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Abstract: As the two largest landlocked countries, Kazakhstan and Mongolia have similar biophysical
conditions and socioeconomic roots in the former Soviet Union. Our objective is to investigate the
direction, extent, and spatial variation of land cover change at three administrative levels over three
decades (1990–2020). We selected three provinces from each country (Aktobe, Akmola, and Almaty
province in Kazakhstan, and Arkhangai, Tov, and Dornod in Mongolia) to classify the land cover
into forest, grassland, cropland, barren, and water. Altogether, 6964 Landsat images were used in
pixel-based classification method with random forest model for image processing. Six thousand
training data points (300 training points × 5 classes × 4 periods) for each province were collected
for classification and change detection. Land cover changes at decadal and over the entire study
period for five land cover classes were quantified at the country, provincial, and county level. High
classification accuracy indicates localized land cover classification have an edge over the latest global
land cover product and reveal fine differences in landscape composition. The vast steppe landscapes
in these two countries are dominated by grasslands of 91.5% for Dornod in Mongolia and 74.7% for
Aktobe in Kazakhstan during the 30-year study period. The most common land cover conversion was
grassland to cropland. The cyclic land cover conversions between grassland and cropland reflect the
impacts of the Soviet Union’s largest reclamation campaign of the 20th century in Kazakhstan and the
Atar-3 agriculture re-development in Mongolia. Kazakhstan experienced a higher rate of land cover
change over a larger extent of land area than Mongolia. The spatial distribution of land use intensity
indicates that land use hotspots are largely influenced by policy and its shifts. Future research based
on these large-scale land use and land cover changes should be focused the corresponding ecosystem
and society functions.

Keywords: LULCC; land cover classification; land use hotspots; landlocked country; Mongolia;
Kazakhstan; Asia dryland; Google Earth Engine

1. Introduction

Kazakhstan and Mongolia, the two largest landlocked countries in the world, encom-
pass a landmass of 4.3 million km2 and host a combined population of 19.2 million people,
amounting to some of the lowest population density in the world. Situated in the northwest
of dual belts (i.e., the Asian dryland belt and the Eurasian steppe belt), this vast nomadic
pastoral system faces unparalleled sustainability challenges, as these two countries have
experienced relatively extreme climatic change, frequent shifts in institutions (e.g., changes
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in land tenure policies), and hard economic transitions from state-controlled economies
to free-market systems [1–6]. Kazakhstan was a member of the Union of Soviet Socialist
Republics (USSR), whereas Mongolia was not an official member of USSR but has been
strongly influenced by the USSR for its independency, administrative structure, defense, etc.
since the 1920s. Both experienced catastrophic geopolitical disruptions in the 20th century
with the dissolution of the USSR in December 1991. Since they gained independence, they
have taken divergent routes of political reform and economic recovery [3]. The region’s
climate is predicted to have a warming trend and increasingly frequent extreme climate
events [7,8]. Stressed by political shifts, intense climate change, and unstable economies,
their social-environmental systems are under enormous pressure within the rigid water-
limited environment. As a medium to the interdependent social, economic, and ecological
systems, transformations in land cover reflect the interactions among these key elements of
the environment and society [2,6,9].

Intensified land use has been identified as a major driver to changes in social–environmental
systems (SES). The spatial and temporal changes of land use activities are very differ-
ent in the two countries, due to their unique economic development stage and trajec-
tory [2,3,10,11]. The most dramatic land use practice shifts happened during the second half
of the 20th century, when their natural grassland ecosystems were converted to intensive
agriculture [3,12–14]. Kazakhstan and Mongolia both have dedicated a large proportion
of their land surface to food production at various times. During 1954–1956, the Virgin
Lands Campaign transformed 13 million hectares of native steppe into wheat fields in
northern Kazakhstan, turning it into the third-largest grain producer among the Soviet
republics [15–17]. This campaign was also implemented in Mongolia but to a lesser extent.
The largest agricultural development movement in Mongolia was called Atar ezemshik
(Atar, for short, which means ‘uncultivated land’ in Mongolian), and its most influential
phase of agriculture development, Atar-3, ran from 2005 until 2009, when the government
financially supported reclaiming the abandoned agriculture lands [18]. Mining is another
sector that posts huge potentials for major changes in land use. Both countries have vast
untapped natural resources that could be extracted and will likely become mining hotspots
in the region. In Mongolia, mining industry expansion has been coupled with a flux of
migration from rural to urban centers [19], which converts natural vegetation to man-made
impervious surfaces. According to Chen et al. (2022), using the Moderate Resolution
Imaging Spectroradiometer (MODIS), the estimated land use land cover change (LULCC)
during 2000–2020 was 4.7% and 5.3% for Kazakhstan and Mongolia, respectively, with the
urban land cover increasing by 4.7% and 0.4%, respectively [3].

To better understand the pattern and impact of land use practice in Kazakhstan and
Mongolia, we take a comparative approach to examine policy-driven land use changes by
classifying land cover at fine spatial resolution and over a long temporal scale. Our goal
is to investigate the extent and trajectory and the spatial variation of land cover change
at three administrative levels (i.e., country, province, county) in the two countries and,
ultimately, identify the land use hotspots. This investigation spans three decades, from 1990
to 2020, and covers some important geopolitical events and socio-economic changes. Our
working hypothesis is that the direction and intensity of land cover change varies between
the two countries due to differences in land use policy and policy shifts over time. We
selected three provinces from each country that reflect a variety of the country’s ecological
and socio-economic conditions. We then compiled Landsat images of the six provinces
into four decadal composites (1990, 2000, 2010 and 2020), classifying the land cover types
into five classes (i.e., forest, grassland, cropland, barren and water). Decadal land cover
change and overall land cover change were reported at three administrative levels. Land
cover transitions and the intensity of land cover change were compared between the two
countries and within their administrative levels. The spatial clusters of high land change
intensity pixels were identified as the country’s land use hotspots.
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2. Materials and Methods
2.1. Study Area

