] and the 6S model [20], the difficulty of
atmospheric correction lay in how to accurately measure or estimate aerosol optical depth
(AOD), the most important factor to an optical remote sensing image. The most influ-
ential ground-based AOD monitor network is AERONET [21]. The observation records
of AERONET extended back to the early 1990s, but it had been still two decades since
Landsat MSS had begun Earth observation. On the other hand, satellite-based methods
estimating AOD were proposed, known as the dense dark vegetation (DDV) method for
MODIS and Landsat TM images [22–25]. The DDV method is based on the known dense
vegetation properties, that the blue and red band reflectance of dense dark vegetation is
assumed as 0.02 ± 0.01 and the green band reflectance is assumed as 0.03 ± 0.01 [22], or
that the empirical relationships among reflectance of blue, green, and shortwave infrared
(SWIR) bands are known [16,24,25]. Additionally, there must be enough dense pixels and
corresponding bands in the remote sensing image. Limited to the different bands and lower
quality of MSS sensors, no stable and widely-applied method for AOD retrieval based on
MSS images is proposed currently.

Because AOD and visibility respectively represent the vertical and horizontal at-
tenuation of atmosphere, the relationship between AOD and visibility was found and
developed [26–28]. Therefore, both methods retrieving AOD from visibility [29,30] and
methods retrieving visibility from AOD [31,32] are proposed. As is advantageous in stable
long time series and numerous observation stations, visibility data are used for temporal–
spatial change research of AOD [30,33]. However, little research has studied atmospheric
correction for remote sensing images using visibility data.

In this paper, we propose a novel framework to generate Landsat 1–5 MSS LSR data
of China, using the ground-based visibility observation network records as the input of
the 6S model. Considering the MSS images were acquired about 30–50 years ago with rare
simultaneous in situ LSR observation records, we studied the uncertainty of the MSS land
surface reflectance, using simultaneous TM LEDAPS product of Landsat 4–5 as the truth
value. We also selected several ROIs of spectral-stable land cover in China and analyzed
the time series reflectance of the ROIs to examine the stability of the visibility-based surface
reflectance in an application of the data generated by our method.

The rest of the paper is organized as follows. Section 2 introduces the data used in the
atmospheric correction of MSS images. Section 3 details the framework. Section 4 shows
and analyzes the results and the sources of uncertainty quantitatively. Section 5 represents
an application on time-series surface reflectance in five ROIs with spectral-stable land cover.
Discussions and conclusions are presented, respectively, in Sections 6 and 7.

2. Data
2.1. Landsat Collection 1 Archive

Landsat satellites started in 1972, with Landsat 1–3 carrying the MSS sensor and
Landsat 4–5 carrying both MSS and TM sensors. The MSS sensor presents four-band
remote sensing images, covering visible and near-infrared (NIR) bands at 57 × 79 m
resolution (resampled to 60 m in the Landsat Collection 1 Archive) and 6-bit quantization.
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In contrast, the TM sensor onboard Landsat 4–5 presents seven bands at 30 m resolution
and 8-bit quantization, with different bandpass positions.The main differences between
MSS and TM images of Landsat Collection 1 Archive are shown in Table 1. The relative
spectral responses (RSRs) of MSS and TM are downloaded from the USGS website (https:
//landsat.usgs.gov/spectral-characteristics-viewer, accessed on 3 April 2022). Figure 1
shows that there are noticeable differences between the relative spectral response of MSS
and TM, but the MSS sensors of Landsat 1–5 are slightly varied.

Table 1. The difference between MSS and TM images of Landsat Collection 1 Archive.

MSS TM

Bands Green, red, NIR1, NIR2 Blue, green, red, NIR,
SWIR1, TIR, SWIR2

Spatial resolution 57 × 79 m (resampled to 60 m) 30 m
Radiometric resolution 6 bit (resampled to 8 bit) 8 bit
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(a) relative spectral responses of Landsat 1–5 MSS
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Figure 1. Relative spectral responses of TM and MSS.

In 2016, the USGS reorganized the Landsat archive into a tiered collection manage-
ment structure titled Landsat Collection 1 [1]. The Landsat 1–5 MSS data is resampled to
60 m resolution and 8-bit quantization and processed into Collection 1 through geometric
registration [7] and radiometric calibration [6]. The geometric registration and radiometric
calibration of MSS images are more difficult than later Landsat 4–5 TM images, Landsat 7
ETM+ images, and Landsat 8 OLI images. Only 0.61% of the MSS images can be processed
to Tier 1, with tolerances of ≤12 m radial root mean square error (RMSE), while the percent-
ages of TM, ETM+, and OLI are 59.63%, 70.04%, and 57.65% [34]. The absolute radiometric
uncertainties of Landsat 1–5 MSS are 6–18%, while TM, ETM+, OLI are, respectively, 5–7%,
4%, and 3% [34].

The Landsat 4–5 satellites carried both MSS and TM sensors, which may simulta-
neously observe the Earth. The pair of MSS and TM images have the same observation
time, target, and atmosphere condition, providing us cross-validation probability. In this
research, we choose cloud-free images of Landsat 1–5 MSS Collection 1 in China during
1982–1995, with various land cover types, and we specially selected 479 pairs of MSS and
TM images as cross-validation.

2.2. Landsat 4–5 LEDAPS Surface Reflectance Product

Landsat 4–5 LEDAPS Surface Reflectance Product is produced by the USGS on-
demand processing system EROS Science Processing Architecture using LEDAPS. LEDAPS
adopts additional water vapor, air pressure, and air temperature data from the National
Centers for Environment Prediction (NCEP), ozone from the NASA Earth Probe Total

https://landsat.usgs.gov/spectral-characteristics-viewer
https://landsat.usgs.gov/spectral-characteristics-viewer
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Ozone Mapping Spectrometer, and topography. LEDAPS uses the DDV method for AOD
retrieval without auxiliary aerosols data [35].

