
����������
�������

Citation: Fang, X.; Li, Q.; Li, Q.; Ding,

K.; Zhu, J. Exploiting Graph and

Geodesic Distance Constraint for

Deep Learning-Based Visual

Odometry. Remote Sens. 2022, 14,

1854. https://doi.org/10.3390/

rs14081854

Academic Editors: Yangquan Chen,

Subhas Mukhopadhyay, Nunzio

Cennamo, M. Jamal Deen, Junseop

Lee and Simone Morais

Received: 2 March 2022

Accepted: 9 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Exploiting Graph and Geodesic Distance Constraint for Deep
Learning-Based Visual Odometry
Xu Fang 1,2, Qing Li 1,3, Qingquan Li 1,3, Kai Ding 4 and Jiasong Zhu 3,5,*

1 Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China;
fangxu2018@email.szu.edu.cn (X.F.); qingli@szu.edu.cn (Q.L.); liqq@szu.edu.cn (Q.L.)

2 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
3 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
4 School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China;

dingkai@dgut.edu.cn
5 Shenzhen University Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society,

Shenzhen 518060, China
* Correspondence: zjsong@szu.edu.cn

Abstract: Visual odometry is the task of estimating the trajectory of the moving agents from con-
secutive images. It is a hot research topic both in robotic and computer vision communities and
facilitates many applications, such as autonomous driving and virtual reality. The conventional
odometry methods predict the trajectory by utilizing the multiple view geometry between consecu-
tive overlapping images. However, these methods need to be carefully designed and fine-tuned to
work well in different environments. Deep learning has been explored to alleviate the challenge by
directly predicting the relative pose from the paired images. Deep learning-based methods usually
focus on the consecutive images that are feasible to propagate the error over time. In this paper,
graph loss and geodesic rotation loss are proposed to enhance deep learning-based visual odometry
methods based on graph constraints and geodesic distance, respectively. The graph loss not only
considers the relative pose loss of consecutive images, but also the relative pose of non-consecutive
images. The relative pose of non-consecutive images is not directly predicted but computed from
the relative pose of consecutive ones. The geodesic rotation loss is constructed by the geodesic
distance and the model regresses a Lie algebra so(3) (3D vector). This allows a robust and stable
convergence. To increase the efficiency, a random strategy is adopted to select the edges of the graph
instead of using all of the edges. This strategy provides additional regularization for training the
networks. Extensive experiments are conducted on visual odometry benchmarks, and the obtained
results demonstrate that the proposed method has comparable performance to other supervised
learning-based methods, as well as monocular camera-based methods. The source code and the
weight are made publicly available.

Keywords: deep learning; graph constraints; visual odometry; geodesic distance

1. Introduction

Visual odometry (VO) is the task of estimating the trajectory of mobile agents (e.g.,
robots, vehicles, and unmanned aerial vehicles (UAVs)) from image sequences. It is one
of the fundamental and important remote sensing methods in autonomous driving, pho-
togrammetry, and virtual/augmented reality (VR, AR) applications. In the past few decades,
visual odometry has attracted significant interest in both robotics and computer vision
communities [1]. Visual odometry was first proposed in 2004 by Nister [2] for the navi-
gation of autonomous ground vehicles. Later, monocular visual navigation was achieved
for autonomous micro helicopters [3]. Visual odometry is also a promising supplement to
other localization technologies, such as inertial measurement unit (IMU), global positioning
system (GPS), LiDAR and ultrasonic rangefinder especially in GPS-denied environments,

Remote Sens. 2022, 14, 1854. https://doi.org/10.3390/rs14081854 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14081854
https://doi.org/10.3390/rs14081854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14081854
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14081854?type=check_update&version=2


Remote Sens. 2022, 14, 1854 2 of 19

such as tunnels, underwater, and indoor scenarios [4–6]. The IMU is a lightweight, low-cost
sensor that can improve the motion tracking performance of visual sensors by integrating
the IMU measurements. The ultrasonic rangefinder can provide the backup for the LiDAR
rangefinder, due to the LiDAR beam being narrow. Fusing the advantages of different
remote sensing techniques can enhance the reliability of the system. The performance of
visual odometry is important for various artificial intelligence applications.