Kazakhstan and Mongolia have similar biogeophysical conditions (e.g., dominancy
of semi-arid/arid landscape and continental climate) and socioeconomic roots in the
former Soviet Union. Yet, they took divergent routes of political reform and experienced
different paces of recovery political shifts after the World War II, including the Virgin Lands
Campaign (1954–1963) in Kazakhstan, Atar ezemshik (phase I starting in 1940, phase II in
1976, and phase III in 2008) in Mongolia, independence from Soviet Union in 1991, and
joining the World Trade Organization (Mongolia in 1997 and Kazakhstan in 2015).

The names of the administrative divisions are different in the two countries. Kaza-
khstan is divided into regions (oblasts), which are further divided into districts (rayonys),
whereas Mongolia is divided into provinces (aimags) and districts (soums). From this point
forward, we will use the terms provinces and counties in reference to both countries.

Kazakhstan is the world’s largest landlocked country, with a total area of 2.73 million km2

and a population of 18.8 million. The population density is <7 people/km2, making the
country one of the lowest population densities in the world. The country encompasses
an area as wide as 2930 km from the west to the east and 1545 km from the south to the
north. With such a large span, latitudinal temperature and precipitation gradients foster
a series of vegetation including forest, steppe, and desert. The three selected provinces
(Aktobe, Akmola, and Almaty) are representative of these diverse landscapes (Figure 1).
In particular, Aktobe is the second-largest region in Kazakhstan (after Karaganda to its
south). It is rich in natural resources and is a large industrial region of the country. Mining
and chemical industries drive its economic development. Akmola is located in central
Kazakhstan and is one of the largest agricultural and livestock regions in the country.
Almaty sits at the southeastern corner of the country and has been the capital city for
many years. This province borders Kyrgyzstan in the south by Trans-Ili Alatau, a branch
of the Tianshan mountains, and Xinjiang, China, in the northeast by Dzungarian Alatau.
Its northwestern border runs along Lake Balkhash, whose basin drains primarily from Ili
River—a significant transboundary waterway in the region.

Figure 1. Positions of six provinces in two largest landlocked countries, including Aktobe, Akmola,
and Almaty province in Kazakhstan, and Arkhangai, Tov, and Dornod in Mongolia which are
highlighted by red line. The six provinces are selected based on their position along the climate,
landscape composition, and socioeconomic gradients.

Mongolia, the second-largest landlocked country, covers 1.57 million km2 (stretching
2392 km from east to west and 1259 km from north to south) and has a population of
3.3 million. A population density of ~2 people/km2 makes it the least densely populated
sovereign nation in the world. Its landscape is characterized by mountains mixed with
steppes and vast plains and changes distinctly with latitude and longitude. From Mongol
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Altai mountain (2500 m asl)—the highest mountain in Central Asia—the elevation drops
eastward to Dornod plain at <700 m asl. The vegetation, ranging from Siberian taiga in
the north to Gobi Desert in the south, is shaped by the climate gradient from cold and
humid to warm and dry. The same gradient exists in mean annual precipitation: from
350–500 mm to <50 mm. We selected three provinces as our research sites: Arkhangai, Tov,
and Dornod (Figure 1). Arkhangai received its name from the Khangai mountains which
run northwest to southeast through the province. Mountainous landscapes dominate this
province, where there is little arable land. Tov means ‘central’ in Mongolian, and the capital
city (Ulaanbaatar) is in the center of Tov aimag. This province has the largest portion of
cropland, which is needed to support the capital city. The Khentii mountains sit at the
northeastern corner of Tov. Dornod means ‘the East’ in Mongolian, and Dornod is the
easternmost province in the country, bordering China. Plain steppe landscape (i.e., relative
flat) is the primary feature of Dornod province.

2.2. Image Classification Procedures

We leveraged the computational capability of Google Earth Engine (GEE) [20] to
accommodate the immense processing of Landsat images for the vast study area. We
applied pixel-based and supervised classification method to classify Landsat 5 TM, Landsat
7 ETM, and Landsat 8 OLI/TIRS (Tier 1 Surface Reflectance image collections) for the
periods around 1990, 2000, 2010 and 2020. High clouds and limited spatial coverage for
the study sites make obtaining a high-quality image composites from a single year nearly
impossible, so we extended the time ranges to more than one year when compositing
images. In brief, though each time period was considered the decadal year, we included
images during and 1–2 years before and after the target year, as well as images of ±4 years
in extreme cases, to ensure image quality. For example, Almaty did not have satellite
coverage in 1986, and thin cloud images were not found prior to 1990, so we increased
our range by using images from 1990 to 1994 to produce a mosaic that covered the entire
province. As a result, the composite for Almaty in 1990 represents images from 1990–1994.
Landsat collections of GEE were atmospherically corrected and georeferenced. For Landsat
Surface Reflectance, there is a quality band named “Bitmask for QA_PIXEL” to filter
snow, cloud and cloud shadow. Altogether, 6964 Landsat images were used in this study
after screening.