The Landsat LEDAPS SR product is evaluated completely and thoroughly with good
precision [2,3,36]. Using AERONET-AOD as true value, TM bands’ average uncertainty
(U) varies from 0.0041 (red band) to 0.0070 (SWIR-1 band) in reflectance, while TM bands’
average uncertainty (U) varies from 0.009 (red band) to 0.017 (SWIR-1 band) in reflectance,
using MODIS surface reflectance (after VJB Bidirectional Reflectance Distribution Function
adjusted) as true value. As the MSS LSR data generated by our proposed framework are
much more likely to be used with the LEDAPS product to form a long time series, we
choose the LEDAPS SR product of Landsat TM as the truth value.

2.3. Integrated Surface Database

The Integrated Surface Database (ISD) consists of global hourly meteorological obser-
vations [37]. The earliest records of ISD can be traced back to the year 1901. Figure 2 shows
the stations of ISD in 1973 in or near China.
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Figure 2. ISD stations in or near China in 1973.

ISD observes numerous phenomena, e.g., wind, temperature, pressure, visibility, and
precipitation. The quality control algorithms integrated the data from over 100 original
data sources and compiled them into ASCII format. In this research, we extract visibility
records according to the image observation time and center coordinates by a spatial and
temporal search radius.

2.4. NCEP Reanalysis

The NCEP/NCAR Reanalysis 1 is a widely-used dataset based on data assimila-
tion [38]. The data are generated as 2.5 × 2.5 degrees global grids from 1948, covering air
temperature, relative humidity, and specific humidity. This research uses daily specific
humidity to calculate the column water vapor and surface air temperature and surface
relative humidity to calculate surface water vapor pressure.
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2.5. China Land Use/Cover Change (CNLUCC)

As the aerosol type is highly associated with land cover, we use China’s Multi-Period
Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC) to determine the
aerosol type of the MSS and TM images [39]. The CNLUCC dataset covers seven periods,
including the late 1970s, late 1980s, mid-1990s, late 1990s, 2005, 2010, and 2015, and classifies
the land cover into six classes and 25 subclasses by visual interpretation [39–41].

3. Methodology
3.1. Overview

The framework of generating the LSR of China’s early MSS images by visibility data
is shown in Figure 3. Similar to the later sensors, the framework includes the radiometric
calibration to convert DN values to top-of-atmosphere (TOA) reflectance or radiance. We
used the radiometric calibration coefficients of the metadata file (MTL.txt) provided by
the Landsat Collection 1 Level 1 Archive, which was updated in 2019 [6]. Moreover,
the observation date and time, geographic coordinates of the image center, and solar
azimuth/elevation angle are all extracted from the metadata file.

The atmospheric RT model computed the transmission, intrinsic reflectance, and spher-
ical albedo terms. Then, atmospheric correction coefficients are provided to transfer TOA
radiance or reflectance to surface reflectance for every band. Since the visibility records
are independent of the remote sensing observation, the quality assessment (QA) band is
unnecessary, which helps extract the dense dark vegetation pixels for the DDV method.

The key of the framework is the module of retrieval and calculation of atmosphere
parameters. The 6S model allows a direct visibility input, as an empirical model is built in
the code. For contrast, we also applied a Qiu model [29], a physically-based model with an
empirical correction function for AOD retrieval. The input parameters of empirical and
physically-based models are different.

The visibility records are retrieved by search radiuses of 2 degrees spatially and 2 h
temporally. All the visibility records observed two hours before and after the acquisition
time within the 2 degrees area are retrieved. If the number of records retrieved is less
than 4, the search radiuses increase with the maximum of 4 degrees spatially and 3 h
temporally. The maximum visibility record of all the records is used, for the lower records
are vulnerable to local environmental conditions. For those images with no visibility
records retrieved, default visibility of 23 km is used. The content of WV is derived from
NCEP/NCAR Reanalysis 1, and the ozone concentration is set as 0.345 atm-cm, as the
Total Ozone Mapping Spectrometer (TOMS) data was not available during the 1970s. The
aerosols model is precalculated by the land cover of China in 1980 and classified into four
models, namely, continental, maritime, urban, and desert.

3.2. 6SV Atmospheric Correction Model

The 6SV radiative transfer model expresses the atmospheric correction equation in the
Lambertian condition with no adjacency effects [4,20], as follows:

ρTOA(θs, θv, P, Aer, UH2O, UO3)

= TgOG(m, P)TgO3(m, UO3)[ρatm(θs, θv, φ, P, Aer, UH20)

+ Tratm(θs, θv, φ, Aer)
ρs

1− Satm(P, Aer)ρs
TgH20(m, UH2O)]

(1)

where ρTOA is the top-of-atmosphere (TOA) reflectance, ρatm is the atmosphere intrinsic
reflectance, ρs is the land surface reflectance.

Tratm is the total atmosphere transmission effected by AOD and water vapor (WV),
Satm is the atmosphere spherical albedo, and Tg is the gaseous transmission of absorb-
ing gases in the atmosphere, including water vapor (Tgwv), ozone (TgO3), and other
gases (Tgog).
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θv, θs, and φ are the view zenith angle, solar zenith angle, and relative azimuth angle,
m equals 1/cos(θs) + 1/cos(θv),

P is the pressure that influences the number of molecules and the concentration, U is
the integrated content, UH2O and UO3 for water vapor and ozone, respectively, and Aer is
the parameters of aerosol.
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In the 6S model, an empirical model was proposed to describe the relationship between
AOD and visibility. Two profiles of 23 km visibility and 5 km visibility were derived [42],
and the AOD at 550 nm for visibility 5 km and 23 km were, respectively, calculated with
the parameters defined [43–45]. For another visibility, a new particle density profile was
computed by the profiles defined by the visibility of 5 km and 23 km.