Although numerous conventional visual odometry or simultaneous localization and
mapping (SLAM) methods have shown promising results under the ideal environment,
they still face both external and internal challenges. The external challenges refer to harsh
environments of illumination changes, textureless surfaces, and dynamic objects scenes.
While the internal challenge is that different cameras need to be precisely calibrated for
better performance. To alleviate these problems, deep learning has been utilized [7–9].
Estimating the relative pose is an important component for VO/SLAM. The relative pose de-
scribes the translation and rotation between frames. Deep learning-based methods directly
predict the relative pose by sequentially feeding the paired images into the deep neural
networks. Deep learning-based methods construct a generic data-driven model and avoid
effort on specifying the full knowledge about physical and mathematical rules [10–12].
Long short-term memory (LSTM) has also been incorporated to leverage the spatial corre-
spondences of consecutive images for visual odometry due to its internal advantage for
sequential information processing [7,13]. The networks are trained with loss that is de-
signed based on the deviation between the predicted and the real relative poses. However,
the existing methods usually predict the relative pose from two consecutive images of the
images sequence, in which errors are accumulated over time. To alleviate the problem, a
graph loss is designed in the paper to utilize the constraints of all the overlapped images in
a tiny sequence. The relative pose losses of both consecutive and non-consecutive images
are considered. The relative pose of non-consecutive images is not directly predicted but
computed from the relative pose of consecutive images. This approach provides additional
regularization for training the networks. Figure 1 shows the basic idea of the proposed
method and the difference with other deep learning-based methods. Moreover, a novel
geodesic rotation loss is formulated based on the real rotation change in 3D space. Instead
of comparing the distances of the predicted and the real rotations in a certain representation,
the orientation difference from the predicted to the real rotations is directly computed.

Figure 1. (a) Traditional loss computed from consecutive nodes; (b) the proposed graph loss is
computed from a constructed graph that not only considers the constraints between the consecutive
images, but also between the non-consecutive images (red edges).



Remote Sens. 2022, 14, 1854 3 of 19

The main contributions of this paper are as follows:

• A graph loss is proposed to fully exploit the constraints of a tiny image sequence to
replace the conventional loss module based on two consecutive images, which can
alleviate the accumulating errors in visual odometry. Moreover, the proposed graph
loss leads to more constraints to regularize the network.

• A new representation of rotation loss is designed based on the geodesic distance, which is
more robust than the usual methods that use the angles difference in Euclidean distance.

• Extensive experiments are conducted to demonstrate the superiority of the proposed
losses. Furthermore, the effects of different sliding window sizes and sequence over-
lapping are also analyzed.

The remainder of the paper is organized as follows: Section 2 presents an overview of
related works on visual odometry. Section 3 describes the proposed method and the loss
functions. The experiments are presented in Section 4. Section 5 discusses the effects in
different experimental settings. Section 6 concludes the paper.

2. Related Work

The various approaches and frameworks proposed for visual odometry can be divided
into two categories: geometry-based methods and learning-based methods.

2.1. Geometry-Based Methods

Geometry-based methods estimate the relative pose between frame-to-frame based
on the stereo view geometry. A typical pipeline of the geometry-based method contains
camera calibration [14], feature extraction [15], feature matching, outlier removal, and
optimization module [16–18]. Based on this theory, numerous visual odometry algorithms
and SLAM systems have been created, demonstrating exceptional performance [19], such
as VINS-MONO [20], ORB-SLAM3 [21], and Kimera-VIO [22]. These methods are robust
and versatile visual or visual-inertial odometry methods that utilize the image data and
other sensor data. Zhang et al. [23] proposed a series of optimal methods that made 3D re-
construction and mapping systems more robust and accurate. Generally, the two dominant
geometry-based methods are feature-based methods and direct methods. The feature-based
methods use various feature detectors, including FAST [24], SURF [25], BRIEF [26], and
corner detectors [27], to detect the salient features. The feature point tracker is used to track
these feature points in the next image of the same sequence. Mono-SLAM [28] simulta-
neously estimates the camera motion and the 3D structure of an unknown environment
in real-time. LIBVISO2 [29] employs multi-view geometry to estimate relative pose by
extracting and tracking the salient feature points. One of the most successful and classical
SLAM systems is ORB-SLAM2 [30] that was adapted to maintain a feature map for drift
correction along with pose estimation. However, the sparse feature-based methods are
computationally expensive and do not utilize the information of the whole image.

The direct methods utilize all the pixels and optimize geometry errors for pose estima-
tion between consecutive images under the assumption of photometric consistency [31].
To improve the computational efficiency, the Direct Sparse Odometry (DSO) [32] adopted
sparse and direct methods for the monocular camera and demonstrated robustness for
photometric consistency. Although many geometry-based methods have shown good
performance in good environments, they tend to fail in textureless environments or
different illuminations.

2.2. Deep Learning-Based Methods

Motivated by the good performance in object detection and classification [33–36],
deep learning techniques have been introduced to address the problems of traditional
camera location methods [37]. K. R. Konda et al. [38] formulated visual odometry as
a classification problem. They were the first to apply deep learning methods to visual
odometry. The deep learning model was used to predict the velocity and direction with
estimated depth from stereo images due to the effective feature representation of the



Remote Sens. 2022, 14, 1854 4 of 19

deep learning model [39,40]. The PoseNet [41] considers the camera relocation as a pose
regression problem; a convolutional neural network (CNN) built on the GoogLeNet model
is used to regress the six degrees of freedom (6-DoF) camera pose from a single RGB image
in an end-to-end manner. The KFNet improved the learning-based camera re-localization
method by incorporating Kalman filtering [42].