Our image selections for each decadal year were drawn from those taken during
summer months (1 June–31 August, or Julian day 152–243). For each image composite,
blue, green, red, near-infrared, and shortwave infrared 1 and 2 were selected and computed
to the 75th percentile. Vegetation indices, including normalized difference vegetation index
(NDVI), normalized difference water index (NDWI), and visible atmospheric resistance
index (VARI), as well as topographic variables (i.e., elevation, aspect, and slope) were
included to form a composite of 12 bands for classification. Topographic data was acquired
from an AW3D DSM elevation dataset (~30 m horizontal resolution) that is available
on GEE platform [21]. User memory limits set by GEE and the large extent of research
sites (particularly for provinces in Kazakhstan) limited the number of bands used for
classification. The initial design included three seasonal composites (late-spring, mid-
summer and early autumn), but Google Earth Engine has limited capacity for to process
images, so we included bands according to the variable importance reported from random
forest classifier on GEE.

We used the scheme of the International Geosphere-Biosphere Programme (IGBP) in
defining land cover type, adapting it to the arid/semi-arid regions. The land cover types
for this study include forest, grassland, cropland, barren, and water. Cloud and snow
pixels were masked (snow pixels were only present in Tianshan mountains in the Almaty
province, Kazakhstan). Urban was not considered in this classification, because, apart from
the provincial capitals, the man-made structures (e.g., houses, roads) and other typical
urban characteristics account for only a small portion of the landscape surrounding most
cities in the two countries, especially in Mongolia. Residential houses and other buildings
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in population centers often are scattered in the landscape, rendering the spectral signatures
of urban lands indistinguishable from the surrounding dominant barren and grassland
cover types at 30 m resolution. Integrating a night-time image and hierarchical model
could improve the delineation of built-up areas, but not for our study landscapes where
electricity was often not available [22]. Consequently, we excluded built-up cover type
in our classification theme. Where urban boundaries were apparent for large cities, we
excluded them from the image analysis if they met the following criteria: (1) population
is ≥10,000 based on 2010 census, or (2) the city was a provincial capital. To make our
classification consistent across the six provinces, we thus excluded 39 cities (35 from
Kazakhstan and 4 from Mongolia) by masking them out from the image composites
and classifications.

For each province region, we collected ~300 training data for each land cover type by
allocating sampling points evenly across the landscape. We maintained a core set of training
data for each nominal year and revisited the feature for land cover change. By doing so, we
kept a consistent pool to train the random forest model for potential land cover changes.
Altogether, we had ~6000 training data points (300 training points × 5 classes × 4 periods)
for the six provinces. Random forest (RF) algorithm was used to train the classifier. RF
function on GEE requires user to provide input with six arguments for a customized
classification model, such as the number of trees, the number of variables per split, minimal
leaf population, etc. Among these inputs, the number of trees can increases significantly
overall classification accuracy [23]. We set this parameter to 30 while the remaining inputs
were set with defaults. By adding a column of deterministic pseudorandom numbers to a
feature collection (i.e., training features), the training samples were split into two groups
for classification (70%) and accuracy assessment (30%). We also consulted local experts for
qualitative validations. The landscape composition is disproportionate among the five land
cover classes, with grassland and cropland dominate. Because we maintained a relatively
large and balanced training dataset for each class and for each period (ca. 300 training
points), this simple random sampling warrants an equal representation of the groups/land
cover classes. Producer accuracy, consumer accuracy and overall accuracy of classifications
are reported.

2.3. Land Cover Composition and Changes

The area and the proportion of each land cover class was tallied for each province
and each time period. The default geographic coordinate system on GEE is WGS84. We
project all images to Asia North Albers Equal Area Conic projected coordinate system when
calculating areas of land cover classes within ArcMap. To visualize the land transformations
between land cover types, an interactive Sankey diagram was generated to illustrate the
conversions at decadal scale via R package OpenLand [24]. Both gross and net changes
of each land cover type from 1990 to 2020 are also presented for each province using a
modified OpenLand function.

2.4. Spatial Variations of Land Cover Change Intensity (iLCC)

To quantify the magnitude and intensity of land cover change (iLCC), intensity analysis
was performed at both provincial and county levels. Intensity analysis computes the
number of times a pixel changes during two periods [25]. Here, a pixel could change up to
three times during the study period (i.e., 1990–2000, 2000–2010 and 2010–2020). First, iLCC
was mapped at pixel level for each province, to identify the land use hotspots over the
course of three decades. Second, the deviation (iLCC—accumulative iLCC) was calculated.
This summarized the area of change by county and computed the percentage of area of
change relative to county size for each province. Accumulative iLCC is essentially a zonal
summary of iLCC by county. We compute iLCC with the exact_extract function in R package
exactextractr [26] to shorten the computing time.

This summarization was presented in a bar graph and a choropleth map for each
province. To find uniform class intervals for the two countries, a Jenks-style class interval
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was applied for the continuous variable–accumulative iLCC via R package classInt [27].
This unified plotting color scheme is helpful to compare the variations of spatial change
intensity among provinces and counties.

3. Results
3.1. Land Cover Classification and Accuracy

With the random forest algorithms and a large collection of training features, we
achieved very high accuracies of land cover classifications as indicated by the three perfor-
mance metrics (Table 1), due mostly to the large number of sampling points for each land
cover class, and partly to metrics saturation, with an overall accuracy 0.9963. The consumer
accuracy of the dominant land cover classes (0.9953 for grassland, 0.9962 for cropland) is
lower than that of the minor land cover classes (0.9995 for forest, 0.9986 for barren, and
1.0 for water). The same pattern holds in producer accuracy except for barren land cover.
The producer accuracy of barren is 0.9971, which is slightly lower than that of grassland
(0.9972). We did not perform cross-validations with other land cover products because of
the incompatibility in classification scheme.

Table 1. Consumer, producer and overall accuracies of land cover classification using Landsat images
within the Google Earth Engine. The accuracy was averaged from all provinces and years.