3.3. AOD Retrieval Model Based on Visibility

In addition to the empirical models, several physically-based models were proposed on
the concept of visibility proposed by Koschmieder [26]. Combined with the Elterman model
describing the relationship between visibility and extinction coefficient of aerosols [27], a
corrected scheme for China is proposed [29], as follows:

τa = (
3.912

V
− 0.0116)(H1(e

− z
H1 − e−

5.5
H2 ) + 12.5e−

5.5
H2 + H2e

−5.5
H1 )× f (2)

where τa is the total optical depth of atmospheric molecules and aerosol particles, V is
the horizontal visibility, H1 is 0.886 km + 0.0222 V, H2 is 3.77 km, and z is the height
of visibility measurement. For northeastern China, the empirical correction coefficient
f = e−0.32+0.02 V. For other Chinese regions, the empirical correction coefficient f =

e(0.42+0.0046pw+0.015Vz)e
−0.0047V2

pw , where Pw is the water pressure of the visibility measurement
location in hPa. The surface water pressure of stations is also estimated using NCEP/NCAR
Reanalysis 1.

Though researchers proposed other advanced models to retrieve AOD from visibility,
Qiu’s model is more convenient and is easier to calculate, as all the input parameters can be
calculated based on the NCEP/NCAR Reanalysis 1 and ISD. Therefore, we applied Qiu’s
AOD retrieval model in this research.

4. Evaluation and Uncertainty Analysis

Since rare simultaneous in situ LSR observation records were acquired in China about
30–50 years ago, we chose an indirect method to evaluate the MSS land surface reflectance
product. Thanks to the simultaneous observation of MSS and TM in Landsat 4–5, the TM
LEDAPS product was used as the truth value. Uncertainties are brought by several sources
in the cross-validation, shown in Table 2 in detail when comparing the measured value
with the truth value.

Table 2. The sources of uncertainty.

Measured Value Truth Value RSR
Difference

Radiometric
Calibration

Geographical
Factors

AOD/WV
Estimating

Other
Factors Reference

LSR of TM
(Visibility-6S and

Visibility-Qiu Method)

LSR of TM
(LEDAPS) × × × ◦ × -

LSR of MSS
(Visibility-6S and

Visibility-Qiu Method)

LSR of TM
(LEDAPS) ◦ ◦ ◦ ◦ ◦ -

LSR of MSS
(Visibility-6S and

Visibility-Qiu Method)

LSR of TM
(only pure pixel)

(LEDAPS)
◦ ◦ × ◦ ◦ -

effective radiance or reflectance
of MSS in TOA

effective radiance or reflectance
of TM in TOA ◦ × × × × Teixeira Pinto et al. [6]

radiance or reflectance
of MSS in TOA

radiance or reflectance
of TM in TOA ◦ ◦ ◦ × ◦ Teixeira Pinto et al. [6]

◦ means that the factor influences the validation results. × means that the factor does not influence the
validation results.
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4.1. Comparison Method

Three statistical metrics are used to evaluate the Landsat surface reflectance product,
namely, accuracy, precision, and uncertainty (APU), as follows:

A =
1
n

n

∑
i=1

εi (3)

P =

√
1

n− 1

n

∑
i=1

(εi −A)2 (4)

U =

√
1
n

n

∑
i=1

ε2
i (5)

where the εi = ρi − ρi,re f erence is the absolute error, and ρi,re f erence is the LEDAPS surface
reflectance, as the truth value. The global surface reflectance products of Landsat TM/ETM+
and OLI generated by LEDAPS and LaSRC are evaluated by these metrics [3,4]. Using
these metrics can make the evaluation of the generated Landsat MSS LSR data consistent
and comparable with the widely-used Landsat LSR products.

4.2. Uncertainty Brought by RSR

The differences between RSRs of TM and MSS may result in the least uncertainty when
comparing the MSS LSR and TM LSR. The effective reflectance over MSS and TM spectral
range can be calculated as follows:

ρB =

∫
ρH(λ)× RSR(λ)dλ∫

ρH(λ)dλ
(6)

where ρH is the hyperspectral reflectance measured or simulated, while ρB is the broadband
reflectance, and the RSR is the relative spectral response of a specific band. By the broad-
band reflectance synthesized by hyperspectral reflectance, only the difference between
RSRs is considered. Considering the land cover type, we assign the ECOSTRESS spectral
library (v1.0) and PROSAIL simulated profiles to ρH .

The ECOSTRESS spectral library contains over 3000 spectra, including minerals, rocks,
artificial materials, and vegetation, derived from the Advanced Spaceborne Thermal Emis-
sion Reflection Radiometer (ASTER) spectral library [46]. A part of the ECOSTRESS spectra
provides records in the visible, near-infrared, and shortwave infrared bands, ranging from
0.35 µm to 2.4 µm. However, the ECOSTRESS spectral library only contains leaf spectral
profiles, while the remote sensing sensors observe the vegetation canopy from the satellites.
Therefore, we used the PROSAIL model [47] to simulate canopy spectra under various
conditions. Table 3 shows the inputs of the PROSAIL model, generating 100,000 profiles.

Figures 4 and 5 show the uncertainty of the comparison, using TM effective reflectance
as the truth value. Both the ECOSTRESS and PROSAIL datasets show a high level of bad
evaluation with the largest uncertainty in the MSS NIR-1 band. The RSR shows the least
correspondence (shown in Figure 1). The uncertainty ranges from 0.0062 (MSS red band)
to 0.0472 (MSS NIR-1 band) in the ECOSTRESS dataset and ranges from 0.0056 (MSS Red
Band) to 0.0986 (MSS NIR-1 band) in the PROSAIL dataset.
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Table 3. Inputs of the PROSAIL model.

Parameters Value

Solar zenith angle uniform (0, 70)
Observer zenith angle 0
Relative azimuth angle uniform (0, 360)

Leaf area index uniform (0, 8)
Equivalent water thickiness uniform (0, 8)

Chlorophyll a + b concentration uniform (10, 80)
Carotenoid concentration uniform (0, 20)

Dry matter content uniform (0.002, 0.010)
Brown pigment 0

PSOIL uniform (0, 1)
typelidf 2
LIDFa uniform (0, 90)

N uniform (0.8, 2.5)
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Figure 4. ECOSTRESS effective reflectance comparison of Landsat 5 MSS and TM.
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Figure 5. PROSAIL effective reflectance comparison of Landsat 5 MSS and TM.