In [43], an image localization has been proposed based on a deep learning method
with the pose correction by matching the map inferred from images and local map extract
from 3D map. The main disadvantage of this method is that it needs to be re-trained
or at least fine-tuned for a new environment, limiting its widespread applications. To
address this issue, frame-to-frame Ego-Motion estimation based on CNN was proposed
in [44], which achieved robust performance under the challenging scene. However, it is a
time-consuming process since the model takes dense optical flow rather than RGB image
data as input. Flowdometry [45] cast the visual odometry as a regression problem using
the FlowNet [46] to extract the optical flow information and a fully connected layer to
directly predict camera translation and rotation. DeepVO [7] regarded visual odometry as
a sequential modeling problem and fed image sequences or videos into a network designed
based on CNN and recurrent neural network (RNN) in an end-to-end framework. ESP-
VO [47] presented a sequence-to-sequence probabilistic visual odometry framework based
on DeepVO and predicted the poses and uncertainties of image sequences or videos. M. R.
U. Saputra et al. [8] presented a curriculum learning strategy for learning the geometry of
monocular visual odometry and constructed geometry-aware objective function by jointly
optimizing relative and composite transformations over small windows. Recently, some
unsupervised learning-based VO methods have also achieved comparable performances.
SC-Sfmlearner [48] achieved the scale consistent on a long video sequence by geometry
consistency loss and provided full camera trajectory. TrajNet [49] proposed a novel pose-
to-trajectory constraint and improved the view reconstruction constraint to constrain the
training process. The above-mentioned methods utilize stereo images and perform depth
estimation jointly with visual odometry, which increases the complexity of these methods.

The method proposed in this paper also belongs to sequential deep learning-based
methods. The main difference is that the proposed method utilizes the constraints of an
image sequence to further regularize the network.

3. Deep Learning-Based Visual Odometry with Graph and Geodesic
Distance Constraints

In this section, firstly, a brief introduction to the framework of deep learning-based
visual odometry is presented, and then the network architecture and the proposed loss
functions are elaborated.

3.1. Deep Learning-Based Visual Odometry

Visual odometry tries to estimate the trajectory from image sequences or videos. Given
image sequences I1, I2, . . . , In, they sequentially predict relative poses P1,0, P2,1, P3,2, . . . ,
Pn,n−1, and the absolute pose of time t is obtained by accumulating the relative poses accord-
ing to Equation (1). The trajectory is the absolute pose set of P0, P1, P2, . . . , Pn. Therefore,
the vital component is to estimate the relative pose. The relative pose is comprised of
rotation matrix and translation vector.

Pn = P1,0 · P2,1 · P3,2 · · · Pn,n−1 (1)

where Pn,n−1 =

[
Rotn,n−1 tn,n−1

0 1

]
, Rotn,n−1 ∈ SO(3) is the rotation matrix, and tn,n−1 ∈

R3×1 is the translation vector.
Deep learning-based visual odometry trains a neural network to estimate the relative

pose between two overlapped images. To further exploit the spatial and temporal informa-
tion, an RNN is used to leverage previous information. The entire process can be trained in
an end-to-end manner with the loss designed from the distance between the predicted and



Remote Sens. 2022, 14, 1854 5 of 19

the ground truth poses. The relative pose consists of rotation and translation and both of
them are of three freedoms. The deep learning-based visual odometry directly learns the
hidden mapping function between the paired images and the relative poses as shown in
Equation (2).

DNNs :
{(

R2×(c×w×h)
)

1:N

}
→
{(

R6
)

1:N

}
(2)

where c, w, and h are the channel, width, and height of the input images, respectively, and
N is the number of image pairs.

The network is trained by backpropagation with loss function based on deviation
in translation and rotation. The loss function component uses the Euclidean distance of
translation and angle or quaternion. The existing methods only consider the loss between
consecutive frames, while the constraints between non-consecutive images are not well
considered. Therefore, the relative constraints of any two nodes in the fixed window range
are considered and a graph loss is designed. The loss function can be regarded as bundle
adjustment of small slide windows in the traditional geometry-based VO methods.

3.2. Network Architecture

Figure 2 shows the network architecture of deep learning-based VO. The network
contains a feature extraction module and a pose regress module. The feature extraction
module is comprised of a convolution module and an LSTM module. The convolution
module is a modified FlowNet [46] to extract the information from the images. The details
of the entire deep learning model are shown in Table 1. Each convolutional layer is followed
by the Leaky ReLU activation and the dropout layer. The probability parameters of dropout
layers are listed in Table 1. The KITTI odometry dataset has different images sized about
(1,260,370). The images were empirically resized to (608,184).

Figure 2. The network architecture of deep learning-based visual odometry.

Table 1. The parameters of deep learning-based visual odometry model.