LCC Type Consumer Accuracy Producer Accuracy Overall Accuracy

Forest 0.9995 0.9995

0.9963
Grassland 0.9953 0.9972
Cropland 0.9962 0.9936

Barren 0.9986 0.9971
Water 1.0000 1.0000

3.2. Land Cover Composition

Land cover composition of the three provinces in Kazakhstan differed substantially
(Table 2). As the second-largest province in Kazakhstan, Aktobe had the highest grassland
amount, with an average grassland cover of 225,469 km2 (74.7%) during the 30-year study
period. The remaining 25.2% of the landscape was comprised of cropland (15.3%), barren
(7.8%), forest (1.5%), and water (0.6%). In Akmola, cropland (48.9%) and grassland (44.5%)
co-dominated the landscape (93%). For Almaty, grassland encompassed two-thirds of
the region (64.5%); the forests that accounted for 13.9% of the landscape are found in the
mountain areas in the northeast (the Dzungarian Alatau range along the border with China)
and the south (the Tianshan range that borders Kyrgyzstan and China). Almaty also had the
largest proportion of water among three provinces (7.8%), due to the presence of Lake Balk—
one of the largest lakes in Kazakhstan. In Akmola, grassland (44.3%) and cropland (49.1%)
dominated the landscape. The rest of landscape was comprised of water (3.2%), forest (2.1%)
and barren (1.4%), which were scattered across the landscape. In Mongolia, grassland also
dominated the landscapes. Located in the easternmost Mongolia, Dornod had grassland
comprising 91.5% of the landscape (30-year average). A small fraction of forest (4.2%)
was clustered in the western and eastern parts of the province (Figures A1 and A2). Small
cropland patches appeared in Khalkhgol county. In Tov, grassland made up 66.4% of the
total, and the taiga forest filled a large portion (23.6%) in the northeast of the province
in branches of the Khan Kentii mountains. Cropland was found on the plains between
mountain ridges in the northwest. In Arkhangai, grassland accounted for 64.1% and
forest covered 24.6% of the landscape. Forests were found in the Khangai mountains, and
cropland occupied the east and central parts of the province (Figures A1 and A2).
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Table 2. Area (percentage) of land cover changes for the six provinces of Kazakhstan and Mongolia during the 1990s-2020s. The unit for area is km2; the average
values are calculated from the four time periods.

Country Province Year Forest Grassland Cropland Barren Water

Kazakhstan

Aktobe

1990 6198.3 (2.1) 218,428.6 (72.4) 50,955.1 (16.9) 23,521.8 (7.8) 2518.5 (0.8)
2000 4617.3 (1.5) 231,513.2 (76.8) 40,193.4 (13.3) 23,059.6 (7.6) 2238.8 (0.7)
2010 2945.5 (1.0) 227,007 (75.3) 43,587.4 (14.5) 26,533.9 (8.8) 1561 (0.5)
2020 4111.1 (1.4) 224,929.2 (74.6) 49,379.2 (16.4) 21,759.7 (7.2) 1455.6 (0.5)

Average 4468.05 (1.5) 225,469.5 (74.8) 46,028.8 (15.3) 23,718.8 (7.9) 1943.5 (0.6)

Akmola

1990 4445.4 (3) 70,996.8 (48.4) 65,779.8 (44.8) 1414.1 (1) 4073.1 (2.8)
2000 2727.9 (1.9) 84,357.4 (57.5) 54,297 (37) 2494.4 (1.7) 2832.5 (1.9)
2010 4918.9 (3.4) 66,730.8 (45.5) 69,212.6 (47.2) 2366.8 (1.6) 3479.2 (2.4)
2020 3022.2 (2.1) 64,927.5 (44.3) 71,980.9 (49.1) 2091.8 (1.4) 4685.9 (3.2)

Average 3778.6 (2.6) 71,753.1 (48.9) 65,317.6 (44.5) 2091.8 (1.4) 3767.7 (2.6)

Almaty

1990 28,533.1 (13) 137,584.2 (62.7) 39,128.8 (17.8) 1066.1 (0.5) 13,224.4 (6)
2000 28,027.6 (12.8) 144,742.6 (66) 30,000.2 (13.7) 2984.1 (1.4) 13,405.7 (6.1)
2010 36,055.5 (16.5) 138,967.1 (63.4) 23,182.6 (10.6) 1405 (0.6) 19,527.2 (8.9)
2020 29,828.6 (13.6) 145,006.4 (66.2) 20,712 (9.5) 907.5 (0.4) 22,683 (10.4)

Average 30,611.2 (14.0) 141,575.1 (64.6) 28,255.9 (12.9) 1590.7 (0.7) 17,210.1 (7.8)

Mongolia

Arkhangai

Year Forest Grassland Cropland Barren Water

1990 15,472.7 (28) 35,336.9 (63.8) 3338.5 (6) 388.6 (0.7) 810.7 (1.5)
2000 12,863.2 (23.2) 36,720.1 (66.3) 4869.8 (8.8) 248.5 (0.4) 645.4 (1.2)
2010 13,669.5 (24.7) 34,455.2 (62.3) 5940.6 (10.7) 531 (1) 751.3 (1.4)
2020 12,583.1 (22.7) 35,452.2 (64.1) 6414.6 (11.6) 307.9 (0.6) 589.9 (1.1)

Average 13,647.1 (24.7) 35,491.1 (64.1) 5140.9 (9.3) 369 (0.7) 699.3 (1.3)