The effective reflectance calculated by RSRs and spectral dataset performs much
better than the actual image data (such as in the later Landsat 8 and Sentinel 2 remote
sensing image pairs [48]) because actual image pairs are associated with many more factors
influencing the uncertainty. As the endmember and abundance vary in actual remote
sensing pixels, the uncertainty brought by RSRs may differ from the simulation. In general,
the effective reflectance of TM and MSS shows good consistency in the red band but the
worst consistency in the NIR band.

4.3. Uncertainty Brought by Georegistration and Scale Effects

When comparing MSS scenes and TM scenes, the error of geographical factors must
be considered. A common practice is to resample the higher resolution image to the lower
resolution image [48–50], if there are resolution inconsistencies for the image pairs. This step
of processing is usually helpful but under the condition of higher georegistration error.
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The following procedure extracts the pixel values of a pair of MSS and TM scenes (shown
in Figure 6). First, generate random points within the range of MSS and TM scenes. The
number of random points generated is 100,000 per image. Then, extract the pixel value of the
MSS scene and TM scene according to the point, respectively. Finally, calculate the variance
of the receptive field (near the TM pixel extracted) and set the upper limit of the variance.
The receptive field is an n× n pixels window, with n assigned to 1, 3, 5, 7, 9, and 11 and
the upper limitation of the variance vupperbound is set as 0.002, 0.004, 0.006, 0.008, 0.01, 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10. Only the image in which the final number
of random points is over 1000 is applied for the evaluation. In addition to A, P, and U, the
coefficient of determination is used to evaluate the correlation of the MSS and TM pixels
extracted, as follows:

R2(ρMSS, ρTM) = 1− ∑(ρTM − ρMSS)
2

∑(ρTM − ρTM)2 (7)

where ρTM and ρMSS are the reflectance extracted by the random point, while ρTM is the
average of ρTM.

Figure 6. An example of MSS and TM pixels extract by random point.

Figures 7 and 8 show the results. By controlling the receptive field area and the upper
limits of variance, we can quantitatively estimate the error of geographical factors and
find the optimal receptive field and upper limitation of variance. For a certain upper limit
vupperbound, the larger receptive field causes the lower uncertainty. However, the maximum
of R2 is not reached with the minimum vupperbound. Once the filter regulation of n and
vupperbound is too strict, the number of random points used could become much smaller. A
large-scale and homogeneous region is always associated with a minority of land cover,
resulting in a localized distribution of the random point in the scatter diagram. Therefore,
we regard n = 3 and vupperbound = 0.01 as the proper value because the maximum of R2 is
always reached, which is a compromise of screening regulations and screening results.
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Figure 7. Relationship between vupper bound and uncertainty with different receptive field.
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Figure 8. Relationship between vupper bound and R2 with different receptive field.

4.4. Uncertainty Brought by AOD Estimation

By the filter regulation proposed, the final A, P, and U are calculated and are shown in
Table 4, for the total 479 pairs with n = 3 and vupperbound = 0.01, and the evaluation of TM
LEDAPS products [3]. Not only are the MSS LSR data evaluated, but the TM LSR produced
by the visibility–6S method and visibility–Qiu method are evaluated as well, because
the validation of LSR produced by the visibility–6S method and visibility–Qiu using TM
LEDAPS as the truth value can directly figure the uncertainty brought by different methods
of AOD estimation, without any error from RSR difference, radiometric calibration, and
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geographical factors. As shown in Table 4, the best performance of the visibility method is
acquired by the visibility–6S method, with the uncertainty of 0.020 (TM green band), 0.014
(TM red band), 0.009 (TM NIR band), and the uncertainty of 0.029 (MSS green band), 0.026
(MSS red band), 0.033 (MSS NIR-1 band), and 0.023 (MSS NIR-2 band). The uncertainty also
decreases from the green band to the NIR band for both visibility methods, except the MSS
NIR-1 band. As A increases from the green band to the TM NIR band, an overestimation of
AOD by visibility method may be systemic bias.

Table 4. APU scores of surface reflectance by visibility–6S method and visibility–Qiu method
(compared with TM surface reflectance APU [3]).

Sensor Band N

Comparison Metrics

Visibility–6S
Compared with LEDAPS

(This Work)

Visibility–Qiu
Compared with LEDAPS

(This Work)

TM LEDAPS Compared with
MODIS BRDF [3]

LEDAPS Compared with
LSR Using AERONET AOD [3]

TM
Green 479 −0.019 0.005 0.020 −0.025 0.008 0.029 0.001 0.009 0.009 0.0001 0.0054 0.0054
Red 479 −0.012 0.004 0.014 −0.016 0.007 0.021 0.009 0.01 0.014 0.0001 0.0041 0.0041
NIR 479 0.003 0.005 0.009 0.005 0.008 0.016 0.005 0.017 0.017 0.0032 0.0061 0.0068

MSS

Green 479 −0.023 0.013 0.029 −0.029 0.016 0.039 - - - - - -
Red 479 −0.019 0.015 0.026 −0.023 0.017 0.032 - - - - - -

NIR1 479 −0.017 0.020 0.033 −0.017 0.022 0.037 - - - - - -
NIR2 479 0.008 0.015 0.023 0.010 0.016 0.027 - - - - - -

As the precision promotion of atmospheric correction could not directly reduce the
uncertainty brought by the other factors, we divide the uncertainty sources into atmo-
spheric and non-atmospheric factors. The uncertainty of non-atmospheric factors could be
computed with the following two assumptions. One is that the atmospheric factors and
non-atmospheric factors are independent. The other is that the MSS uncertainty brought
by the atmosphere equals the TM uncertainty brought by the atmosphere for the similar
bands. The results (shown in Table 5) show that the uncertainty brought by atmospheric
factors is smaller than the uncertainty brought by non-atmospheric factors during the
cross-comparison, which also suggests that the non-atmospheric factors cannot be ignored
when using the MSS LSR data for time-series analysis.