Layer Output Size Kernel Size Padding Stride Channel Dropout

Input size 6 × 608 × 184 (image pairs)

Conv1 (304,92) 7 × 7 3 2 64 0.0

Conv2 (152,46) 5 × 5 2 2 128 0.0

Conv3 (76,23) 5 × 5 2 2 256 0.0

Conv3_1 (76,23) 3 × 3 1 1 256 0.1

Conv4 (38,12) 3 × 3 1 2 512 0.1

Conv4_1 (38,12) 3 × 3 1 2 512 0.1

Conv5 (19,6) 3 × 3 1 1 512 0.1



Remote Sens. 2022, 14, 1854 6 of 19

Table 1. Cont.

Layer Output Size Kernel Size Padding Stride Channel Dropout

Conv5_1 (19,6) 3 × 3 1 2 512 0.3

Conv6 (10,3) 3 × 3 1 1 1024 0.2

LSTM num_layer = 2, input_size = 30,720 (1024 × 3 × 10), hidden_size = 1024

FC layer1 Input_feature = 1024, output_feature = 128

FC layer2 Input_size = 128, output_size = 6

The LSTM is chosen as the recurrent module to derive the spatial-temporal information
from the previous images. An LSTM is capable of learning long-term dependencies by
introducing memory gates and units. Each LSTM unit is associated with a time step. Given
the input xk at time k, the hidden state hk−1 and the memory cell ck−1 of the previous LSTM
unit, the LSTM updates at time step k according to Equation (3).

ik = σ(Wxixk + Whihk−1 + bi)

fk = σ
(

Wx f xk + Wh f hk−1 + b f

)
gk = tanh

(
Wxgxk + Whghk−1 + bg

)
ck = fk � ck−1 + ik � gk

ok = σ(Wxoxk + Whohk−1 + bo)

hk = ok � tanh(ck)

(3)

where ik, fk, gk, ck and ok are input gate, forget gate, input modulation gate, memory cell
and output gate at time k, respectively, W represents the corresponding weight matrices,
� represents the element-wise product of two vectors, and tanh represents hyperbolic
tangent nonlinearity.

The recurrent module processes the visual features generated from the CNN and
outputs a pose estimate at each time step. The LSTM is used to exploit correlations among
image sequences and describe physical movement and geometry. Although the LSTM
has a deep temporal structure, it still needs depth on network layers to learn high-level
representation. The deep RNN architecture has been proven to be effective in speech
recognition. Therefore, the deep RNN of the model proposed in this paper is constructed
by stacking two LSTM layers; each of the LSTM layers has 1024 hidden states. The setting
LSTM layer is also referred to DeepVO. The two LSTM layers are used to process the
output of the convolution module. Each LSTM layer is followed by a dropout layer. The
parameters of the LSTM layer are listed in Table 1. The regressor contains a fully connected
layer of dimension 6 to estimate the relative translation and rotation. A video clip or image
sequence is taken as input. The CNN module extracts the visual information from the two
stacked consecutive images. The output of the CNN modules is fed to the LSTM layer for
information fusion. The output of the LSTM is used for relative pose estimation by the fully
connected layer.

3.3. Graph Loss

The existing deep learning VO methods only exploit the constraints of the relative
pose of consecutive images and are prone to accumulate the error. Inspired by the loop
constraints in SLAM and graph model, a graph loss is designed in this paper to further
regularize the network. The graph loss is devised by the deviation between the esti-
mated relative poses of non-consecutive images and real images. It should be noted that
the estimated relative pose is not directly predicted from the network, but accumulated
with multiple paired consecutive images. For example, P̂t−2, t = P̂t−2, t−1 · P̂t−1, t, where
P̂t−2, t−1 and P̂t−1, t are directly predicted by the network.



Remote Sens. 2022, 14, 1854 7 of 19

Figure 3 shows the computation of graph loss. To construct the graph, a window is
used to slide over the image sequences. Firstly, the image sequences were fed into the
model to predict the relative pose. Then the relative pose was used to calculate the absolute
pose. Empirically, the window size was set to 15–20 images to improve the efficiency.
For each window, a random strategy was selected to construct the edges of a graph and
generate more relative edges from the absolute poses. For each iteration edges equal to
four times the window size were randomly selected to further increase the efficiency. The
random strategy can prevent the network from overfitting compared with using fixed
edges. The graph loss leads to more edge constraints, which incur some computational
costs. The computational cost of the loss component is still small compared to the total
network computation.

Figure 3. Computation of graph loss.

For each edge, the relative pose of the model prediction is accumulated into the
absolute pose in a sliding window. The loss function is designed as:

L =
1

Ne
∑eij∈Epose

d
(
ζij, ζ̂ij

)
(4)

E =
{

eij | 1 ≤ |i− j |< windows_size
}

(5)

d
(
ζij, ζ̂ij

)
= argmin

(
‖t̂ij − tij‖

2
2 + k ∗ geodesic_rotation_loss(rij, r̂ij)

)
(6)

where ζij = (tij, rij) and ζ̂ij =
(
t̂ij, r̂ij

)
are the ground-truth and the predicted value,

respectively. tij and rij denote the translation vector and the rotation vector from frame j to
frame i, respectively. d(ζij, ζ̂ij) is the geometric loss function adopted to balance the position
and rotation errors. k is a scale factor to balance the weights of translation and rotation, k
was set to 100 in the experiment.