Tov

1990 16,832.6 (22.7) 48,158.5 (65) 7117.1 (9.6) 804.2 (1.1) 1161.7 (1.6)
2000 18,037 (24.4) 45,353.7 (61.2) 9332 (12.6) 753.3 (1) 597.4 (0.8)
2010 17,847.2 (24.1) 50,882.5 (68.7) 4642.8 (6.3) 578.3 (0.8) 121.1 (0.2)
2020 17,168.9 (23.2) 52,542.4 (70.9) 2544.4 (3.4) 764.5 (1) 1051.6 (1.4)

Average 13,647.1 (23.6) 35,491.1 (66.5) 5140.9 (7.9) 369 (1.0) 699.3 (1.0)

Dornod

1990 7225.9 (5.8) 110,355.1 (89.3) 1757.5 (1.4) 818.7 (0.7) 3449.7 (2.8)
2000 5410.7 (4.4) 113,494.6 (91.8) 2237.8 (1.8) 914.6 (0.7) 1549.2 (1.3)
2010 3913.4 (3.2) 114,892.3 (93) 1889.2 (1.5) 1494.9 (1.2) 1415.9 (1.1)
2020 4386.4 (3.5) 113,774.7 (92) 2921.8 (2.4) 973.7 (0.8) 1549 (1.3)

Average 5234.1 (4.2) 113,129.2 (91.5) 2201.6 (1.85) 1050.5 (0.9) 1990.9 (1.6)
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3.3. Decadal Land Cover Changes

There exist clear differences in LCC between and within the two countries, as well
as by cover type and by study period. In Kazakhstan, a high rate of land cover changes
appeared in the first two decades of the study period (1990–2000 and 2000–2010) (Figure 2).
The largest amount of change happened in 2000–2010 in Akmola. Grassland decreased
by 17,627 km2 (−12%) during this decade, while cropland expanded 14,915 km2 (10.2%).
These classes also experienced enormous changes in the previous decade (1990–2000), but
in opposite directions: grassland gained 13,360 km2 (9.1%) while cropland cover shrank
11,483 km2 (−7.8%). In Almaty, the largest amount of change happened during 1990–2000
for grassland and cropland. Grassland increased 7158 km2 (3.4%) and cropland decreased
9129 km2 (−4.1%). The second largest amount of change was during 2000–2010, when both
grassland and cropland decreased by 5776 km2 (−2.6%) and 6818 km2 (−3.1%), respectively.
Interestingly, forest expanded 8028 km2 (3.7%) during this decade. For all three provinces,
the most recent decade (2010–2020) experienced the least change, with changing rates (~2%)
a magnitude lower than that in previous decades (10%). In Mongolia, similar variations in
land transformations exist by province and study period (Figure 2). The largest amount
of change happened during 2000–2010, with agriculture predominating in Tov. Here,
grassland cover increased 5529 km2 (7.5%) and cropland decreased 4689 km2 (−6.3%). The
next largest change was found during 1990–2000, when grassland lost 2805 km2 (−3.8%),
while cropland gained 2215 km2 (3%). In Dornod land cover changes appeared minor
in all three decades for all types, although the changes were smallest in the most recent
decade. In Arkhangai, two large changes occurred in forest and grassland cover: forest
cover lost 2609 km2 (−4.7%) in 1990–2000, and area of grassland cover decreased 2265 km2

(−4.1%) in 2000–2010. Area of cropland kept gaining, but in decreasing increments over the
course of the three periods (+1531 km2 in 1990–2000, +1071 km2 in 2000–2010, +474 km2 in
2010–2020).

For the two provinces experiencing greatest amount of change (Akmola and Tov), the
Sankey diagram shows clear patterns in the transformations among the land cover types
(Figure 3). The principal land cover conversion in these provinces was between grassland
and cropland. In Tov, 5522 km2 of grassland was converted to cropland from 1990 to
2000, 8549 km2 of cropland was converted to grassland in the next decade (2000–2010),
and 8304 km2 of cropland was converted to grassland during 2010–2020. In Akmola,
12,957 km2 of grassland was converted to cropland from 1990 to 2000, 15,060 km2 of
cropland was converted to grassland in the following decade (2000–2010), and 18,231 km2

of grassland was converted to cropland in 2010–2020. Meanwhile, in Akmola, 24,396 km2 of
cropland was converted to grassland in the first decade, 29,728 km2 of grassland converted
to cropland in the second decade, and 15,355 km2 of cropland was converted back to
grassland during 2010–2020.
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Figure 2. Cont.
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Figure 2. Decadal changes of land cover for the six provinces in Kazakhstan and Mongolia during 1990–2020. (A) Land cover change in proportion of the provincial
total; (B) land cover change in area (km2).
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Figure 3. Sankey diagram of land cover conversions from 1990 to 2020 for six provinces. Land cover change in area (km2). (Visit data section on project website for
interactive figures http://lees.geo.msu.edu/research/FEW_MK.html accessed on 20 February 2022).

http://lees.geo.msu.edu/research/FEW_MK.html
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3.4. Gross and Net Change of Land Cover

Land cover conversions happened often and in large amounts during the three decades
of the study period, with the net land cover changes providing another view. Despite the
large amount of land cover change from decade to decade (Figure 2B), net gains and losses
of land cover is small in three provinces of Kazakhstan (Figure 4). In Akmola grassland
lost 6067 km2 and cropland gained 6201 km2. In Almaty, cropland experienced a large loss
of 18,416 km2, and grassland gained 7748 km2. Forest contracted in Aktobe and Akmola in
small amounts. Considering the small percentage of forest in the Aktobe and Akmola, this
increase is trivial. In Mongolia, the net loss of cropland was 4572 km2, and grassland gained
4384 km2 in Tov. In Dornod, grassland and cropland gained but in different amounts, with
a larger gain in grassland (3419 km2) than cropland (1164 km2). There was also a loss of
forest cover (2839 km2) over the three decades. In Arkhangai, cropland gained 3076 km2

and forest loss 2890 km2 over the course of thirty years. The large difference between gross
and net change in land cover classes reflected the cyclical nature of certain types of change
such as cropland abandonment and re-cultivation. Kazakhstan had a larger gross/net gain
change than that of Mongolia, mostly attributed to Kazakhstan’s larger size than Mongolia.
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3.5. Spatial Variations of iLCC