Table 5. Uncertainty sources of surface reflectance by visibility–6S method and visibility–Qiu method.

Band
MSS Visibility–6S Method MSS Visibility–Qiu Method

Total Uncertainty Uncertainty Brought
by Atmospheric Factors

Uncertainty Brought
by Non-Atmospheric Factors Total Uncertainty Uncertainty Brought

by Atmospheric Factors
Uncertainty Brought

by Non-Atmospheric Factors

Green 0.029 0.020 0.021 0.039 0.029 0.025
Red 0.026 0.014 0.022 0.032 0.021 0.025

NIR1 0.033 0.009 0.032 0.037 0.016 0.033
NIR2 0.023 0.009 0.021 0.027 0.016 0.022

4.5. Other Uncertainty Sources

Moreover, it is necessary to note that the uncertainty of the inter-comparison is a
combination, including the uncertainty of the truth value. As reported, the dense dark
vegetation method for AOD retrieval may not be suitable for the clamps in Australia [51,52]
or for other positions where the vegetation is not dense and dark enough [53]. Table 6
shows the APU of the four seasons, respectively. The performance of the visibility method
of winter (December, January, and February, DJF) is much worse than the other seasons.
The reason might be explained by several aspects: (1) The dense dark vegetation pixels are
insufficient, as the major vegetation is broad-leaved trees in northeast and North China.
The surface reflectance of LEDAPS treated as the truth value may have higher uncertainty;
(2) The solar elevation angle in winter is higher than in other seasons, causing a longer
optical path and increasing the uncertainty brought by AOD estimation.

Additionally, occasional anomalies may cause an increase in uncertainty, especially
in the earlier sensors. Figure 9 shows an example of oversaturation and detector striping
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in MSS images. Occasional anomalies occur more frequently in the early sensors and
affect the final validation results, and the influence needs to be estimated quantitatively for
further research.

Table 6. APU scores by seasons of LSR by visibility–6S method and visibility–Qiu method (MAM:
March, April, May; JJA: June, July, August; SON: September, October, November; DJF: December,
January, February).

Band Season N

Comparison metrics

Visibility–6S TM Visibility–Qiu TM Visibility–6S MSS Visibility–Qiu MSS

A P U A P U A P U A P U

Green

MAM 167 −0.017 0.003 0.017 −0.020 0.004 0.022 −0.025 0.013 0.030 −0.028 0.014 0.035
JJA 113 −0.013 0.002 0.014 −0.021 0.003 0.021 −0.019 0.009 0.022 −0.027 0.009 0.029

SON 123 −0.022 0.004 0.023 −0.035 0.009 0.038 −0.024 0.011 0.029 −0.037 0.015 0.044
DJF 76 −0.026 0.012 0.032 −0.026 0.021 0.042 −0.023 0.022 0.040 −0.022 0.031 0.052

Red

MAM 167 −0.012 0.002 0.012 −0.014 0.003 0.016 −0.023 0.017 0.029 −0.025 0.017 0.032
JJA 113 −0.010 0.002 0.010 −0.016 0.003 0.017 −0.014 0.015 0.022 −0.021 0.015 0.027

SON 123 −0.014 0.004 0.015 −0.022 0.008 0.026 −0.017 0.010 0.021 −0.026 0.014 0.032
DJF 76 −0.013 0.010 0.021 −0.011 0.018 0.032 −0.020 0.018 0.031 −0.018 0.026 0.041

NIR1

MAM 167 0.002 0.004 0.007 0.003 0.005 0.010 −0.016 0.018 0.028 −0.017 0.018 0.029
JJA 113 0.000 0.004 0.007 0.000 0.005 0.012 −0.032 0.023 0.043 −0.034 0.022 0.043

SON 123 0.002 0.005 0.008 0.003 0.010 0.017 −0.017 0.018 0.029 −0.018 0.020 0.035
DJF 76 0.010 0.012 0.019 0.018 0.019 0.032 0.005 0.023 0.034 0.012 0.030 0.046

NIR2

MAM 167 - - - - - - 0.008 0.013 0.021 0.008 0.014 0.022
JJA 113 - - - - - - 0.000 0.014 0.020 −0.001 0.014 0.022

SON 123 - - - - - - 0.012 0.015 0.026 0.013 0.018 0.032
DJF 76 - - - - - - 0.017 0.018 0.028 0.025 0.021 0.037

(a)

(b)

(c)
Figure 9. An example of occasional anomalies (occurred in MSS and TM images of 144039_19890222).
(a) False-color synthesis of Landsat 5 TM RGB composite (red: B4, green: B3, blue: B2). (b) An
example of detector failure of Landsat 5 TM Band 4 (NIR band). (c) An example of detector striping
and oversaturation of Landsat 5 MSS and 3 (NIR-1 band).
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5. Application of Time-Series SR in Spectral-Stable Land Cover

To examine the stability of the visibility-based surface reflectance of MSS in practice,
we selected five ROIs across China, extracted the values of MSS, TM, and MODIS reflectance
of the ROIs, and conducted time-series assessments. The ROIs cover three kinds of land
cover, i.e., water body (ROI 1), desert (ROI 2 and 5), and evergreen vegetation (ROI 3 and 4),
shown in Figure 10.
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Figure 10. ROIs of spectral-stable land cover in China.

The MSS LSR data are the atmospherically corrected image based on the visibility–6S
method, which performs better than the visibility–Qiu method in the validation mentioned
above. The TM LSR data are from the LEDAPS data, and the MODIS data used are from
the MOD09A1.006 product, an eight-day composition with a 500 m resolution. The ROIs
are selected by the time-series reflectance by the MODIS during the 20 years using the
Google Earth Engine. Considering the resolution inconsistency of MODIS, TM, and MSS,
though the ROIs are selected for spatial homogeneity in MODIS images, they are always
heterogeneous in the smaller pixels of TM and MSS images. Here, we used the median
value of ROIs of all three LSR data for times-series assessment, which can also remove
many outliers caused by MSS defective sensor. All the remote sensing data used are free
from cloud, with strict control by the cloud coverage and artificial visual interpretation.