3.4. Geodesic Rotation Loss

Usually, the traditional rotation loss is designed based on the Euclidean distance of
the quaternion [7,50], or Euler angle [51–53] between the prediction and the ground truth.
It provides a direct difference between the prediction and the ground truth. The Euler
angle and the quaternion themselves are constrained vectors. Using them as optimization
variables introduces additional constraints on numerical computation making the opti-
mization difficult. This leads the network to converge unstably and makes the network
hard to train. Through the transformation relationship between Lie group and Lie algebra,
the pose estimation is turned into an unconstrained optimization problem. The geodesic
rotation loss is designed to obtain the angle difference on 3D manifold.

Geodesic distance is the appropriate geometric distance that corresponds to the length
of the shortest path along the manifold [54]. It allows a robust and stable convergence by
regressing a Lie algebra so(3): rij. Especially, the Lie algebra so(3) (rij, the output of model)
is then converted into Lie group SO(3) according to Equation (7). This is known as the
exponential map, an application from so(3) to SO(3). SO(3) is the result of the exponential



Remote Sens. 2022, 14, 1854 8 of 19

map of so3 and represents the rotation matrix Rot, ˆRot. The cosine of the relative angle
(in radians) between the pairs of rotation matrices Rot and ˆRot is calculated according
to Equation (8). This corresponds to a geodesic distance on the 3D manifold of rotation
matrices and is called the geodesic rotation loss.

Rot = exp
(
r̂ij
)

(7)

geodesic_rotation_loss(rij, r̂ij) = 1− 0.5 ∗ (trace(Rot ∗ ˆRotT
)− 1) (8)

where rij ∈ R3, r̂ij ∈ R3×3. rij is a 3D vector that represents relative rotation, r̂ij represents
the antisymmetric matrix of vector rij, Rot and ˆRot are the rotation matrices of prediction
and ground truth, respectively, and trace represents the trace of matrix.

4. Results

In this section, the KITTI odometry benchmark is introduced first and then the experi-
ments and results are elaborated.

4.1. Dataset

The KITTI odometry dataset is used to evaluate the proposed method. The KITTI
odometry dataset contains 22 sequences of images. The first 11 sequences (00–10) are
labeled with ground truth trajectory, while the last 11 sequences (11–21) only contain the
visual information. The dataset is challenging for the monocular VO/SLAM algorithms
since it was recorded in the urban area with many dynamic objects and at a low frame rate
(10 Hz). In the experiments of this study, sequences 00, 02, 08, 09 were used as the training
dataset, while sequences 03, 04, 05, 06, 07, 10 were used as the testing dataset. Furthermore,
sequences 11, 15 were used to verify the performance of the proposed method. Since
the sequences are not associated with ground truth trajectory, the results of the proposed
method are compared with the stereo VISO2(VISO2-S) method [29], which utilizes stereo
images and has shown better performance than the monocular-based method.

To evaluate the performance, the proposed method is compared with the state-of-
the-art feature-based and learning-based methods, including VISO2 [29], DeepVO [7],
SC-Sfmlearner [48], and TrajNet [49]. The proposed network was implemented with
PyTorch and trained on an NVIDIA TITAN RTX GPU. The optimizer was Adam and the
learning rate was empirically set to 5 × 10−6.

4.2. Experiment on Dataset with Ground Truth

Since the absolute scale is not feasible to obtain from the monocular visual odometry,
the localization results were manually aligned with the ground truth. Therefore, the scales
of monocular VISO2 (VISO2-M) and SC-Sfmlearner were aligned to the ground truth for a
fair comparison. The DeepVO was implemented referring to [7]. The network was trained
under the same settings as DeepVO-Graph and DeepVO-Graph-Geodesic (DeepVO-G-
G) for a fair comparison since there is no official public code available. DeepVO-Graph
indicates the rotation loss term is computed with the angle in Euclidean distance manner,
while DeepVO-Graph-Geodesic represents the rotation loss term is computed with the
proposed geodesic distance (new rotation loss). In the experiment, DeepVO, DeepVO-
Graph, and Deep-Graph-Geodesic were trained with sequences 00, 02, 08, 09, and tested
with sequences 03, 04, 05, 06, 07, 10, as in [7]. SC-Sfmlearner was trained with sequences
from 00 to 08 and tested with sequences 09, 10 [48]. TrajNet was trained with sequences
00–06 and tested with 07–10 [49].