The intensity of land cover change (iLCC) in Kazakhstan was large (43.7% overall)
but varied among provinces (Figure 4). The largest iLCC was found in Akmola (53.8% on
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average), where 11 out of 17 counties experienced land cover changes above the provincial
average (Figures 5 and 6). In Aktobe, land cover change was less intense, with an average of
48%, but maintained a relatively high percentage. All five counties with an overall change
higher than the provincial average are clustered in the north, where cropland dominated
the province. Although the overall spatial change for Almaty was 30.3% on average, a few
counties experienced much larger changes. Counties in the south half of Almaty had a
higher percent of change than the province average (30.3%). Overall spatial change was
also evident in Mongolia but to a lesser degree (29.9% overall) compared to Kazakhstan.
The largest changes occurred in Tov, with an average of 36.1%. Counties where iLCC was
above the provincial average were found in the northwest mountain regions, where change
was mostly related to agriculture expansion and abandonment. Counties in the south,
where the terrain is flat and grassland was the dominant land cover, had relatively low
change rates (<12.5%). Arkhangai experienced a large amount of change, with an average
of 31.0%. There existed a distinct gradient from west to east (Figure 5). Spatial variations
of land cover change intensity at county level for the six provinces in Kazakhstan and
Mongolia. Jenks-style class intervals were used for the continuous variable (accumulative
land cover change intensity, accumulative iLCC) toward a uniform color theme and to
maximize the differences between classes. iLCC aligns with the topographic gradient well.
Interestingly, the change rate appeared doubled, tripled and quadrupled from the west
onward. The counties that had change rates greater than the provincial average sit at the
eastern border. The province that experienced the lowest amount of change was Dornod
(14.9% on average). Larger amounts of land cover change were found in the northwest
mountain areas, with small amounts of change in the southeast flat terrain where grassland
dominated the landscape.

Figure 5. Spatial variations of land cover change intensity at county level for the six provinces
in Kazakhstan and Mongolia. Jenks style class intervals were used for the continuous variable
(accumulative land cover change intensity, accumulative iLCC) toward a uniform color theme and to
maximize the differences between classes.
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Figure 6. Accumulative land cover change intensity (accumulative iLCC) at county level by province
over three decades (1990–2020). Vertical red lines denote the average of accumulative land cover
change intensity of the province.

4. Discussion
4.1. Uncertainty in Land Cover Classification

Development of accurate land cover maps at finer resolution and over longer time
spans is needed for more accurate understanding of local landscapes, as well as for im-
proving global land cover products. The superiority of localized classification compared to
global land cover products has been widely reported. This is especially true in Kazakhstan
and Mongolia, where distinguishing cropland and grassland remains very challenging. For
example, we found land cover and distributions remarkably improved at the same spatial
resolution (30 m) in our classification product, compared with the latest global land cover
product [28]. Gong et al. (2019) [28] found Tov province to be covered by grassland with
a negligible amount of cropland, we found cropland to make up 7.9% of the landscape, a
finding that is supported by national annual statistics (Figure 7A).

We nonetheless are aware of the limitations and uncertainty in our classification. First,
excluding urban from our classification scheme hinders our understanding of the role
that urban expansion played in provinces where it was the fastest-growing sector of the
economy. This exclusion was necessary to avoid overestimating other land cover types
In Kazakhstan and Mongolia. As described in the methods section, the characteristics
of urban land cover, such as impervious surfaces, are not distinct in small and medium
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towns, suggesting those lands would likely be classified as non-urban types (i.e., barren or
grassland) [22,29]. An effort to identify these unique areas as urban would require different
classification algorithms and remote sensing imageries (e.g., high resolution images from
VENµS). In this study using Landsat imagery, leaving the urban class out appeared to be
the best option. Secondly, distinguishing cropland from grassland has been challenging,
resulting in high uncertainty regarding land cover conversion between the two. Giri et al.
(2005) [30] reported that steppe vegetation ranges from forest to grassland to desert show
gradual shifts (i.e., dynamic boundaries) between grassland and shrubland that can lead
to misclassification and disagreement in land cover products. In this study, we observed
some transitions between cropland and grassland by assessing the cover types around
the edges of croplands (Figure 7), which may be attributable to our pixel-based image
classification method. Across the study landscapes, we did not find similar ‘all-or-none’
pattern in cropland conversion to those of Sankey et al. (2018) who adopted an infusion of
object-based and pixel-based image classification methods, as well as kernels to filter out
misclassified land cover classes [31].

Figure 7. Spatial distribution of cropland. (A) Arable cropland distribution in Tov according to
Mongolian government statistics; (B) classified cropland cover map of Tov in 2010 with highlighted
counties having a large area of cropland; (C) cropland transition from 2000 to 2010 of county Tseel;
and (D) cropland transition in Jargalant from 2000 to 2010.