Though the surface reflectance cannot be less than zero in practical terms, the value of
remote sensing LSR product may sometimes be less than zero in some dark pixels, for the
overestimation of AOD and WV causes the overestimation of path radiance. In addition,
the shadow of cloud and topographic relief may cause the LSR to be less than zero. The
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negative values are found in all three LSR data used, without artificial interventions in later
assessments.

5.1. Water Body

ROI 1 is an area of water body, Qinghai Lake, in Qinghai Province, between 36°55′–37°3′N,
100°0′–100°10′. Qinghai Lake is the largest saline lake in China and is also one of the remote
sensing test fields of China, lying on the northeastern Tibetan Plateau at the average altitude
of 3200 m [54]. As Qinghai Lake freezes in winter, all the remote sensing images used for
ROI 1 are acquired during the unfreezing stage.

Figure 11 shows the time series of the MSS LSR, TM-LEDAPS, and MODIS-MOD09A1
(simultaneous with the TM image). Among all the MSS data exhibited in Figure 11, outliers
are found in the image of LM02_L1GS_143034_19750621_20180425_01_T2, especially for
the green band. The TOA reflectance of ROI 1 calculated by the rescaling coefficients
provided by the MTL file is less than zero. It may be caused by inappropriate radiometric
calibration coefficients or invalid DN values derived from unknown sensor issues, which
needs further research.
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Figure 11. Time series of ROI 1 median value (ROI 1: water body).
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Removing the outliers mentioned above, Table 7 shows the statistics of time-series
reflectance of ROI-1 of the three sensors, including the minimum, median, mean, maximum,
and standard deviation (SD). The reflectance of the MSS green band ranges from −0.095
to 0.007, which is smaller than the reflectance of green bands of TM (ranging from 0.026
to 0.062) and MODIS (ranging from 0.008 to 0.062). In red band, MSS reflectance ranges
from −0.026 to 0.021, between TM reflectance (ranging from 0.010 to 0.048) and the MODIS
reflectance (ranging from −0.010 to 0.026). The reflectance of MSS NIR bands ranges from
0.000 to 0.025 (MSS NIR-1 band) and from 0.002 to 0.029, which is similar to the TM NIR
bands (ranging from 0.006 to 0.044) and is greater than the MODIS NIR band (ranging from
−0.010 to 0.021).

Table 7. Statistics of time-series reflectance of MSS, TM, and MODIS in ROI 1 (ROI 1: water body).

Band Sensor Min Median Mean Max SD

Green
MSS −0.095 −0.008 −0.014 0.007 0.026
TM 0.026 0.035 0.037 0.062 0.007

MODIS 0.008 0.028 0.031 0.062 0.012

Red
MSS −0.026 0.007 0.006 0.021 0.012
TM 0.010 0.018 0.019 0.048 0.006

MODIS −0.010 0.005 0.006 0.026 0.006

NIR

MSS-NIR1 0.000 0.009 0.010 0.025 0.007
MSS-NIR2 0.002 0.014 0.015 0.029 0.008

TM 0.006 0.013 0.015 0.044 0.006
MODIS −0.010 0.000 0.001 0.021 0.005

5.2. Desert

ROI 2 and ROI 5 are areas of desert, as stable high-reflectance regions. ROI 2 is
located in northwestern Taklimakan Desert, in Xinjiang Province, between 39°26′–39°54′N,
81°24′–81°54′E. ROI 5 is located in the center of Badain Jaran Desert, in Inner Mongolia,
between 40°33′–40°41′N, 103°18′–103°31′E.

Figures 12 and 13 show the time series reflectances of ROI 2 and ROI 5, which vary in
a larger range than water body. Tables 8 and 9 show the detailed statistics of time-series
reflectance of MSS, TM, and MODIS in ROI 2 and ROI 5. In ROI 2, the differences of each
group of statistics are smaller than the validation result in Section 4, which shows a good
time continuity. Nevertheless, in ROI 5, the reflectance of green bands shows an obvious
difference, which is found in the comparison not only between MSS and TM reflectance
but also between TM and MODIS reflectance. For red and NIR bands, the reflectance of
MSS shows a better consistency compared with the green band.

Table 8. Statistics of time-series reflectance of MSS, TM, and MODIS in ROI 2 (ROI 2: desert).

Band Sensor Min Median Mean Max SD

Green
MSS 0.211 0.237 0.236 0.275 0.020
TM 0.213 0.247 0.247 0.282 0.015

MODIS 0.211 0.228 0.230 0.282 0.014

Red
MSS 0.271 0.298 0.296 0.312 0.012
TM 0.262 0.295 0.294 0.322 0.012

MODIS 0.265 0.287 0.289 0.345 0.016

NIR

MSS NIR-1 0.291 0.328 0.326 0.346 0.016
MSS NIR-2 0.289 0.339 0.333 0.362 0.018

TM 0.292 0.316 0.316 0.347 0.010
MODIS 0.290 0.314 0.315 0.369 0.016
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Table 9. Statistics of time-series reflectance of MSS, TM, and MODIS in ROI 5 (ROI 5: desert).

Band Sensor Min Median Mean Max SD

Green
MSS 0.158 0.184 0.183 0.208 0.017
TM 0.208 0.232 0.231 0.271 0.009

MODIS 0.178 0.209 0.207 0.222 0.010

Red
MSS 0.252 0.283 0.281 0.315 0.017
TM 0.274 0.298 0.298 0.333 0.010

MODIS 0.248 0.293 0.290 0.312 0.014

NIR

MSS NIR-1 0.302 0.344 0.339 0.373 0.019
MSS NIR-2 0.318 0.364 0.361 0.392 0.025

TM 0.306 0.335 0.335 0.365 0.009
MODIS 0.296 0.345 0.341 0.370 0.015
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Figure 12. Time series of ROI 2 median value (ROI 2: desert).
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Figure 13. Time series of ROI 5 median value (ROI 5: desert).