Terr, Rerr, ATE, RPE(m), and RPE(◦) metrics are widely used to evaluate the perfor-
mance of VO/SLAM methods [7,9,48]. The KITTI Odometry criterion evaluates the possible
sub-sequences of length (100, . . . , 700, 800) meters and reports the average translational
error Terr (%) and rotational errors Rerr (◦/100 m). The relative pose error (RPE) measures
frame-to-frame relative pose error. The absolute trajectory error (ATE) measures the root-



Remote Sens. 2022, 14, 1854 9 of 19

mean-square error between the translation of predicted camera poses and ground truth.
The RPE and ATE are computed as Equations (9)–(12).

Ei =
(

Q−1
i Qi+∆

)−1(
P−1

i Pi+∆

)
(9)

RMSE(E1:n, ∆) =
(

1
m∑m

i=1‖trans(Ei)‖2
) 1

2
(10)

RPE =
1
n∑m

∆=1RMSE(E1:n, ∆) (11)

Fi = Q−1
i Pi (12)

ATE =

(
1
m∑m

i=1‖trans(Fi)‖2
) 1

2
(13)

where P, Q ∈ SE(3), P and Q represent the predicted and the ground truth poses, respec-
tively. ∆ represents the time interval. trans(Ei) can be replaced by rots (Ei). trans(Ei) and
rots (Ei) represent the translation and the rotation parts of Ei, respectively.

Tables 2 and 3 show the quantitative results of training and testing sequences, respec-
tively. The top two results are labeled in bold. It can be seen from the tables that both
DeepVO-Graph and DeepVO-G-G are overall more accurate than DeepVO. The DeepVO-
G-G and DeepVO-Graph exceed DeepVO and VISO2-M on the ATE index of sequences 00,
08 on the training dataset and maintain a competitive performance on most indexes on 02,
09 sequences. The DeepVO-G-G achieve the top two performance on sequences 03, 05, 07,
10 in terms of the ATE and better performance on the other sequences.

Table 2. Comparison of various visual odometry methods on the training dataset. (Bold denotes best
performance, underline denotes second best performance).

Sequence VISO2-M [29] SC-Sfmlearner [48] DeepVO [7] DeepVO-Graph
(Ours)

DeepVO-G-G
(Ours)

00

Terr 37.14 9.88 4.1 2.99 3.35
Rerr 15.84 3.91 1.76 1.37 1.43
ATE 142.14 137.34 83.77 31.8 73.02

RPE(m) 0.377 0.093 0.023 0.018 0.029
RPE(◦) 1.161 0.134 0.209 0.105 0.198

02

Terr 6.38 7.27 5.86 3.86 3.98
Rerr 1.39 2.19 1.75 1.34 1.37
ATE 86.73 199.27 95.05 86.98 147.13

RPE(m) 0.119 0.081 0.029 0.023 0.034
RPE(◦) 0.183 0.089 0.173 0.093 0.163

08

Terr 24.46 18.26 5.59 2.65 3.38
Rerr 8.03 2.01 2.26 1.08 1.54
ATE 132.79 133.79 180.91 28.09 128.09

RPE(m) 0.312 0.244 0.026 0.019 0.030
RPE(◦) 0.896 0.07 0.164 0.086 0.156

09

Terr 4.41 11.24 4.32 4.04 3.36
Rerr 1.23 3.34 1.52 1.49 1.29
ATE 18.03 121.96 43.71 37.89 38.83

RPE(m) 0.121 0.106 0.025 0.022 0.031
RPE(◦) 0.121 0.106 0.142 0.08 0.137



Remote Sens. 2022, 14, 1854 10 of 19

Table 3. Comparison of various visual odometry methods on the test dataset (Note: SC-Sfmlearner
train sequences: 00–08, test sequences 09,10. Their results are used only for references. DeepVO,
DeepVO-Graph, DeepVO-G-G are the same experiment settings. Bold denotes best performance,
underline denotes second best performance).

Sequence VISO2-M [29] SC-Sfmlearner [48] TrajNet [49] DeepVO [7] DeepVO-Graph
(Ours)

DeepVO-G-G
(Ours)

03

Terr 16.88 4.45 - 15.06 9.72 10.00
Rerr 5.21 2.77 - 6.6 4.5 4.87
ATE 91.92 15.67 - 87.2 46.57 41.92

RPE(m) 0.101 0.055 - 0.065 0.062 0.058
RPE(◦) 0.423 0.062 - 0.162 0.109 0.153

04

Terr 1.73 3.28 - 8.04 8.97 7.11
Rerr 1.39 0.95 - 2.46 1.91 2.60
ATE 7.62 7.15 - 16.03 17.32 15.55

RPE(m) 0.106 0.069 - 0.126 0.139 0.111
RPE(◦) 0.098 0.049 - 0.11 0.088 0.117

05

Terr 16.8 6.02 - 7.8 7.76 6.55
Rerr 5.14 1.8 - 2.65 3.0 2.59
ATE 108.02 55.91 - 83.51 55.1 36.03