Remote Sens. 2022, 14, 1805 16 of 24

Misclassification between grassland and cropland will likely under- or over-estimate
the size of cropland in particular. For instance, a large amount of land cover conversion
from cropland to grassland during 1990–2000 was found for three provinces in Kazakhstan
(Figure 2) as a result of agriculture abandonment after the collapse of the USSR in 1991. The
trend and extent of this decadal land cover change agree well with previous research [14,32],
though the magnitude of the land transformations differed. Neither previous results nor
ours match well with the ground surveys. In Kazakhstan, for example, it has been estimated
that the grain production area decreased by 2 million hectares per year during the period
1993–1999 (i.e., 200,000 km2 per year nationwide; USDA 2010 [33]). In this study, the
loss rate of cropland in Akmola over a similar period (1990–2000) was 11,483 km2 (i.e.,
1148.3 km2/year), which is very different from the estimates of de Beurs and Henebry
(2004). Clearly, cropland remains significantly underestimated in this study. Regardless of
high accuracy for all cover types, overestimates of some types or some places may exist
as well. In Mongolia, the magnitude, direction, and scale of land cover changes do not
align well with the governmental statistics. The National Statistics Office of Mongolia
reported total arable land of 572 km2 in Arkhangai, 2991 km2 in Tov and 1278 km2 in
Dornod for 2020. Our estimates are an order of magnitude larger than the governmental
statistics for Arkhangai (6414.6 km2) and two times higher for Dornod (2921.8 km2), albeit
our estimate for Tov (2544.4 km2) matched well. Worse yet, more misalignment was found
for the direction of land cover change in Mongolia. The Atar-3 program, started in 2008,
was a watershed for crop production in Mongolia. Prior to this initiative, croplands were
distributed on lower slopes when the country changed from a planned economy to a market
economy in the early 1990s. This was extended uphill after government-led, nationwide
land Atar-3 cultivation campaign. However, these changes were not reflected in classified
land cover products that indicate a slight increase in cropland area in all three provinces in
1990–2000, but a large decrease in Tov during 2000–2010.

4.2. Land Use Hotspots and Policy Influences

A nation’s governance and policies can produce short- and long-term consequences
in land use and land cover changes [3,19,34]. The intensive land cover conversions that
occurred at decadal scale between cropland and grassland are closely related to institutional
shifts in the two nations. As described earlier, the Virgin Lands Campaign (1954–1963) in
Kazakhstan drove an influx of immigration, mostly from the former Soviet Union, into
northern Kazakhstan, where large amounts of steppe were converted to cropland. This
conversion was quickly reversed when the Soviet Union broke up in 1991, with large areas
of cropland abandoned as farmers lost massive government subsidies [16]. The decline in
grain production was accelerated in the mid-1990s when the livestock inventory shrank,
leading to a further decline in the demand for feed-grain [35]. The land cover change trend
found in this study (Figures 2 and 3) and others [32,36] for Akmola confirmed these changes,
demonstrating the direct impacts of institutional shifts. After 2000, both crop and livestock
production started to recover in Kazakhstan, due to governmental support for agriculture
development [37]. Croplands were re-cultivated, resulting in major increases in cropland
area (Figure 2B). Ironically, the conversion from grassland to cropland in last decade was
reversed, resulting in minimal net changes in major cover types over the 30-year study
period. Clearly, governance and institutional changes need to be factored in explorations of
land cover changes as are other ecosystem and society functions [3,6].

At the provincial level, the direction and rate of land cover class change witnessed
large divergences (i.e., within-country variations). It appeared that three provinces in
Kazakhstan underwent a similar changing trend of increased grassland and decreased
cropland area as a result of abandoned cropland reverted to grassland after the Virgin Lands
Campaign in 1960s, when Kazakhstan then was a member of the Soviet Union. Among
the provinces, Akmola experienced the highest changes, with its cropland cover decreased
by 7.8%. In Mongolia grassland area expanded in Arkhangai and Dornod but not in Tov.
Meanwhile, cropland in Tov expanded greatly, unlike in the provinces in Kazakhstan. At
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county level, the spatial variation of land cover changes seemed more topography-driven.
The highest land cover change intensity was found for croplands on flat terrains (i.e., more
suitable for cultivation).

In Mongolia the influences of economic policies on land use hotspots were found at
provincial level. For example, land use hotspots are clustered in the six counties in the
northwest of Tov, mostly in Jargaland, Tseel, Ugtaal, Bayantsogt, Argalant, Bayankangai
(Figures 7 and 8). These agriculture lands serve as the ‘breadbasket’ for the capital Ulaan-
baatar. Another land use hotspot is located in southeastern Tov, mostly in Bayan and
Bayanjargalan counties, where mining industries have been promoted by national policies
since 2000 [19].

Figure 8. Hotspots of land cover change identified with iLCC which was computed the number of
times a pixel that changed during the study period within a province. A pixel can change from one to
three times during three time periods (i.e., 1990–2000, 2000–2010 and 2010–2020).
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4.3. Ecosystem and Climate Impacts

With large scales and intensities of land surface alteration, one expects significant
changes in ecosystems, societies, and the underlying regulations from climate and human
forcings [38]. Many researchers have shown that changes in land use have remarkably
influenced dryland ecosystem carbon cycling and sequestration via modifying the physical
properties of the land surface (e.g., albedo, roughness, and evapotranspiration). In situ
measurements of biomass in similar ecosystem in nearby Inner Mongolia, China, have
shown that conversion of steppe into agricultural land leads to carbon loss, because grass-
land is higher in belowground net primary production than cropland, and most cropland
biomass is returned to the atmosphere through harvest, and at the same time loses its
carbon sequestration ability [4]. Landscape-scale investigation illustrates that vegetation
degradation leads to albedo increasing by 5% and ET decreasing 0.8 mm/day [39]. Based
on satellite image interpretation, Zhou et al. (2021) found a daytime cooling effect on crop
dominated lands and a net daily cooling effect in arid zones based on MODIS land surface
temperature [40]. If we multiply the per unit of carbon/albedo/ET change with the area
of cropland being converted and reverted at the time scale, the numbers are overwhelm-
ingly large and crucial on regional climate. As land use and land cover change is one of
the most important disturbances that changes the terrestrial carbon pool and net flux at
regional and global scales [41], we await answers to at least these pressing issues: What are
the consequences of ecosystem carbon and water budget at landscape scale during land
transformation? Will the directional land cover conversions result in similar changes in
carbon, water and energy balances? What are the specific contributions of each change
between cover type to the net change of a region or country?