5.3. Vegetation

ROI 3 and ROI 4 are areas of vegetation. ROI 3 is located in Fujian Province, between
26°25′–26°35′N and 114°19′–114°29′E, and ROI 4 is located in Jiangxi Province, between
25°31′–25°39′N and 117°5′–117°12′E. The major vegetation of the two ROIs is subtropical
evergreen broad-leaved forest. Furthermore, we select the months with small changes of
vegetation spectrum according to the TM observation.

Figures 14 and 15 show the time series reflectance of ROI 3 and ROI 4. Times series
reflectance of TM and MODIS shows stable lines in the green and red bands, while the
reflectance of the NIR band shows a wide distribution over observation date. For the
green band, MSS reflectance is less than TM and MODIS reflectance in both ROI 3 and 4,
which is also found in the evaluation in Section 4. For the red band, the MSS reflectance
performs better than the validation result summarized in the previous section. For the NIR
bands, the performance of the MSS NIR-2 band is consistent with the NIR band of TM and
MODIS, while the MSS NIR-1 band shows a good correlation but lower values compared
with the MSS NIR-1 band, as the MSS NIR-1 band observes vegetation red-edge spectrum
approximately. Tables 10 and 11 show the detailed statistics of time-series reflectance of
MSS, TM, and MODIS, in ROI 3 and ROI 4. Both ROI 3 and 4 show good consistency in the
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MSS red and NIR-2 band compared with later TM and MSS LSR data, for RSRs of these
bands are more similar than the other bands. It suggests that the Normalized Difference
Vegetation Index (NDVI) should be calculated by the MSS red and NIR-2 bands.
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Figure 14. Time series of ROI 3 median value (ROI 3: vegetation).



Remote Sens. 2022, 14, 1802 20 of 25

30/10/1973

03/03/1976

16/03/1977

06/07/1978

16/09/1978

06/08/1979

29/09/1979

17/10/1979

25/06/1980

05/09/1980

11/10/1980

13/08/1981

24/10/1981

17/03/1982

03/06/1988

05/07/1988

09/10/1988

10/03/1989

16/07/1992

20/10/1992

04/06/1994

24/09/1994

06/05/1995

27/09/1995

05/03/1996

31/10/1996

27/05/1997

18/08/1998

17/04/2000

04/06/2000

22/07/2000

13/10/2001

07/04/2002

15/07/2003

19/10/2003

05/10/2004

21/10/2004

15/04/2005

25/09/2006

07/05/2007

03/10/2009

19/10/2009

03/08/2010

Date

-0.1

0.0

0.1

0.2

0.3

0.4

R
ef

le
ct

an
ce

Green Band

MSS
TM
MODIS

(a) Median value of ROI 4 in green band

30/10/1973

03/03/1976

16/03/1977

06/07/1978

16/09/1978

06/08/1979

29/09/1979

17/10/1979

25/06/1980

05/09/1980

11/10/1980

13/08/1981

24/10/1981

17/03/1982

03/06/1988

05/07/1988

09/10/1988

10/03/1989

16/07/1992

20/10/1992

04/06/1994

24/09/1994

06/05/1995

27/09/1995

05/03/1996

31/10/1996

27/05/1997

18/08/1998

17/04/2000

04/06/2000

22/07/2000

13/10/2001

07/04/2002

15/07/2003

19/10/2003

05/10/2004

21/10/2004

15/04/2005

25/09/2006

07/05/2007

03/10/2009

19/10/2009

03/08/2010

Date

-0.1

0.0

0.1

0.2

0.3

0.4

R
ef

le
ct

an
ce

Red Band

MSS
TM
MODIS

(b) Median value of ROI 4 in red band

30/10/1973

03/03/1976

16/03/1977

06/07/1978

16/09/1978

06/08/1979

29/09/1979

17/10/1979

25/06/1980

05/09/1980

11/10/1980

13/08/1981

24/10/1981

17/03/1982

03/06/1988

05/07/1988

09/10/1988

10/03/1989

16/07/1992

20/10/1992

04/06/1994

24/09/1994

06/05/1995

27/09/1995

05/03/1996

31/10/1996

27/05/1997

18/08/1998

17/04/2000

04/06/2000

22/07/2000

13/10/2001

07/04/2002

15/07/2003

19/10/2003

05/10/2004

21/10/2004

15/04/2005

25/09/2006

07/05/2007

03/10/2009

19/10/2009

03/08/2010

Date

-0.1

0.0

0.1

0.2

0.3

0.4

R
ef

le
ct

an
ce

NIR Band

MSS NIR-1
MSS NIR-2
TM
MODIS

(c) Median value of ROI 4 in NIR band

Figure 15. Time series of ROI 4 median value (ROI 4: vegetation).
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Table 10. Statistics of time-series reflectance of MSS, TM, and MODIS in ROI 3 (ROI 3: vegetation).

Band Sensor Min Median Mean Max SD

Green
MSS 0.005 0.032 0.036 0.090 0.026
TM 0.040 0.053 0.053 0.063 0.006

MODIS 0.041 0.047 0.050 0.069 0.009

Red
MSS 0.018 0.034 0.038 0.085 0.020
TM 0.030 0.039 0.039 0.047 0.005

MODIS 0.025 0.034 0.035 0.046 0.007

NIR

MSS NIR-1 0.133 0.170 0.173 0.208 0.021
MSS NIR-2 0.203 0.248 0.247 0.276 0.021

TM 0.200 0.266 0.256 0.296 0.027
MODIS 0.185 0.239 0.248 0.348 0.054

Table 11. Statistics of time-series reflectance of MSS, TM, and MODIS in ROI 4 (ROI 4: vegetation).