RPE(m) 0.296 0.069 - 0.081 0.083 0.073
RPE(◦) 0.29 0.063 - 0.158 0.106 0.153

06

Terr 4.57 10.73 - 9.99 9.43 8.43
Rerr 1.45 2.18 - 1.96 1.9 2.36
ATE 33.81 44.5 - 43.12 42.77 39.84

RPE(m) 0.09 0.135 - 0.125 0.126 0.107
RPE(◦) 0.119 0.167 - 0.134 0.091 0.134

07

Terr 26.15 7.13 10.93 6.97 9.01 4.87
Rerr 15.11 2.38 5.15 4.79 6.78 2.82
ATE 48.25 22.41 - 30.25 39.32 13.99

RPE(m) 0.359 0.056 - 0.063 0.06 0.055
RPE(◦) 0.928 0.068 - 0.16 0.129 0.168

10

RPE(◦) 31.99 10.07 11.9 14.17 14.02 10.91
Rerr 9.06 4.91 2.84 4.29 4.2 3.50
ATE 229.19 78.28 - 126.45 97.3 64.08

RPE(m) 0.486 0.103 - 0.122 0.121 0.111
RPE(◦) 0.824 0.113 - 0.205 0.147 0.198

The SC-Sfmlearner has also achieved top two results on most of the sequences. How-
ever, the SC-Sfmlearner was trained using more sequences, i.e., sequences 02–08, and
sequences 09, 10 were used for testing. The TrajNet was also trained with more sequences
(00–06) than the proposed method. The proposed method shows comparable performances
on common test sequences 07 and 10. Regarding test sequence 10, the DeepVO-G-G even
achieves better performance, which also verifies the effectiveness of the proposed method.
Both the DeepVO-Graph and DeepVO-G-G can boost the performance of DeepVO. The
DeepVO-Graph shows better ATE results on long-distance sequences 05, 06, 07, 10 than the
DeepVO. The DeepVO-G-G verifies that the geodesic distance can improve the performance
compared with the Deep-Graph, especially for sequence 07. The results of DeepVO-G-G
and DeepVO-Graph show that the graph-constrained loss functions can obtain a better
performance to address the accumulated errors.

It should be noted that neither scale estimation nor post alignment to ground truth
was conducted for DeepVO-Graph and DeepVO-G-G. The 2D trajectory comparison results
are shown in Figures 4 and 5. The X-axis and Y-axis represent the x and y coordinates of the
absolute pose of images, respectively. For clarity, only the trajectories of DeepVO, DeepVO-
G-G, and ground truth are plotted. The quantitative comparisons of various methods are



Remote Sens. 2022, 14, 1854 11 of 19

shown in Tables 2 and 3. The DeepVO-G-G consistently yields better performance for both
translation and rotation compared with the DeepVO and others.

The performance of DeepVO-G-G is better than DeepVO-Graph on the test dataset.
However, the DeepVO-G-G is not better than the DeepVO-Graph on the training dataset.
This also proves that the proposed loss component has better generalization performance.
The inference runtime of the proposed model on every test sequence is shown in Table 4. It
can be observed that the inference speed is fast since it can be processed in parallel without
additional steps.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

quences 05, 06, 07, 10 than the DeepVO. The DeepVO-G-G verifies that the geodesic dis-

tance can improve the performance compared with the Deep-Graph, especially for se-

quence 07. The results of DeepVO-G-G and DeepVO-Graph show that the 

graph-constrained loss functions can obtain a better performance to address the accu-

mulated errors. 

It should be noted that neither scale estimation nor post alignment to ground truth 

was conducted for DeepVO-Graph and DeepVO-G-G. The 2D trajectory comparison re-

sults are shown in Figures 4 and 5. The X-axis and Y-axis represent the x and y coordi-

nates of the absolute pose of images, respectively. For clarity, only the trajectories of 

DeepVO, DeepVO-G-G, and ground truth are plotted. The quantitative comparisons of 

various methods are shown in Tables 2 and 3. The DeepVO-G-G consistently yields better 

performance for both translation and rotation compared with the DeepVO and others. 

The performance of DeepVO-G-G is better than DeepVO-Graph on the test dataset. 

However, the DeepVO-G-G is not better than the DeepVO-Graph on the training da-

taset. This also proves that the proposed loss component has better generalization per-

formance. The inference runtime of the proposed model on every test sequence is shown 

in Table 4. It can be observed that the inference speed is fast since it can be processed in 

parallel without additional steps. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The trajectories of the proposed method on the training sequences. (a) Sequence 00; (b) 

Sequence 02; (c) Sequence 08; (d) Sequence 09. 
Figure 4. The trajectories of the proposed method on the training sequences. (a) Sequence 00;
(b) Sequence 02; (c) Sequence 08; (d) Sequence 09.