We are aware of the age-old challenge in land change science: land cover is distinct
from land use. Land cover addresses the layer of soil and biomass that cover the land
surface, and is observable, while land use refers to land management practice and is not
easily observable [42]. Just as Verburg et al. (2009, 2011) argued, an underlying distinction
exists between land use and land cover, and more attention should be given to land use
and land functions and linkages between these [42,43]. An example of the effect of this
distinction is that changes in quantities of land area do not reflect differences in quality
of land. The pervasive problem across Mongolia is overgrazing, which leads to land
degradation and desertification [2]. It has been reported that 70% of the natural steppes in
Mongolia were degraded under the pressure of climate change and overgrazing [44]. The
land cover class ‘grassland’ does not show the degrading process and the discounted land
function for provision of goods and services. The land use change as a result of grazing
is not easily observable from satellite image interpretation. The variation in grassland
management practice adds confusion to the classification model, which further leads
to grassland misclassification. Another example of the effect of land use and land cover
differences is the difficulty in documenting land abandonment [42]. In the cases of Mongolia
and Kazakhstan, the problem is monitoring and detecting cropland abandonment. Because
of mass land and sparse population, planting croplands in Mongolia is mostly opportunistic
and based on funding availability of individual household. The Mongolian Statistical Office
only records total harvest area annually [31]. This most likely leads to the discrepancy
between the area of classified cropland and agricultural statistics that we discussed earlier.
There have been research efforts to map cropland abandonment using satellite imagery in
Mongolia [31], European Russia [45], and Kazakhstan [46], but the limitations in spatial
and temporal coverage persist. The success of mapping cropland abandonment relies on
developing a long time series of satellite images, which is computationally demanding
and labor intensive due to the need of large training samples. Finally, land cover and land
use shall be examined from functional perspectives, ecological and/or socially, so that
meaningful lessons can be learned on their significances in shaping the nature and society.
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5. Conclusions

The two largest landlocked countries, Kazakhstan and Mongolia, share similar bio-
physical features and both experienced the largest political shifts in the 20th century, but
they have taken very different routes of political reform and economic recovery. The lo-
calized land cover classification is often superior to global land cover product and reveal
fine differences in landscape composition. Large training features and cloud computing
capacity that facilitate high overall classification accuracy across land cover classes and
years enable us to detect land cover changes. Covering thirty years in temporal coverage
change (1990–2020), our classification captures critical geopolitical events in modern history
and enables the examination of the impact of those events on the landscape. Both coun-
tries experience higher rates of land cover changes in the first two decades of our study
(1990–2000 and 2000–2010) than the latest decade (2010–2020), but with clear differences in
LCC between and within the two countries, as well as by cover type and by study period.
Two agriculture-dominated provinces that housed the national capital (Akmola and Tov)
experienced the greatest amount of land cover change. The most common land cover
conversion in the two countries was grassland to cropland. The cyclic land cover conver-
sions between grassland and cropland reflect the impacts of the USSR’s largest reclamation
campaign in the 20th century in Kazakhstan and the Atar-3 agriculture re-development in
Mongolia. Kazakhstan experienced a higher rate of land cover change over a larger extent
of land area than Mongolia. The divergent natural resource management account for the
spatial variation in land cover changes of three decades at three hierarchical administrative
levels. The spatial distribution of land use intensity (Figures 5 and 6) indicates that land
use hotspots (Figure 8) are largely influenced by policy and its shifts over time. Following
up efforts are needed to examine the consequences of ecosystem and society functions from
these large scale land use and land cover changes. To effectively translate our lessons for
the society, governance and institutional changes need to be included in understanding the
land cover changes.
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Appendix A

Table A1. Counties with their urban areas removed from our classification.

No. Country Province City/County Population

1

Kazakhstan

Akmola

Shchuchinsk 45,253
2 Atbasar 32,288
3 Kokshetau 146,104
4 Makinsk 18,540
5 Ereymentau 15,087
6 Astana 649,139
7 Esil 13,096
8

Aktobe

Aktobe 500,757
9 Zhem/Embi 12,345
10 Kndyagash 25,553
11 Alga 15,372
12 Shalkar 26,329
13 Khromatau 24,089
14

Almaty

Almaty 1,854,656
15 Esik 31,254
16 Karabulak 14,873
17 Kaskelen 37,221
18 Saryozek 14,000
19 Taldykorgan 143,407
20 Talgar 43,353
21 Tekeli 31,958
22 Usharal 15,379
23 Otegen Batyr 17,301
24 Sary-Ozek 14,000
25 Balpyk Bi 12,145
26 Uzynagash 23,887
27 Zharkent 42,617
28 Kargali 20,114
29 Koksu 40,105
30 Kapchagay 33,428
31 Zhansugirov 8288
32 Sarqan 14,305
33 Shelek 26,688
34 Saryozek 14,000
35 Ushtobe 22,472

36

Mongolia

Arkhangai Tsetserleg 17,770
37 Dornod Choibalsan city 40,439
38

Tov
Ulaanbaatar 1067,472

39 Zuunmod 14,568
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Figure A1. Classified land cover maps for the three provinces in Kazakhstan.
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Figure A2. Classified land cover maps for the three provinces in Mongolia.
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