Band Sensor Min Median Mean Max SD

Green
MSS −0.007 0.019 0.022 0.070 0.023
TM 0.032 0.047 0.049 0.070 0.009

MODIS 0.037 0.051 0.053 0.072 0.011

Red
MSS 0.016 0.030 0.035 0.072 0.016
TM 0.024 0.034 0.037 0.057 0.008

MODIS 0.026 0.034 0.037 0.059 0.009

NIR

MSS NIR-1 0.115 0.160 0.153 0.188 0.020
MSS NIR-2 0.154 0.240 0.228 0.275 0.037

TM 0.175 0.231 0.234 0.276 0.027
MODIS 0.194 0.271 0.263 0.329 0.040

6. Discussion
6.1. Comparison of the Proposed Framework and LEDAPS

LEDAPS is a successful remote sensing image processing system that generates TM
and ETM+ LSR products of Landsat 4, 5, and 7, based on the 6S model. Considering the
lack of ozone data in the early years of remote sensing, the new framework proposed in this
paper set the ozone data as a contrast value of 0.345 atm-cm. Topographic details within a
scene of an MSS image are ignored due to our limited computing capability.

The major difference between the proposed framework and LEDAPS is that the ground-
based visibility record is used as the input of 6S instead of the image-based retrieval of
AOD. The benefit is that the image-based AOD retrieval method of MSS images is not
needed. The image-based AOD retrieval method of MSS images is difficult to study today
due to the limitation of AOD measurement in the 1970s and the inherent defects of MSS
images. In addition, the precision of the image-based AOD retrieval method is influenced
by the reported issues of image quality.

Moreover, LEDAPS uses the QA band as input in the process of generating SR to obtain
the cloud mask [55], but the cloud mask of MSS images’ QA band seems problematic [56].
The ground-based visibility records are independent of the remote sensing observation, so
our proposed framework does not need the cloud mask.

As shown in Section 4, the results generated by our proposed framework have a larger
uncertainty with a systemic bias compared to the LEDAPS LSR product of Landsat TM.
The visibility-based AOD methods are regional, while artificial observations and weather
conditions are also reported as error sources [57]. In our proposed framework, using a
visibility record to generate MSS LSR data compromises accuracy and solvability. Although
the proposed framework has a larger uncertainty than the LEDAPS, the systemic bias
can be solved by the accumulating records of ground-based visibility and AOD results in
recent decades.
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6.2. Analysis of Potential Problems in Time-Series Analysis of Early Years

In addition to the uncertainty brought by atmospheric correction, a much larger un-
certainty was found when directly comparing the MSS LSR generated by our proposed
framework and the LEDAPS product of Landsat TM. As shown in Sections 4 and 5, the
non-atmospheric factors (e.g., the difference of RSRs of TM and MSS, the georegistration
uncertainty, the radiometric calibration uncertainty, and image noises) bring more uncertain-
ties than atmospheric factors (e.g., AOD and WV) overall. It proves that non-atmospheric
factors cannot be ignored in time-series research using MSS data.

Considering the uncertainties brought by all the potential factors, the red and NIR-2
bands among all the MSS LSR bands and data acquired in spring (MAM), summer (JJA),
and autumn (SON) among all the seasons are recommended for usage.

Additionally, the quality of MSS images varies considerably. The oversaturated pixels
are shown in the QA band of MSS images, while some issues, including detector striping,
are probably not shown in the QA band. In Sections 5, outliers in ROI 1 are found with
unknown reasons, while some bands of the MSS images were found to be missing. The
generated MSS LSR data need to be selected artificially for time-series analysis.

6.3. Future Work

The AODs retrieved by station-based visibility and satellite data have differences
and inconsistencies. The station-based visibility records are obtained in spatial points
with a specific time interval. At the same time, the image-based AOD is retrieved at the
regional scale with different measure times from the visibility records. In the proposed
framework, we use the most straightforward method, using the maximum value from
a search radius of space and time for a scene of MSS images. Another method is to use
spatial and temporal interpolation methods. The consistencies between AODs retrieved by
ground-based visibility and satellite still require further research.

Another research direction is the evaluation. As the proposed framework needs land
cover data from the 1970s as input, the evaluation is limited to China. However, the amount
of Landsat MSS images covering China is unbalanced. The number of pairs of simultaneous
images of MSS and TM used in evaluation became much lower than the total number of
MSS and TM images, as the MSS and TM sensors were not always simultaneously turned
on. The evaluation is not as thorough as the later Landsat 5, 7 [3], and Landsat 8 [4]. The
study area will be extended to the whole world for future research.

Moreover, the usability of the MSS land surface reflectance product relates not only to
atmospheric correction but also radiometric calibration, georegistration, denoising, cloud
mask, and other factors. As the MSS LSR data are likely to be used in the time-series analysis
together with other Landsat data, the consistency and correction of Landsat MSS and TM is
also an important topic for future research. Though the work is largely promoted recently in
radiometric calibration [5,6] and georegistration [8], more efforts are continuously needed
to constitute the long-time-series Landsat MSS LSR archive.

7. Conclusions

The Landsat MSS dataset is the only multi-spectral global observation record by remote
sensing in the 1970s, which plays a vital role in tracing time-series research to the 1970s.
However, no MSS LSR product is currently publicly available. We propose a framework to
generate the MSS LSR data using ground-based visibility records as input, overcoming the
congenital deficiencies of the MSS sensor. The results are evaluated by the simultaneous
observation by MSS and TM sensors in Landsat 4 and 5 using Landsat 4–5 TM LEDAPS
product as the truth value. The evaluation results show that uncertainties decrease from the
green band to the NIR band with a systemic bias. In addition, the non-atmospheric factors
(e.g., the difference of RSRs of TM and MSS, the georegistration errors, the radiometric
calibration uncertainty, and image noises) bring more uncertainties than atmospheric factors
(e.g., AOD and WV) overall. Considering that both the sensors and preprocesses of MSS
are comprehensively inferior to the later sensors and that the uncertainties brought by non-
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atmospheric factors cannot be reduced by atmospheric correction, the evaluation results are
comparable with the LEDAPS LSR product. We apply the MSS LSR data generated by the
proposed framework on time series analysis in five ROIs of the spectral-stable land cover
in China for all the MSS sensors. The application demonstrates the potential and promise
of the MSS LSR data generated by the proposed framework. In general, the proposed
framework can effectively generate the MSS LSR data of the 1970s.
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