Remote Sens. 2022, 14, 1854 12 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. The trajectories of the proposed method on the test sequences. (a) Sequence 03; (b) Se-

quence 04; (c) Sequence 05; (d) Sequence 06; (e) Sequence 07; (f) Sequence 10. 
Figure 5. The trajectories of the proposed method on the test sequences. (a) Sequence 03; (b) Sequence
04; (c) Sequence 05; (d) Sequence 06; (e) Sequence 07; (f) Sequence 10.



Remote Sens. 2022, 14, 1854 13 of 19

Table 4. The inference runtime of the proposed model for different sequences (experiment environ-
ment: Ubuntu 18.04, PyTorch Library, Intel Xeon Gold 5222 CPU, RAM 64G, NVIDIA Titan RTX
GPU 24G).

Sequence Number of Frames Inference Runtime (s)

03 801 4.6
04 271 3.6
05 2761 7.7
06 1101 4.2
07 1101 4.2
10 1201 4.3

4.3. Experiment on Dataset without Ground Truth

To evaluate the performance of the proposed method, it was tested on test sequences
11, 15 using the former experiment model. Since no ground truth trajectory is provided,
only the qualitative analysis is performed by generating the trajectory. The VISO2-S is
chosen as the ground truth since its effectiveness has been accepted. The proposed method
is also compared with SC-Sfmlearner, DeepVO-G-G, and VISO2-M.

The scale of VISO2-M and SC-Sfmlearner is obtained by aligning to the VISO2-S.
The results are shown in Figure 6. The DeepVO-G-G and VISO2-M perform better in
sequence 11; the SC-Sfmlearner is poorer than the others. Sequence 15 is more challeng-
ing (longer distances and scene complexity) than sequence 11. However, the proposed
method is closer to the VISO2-S than VISO2-M and SC-Sfmlearner on sequence 15, which
demonstrates that the proposed method achieves better performance than the traditional
monocular visual odometry and other deep learning-based methods.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 

Table 4. The inference runtime of the proposed model for different sequences (experiment envi-

ronment: Ubuntu 18.04, PyTorch Library, Intel Xeon Gold 5222 CPU, RAM 64G, NVIDIA Titan 

RTX GPU 24G). 

Sequence Number of Frames Inference Runtime (sec) 

03 801 4.6 

04 271 3.6 

05 2761 7.7 

06 1101 4.2 

07 1101 4.2 

10 1201 4.3 

4.3. Experiment on Dataset without Ground Truth 

To evaluate the performance of the proposed method, it was tested on test se-

quences 11, 15 using the former experiment model. Since no ground truth trajectory is 

provided, only the qualitative analysis is performed by generating the trajectory. The 

VISO2-S is chosen as the ground truth since its effectiveness has been accepted. The 

proposed method is also compared with SC-Sfmlearner, DeepVO-G-G, and VISO2-M. 

The scale of VISO2-M and SC-Sfmlearner is obtained by aligning to the VISO2-S. 

The results are shown in Figure 6. The DeepVO-G-G and VISO2-M perform better in 

sequence 11; the SC-Sfmlearner is poorer than the others. Sequence 15 is more challeng-

ing (longer distances and scene complexity) than sequence 11. However, the proposed 

method is closer to the VISO2-S than VISO2-M and SC-Sfmlearner on sequence 15, 

which demonstrates that the proposed method achieves better performance than the 

traditional monocular visual odometry and other deep learning-based methods. 

 
(a) 

Figure 6. Cont.



Remote Sens. 2022, 14, 1854 14 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
(b) 

Figure 6. The trajectories of sequences 11 and 15. (a) Sequence 11; (b) Sequence 15. 

5. Discussion 

5.1. Effect of Different Sliding Window Sizes 

The sliding window size is a key parameter for graph loss. Theoretically, larger 

window size brings in complex graphs and stronger geometric constraints, which lead to 

better performance. However, it also demands larger computational resources. There-

fore, due to the computing resource limitation, a balance has to be made between effi-

ciency and accuracy. 

To find the proper window size, three groups of windows lengths were set. The 

first group of window lengths were randomly selected between 5 and 10, the second 

group of window lengths ranged from 15–20, and the third group of window lengths 

ranged from 25–30. Sequences 00 and 08 were used to train the network, and sequences 

09 and 10 were used for validation. The maximum iteration was 160 epochs. The rest of 

the parameters were set the same as previous experiments. 

ATE, 𝑇𝑒𝑟𝑟 , 𝑅𝑒𝑟𝑟 are used to report the performance and the results are shown in 

Figure 7. The abscissa axes 0–5, 45–50, 75–80, and 115–120 represent that the best model 

among the intervals is selected for comparison to avoid accidental error factors. It can be 

seen from Figure 7 that the larger window size (length (25–30)) obtains the best perfor-

mance with the lowest values in terms of ATE, 𝑇𝑒𝑟𝑟 , and 𝑅𝑒𝑟𝑟 when the model is fully 

trained. Another interesting fact is that the network converges more quickly with small-

er window size than the larger window size since the window size 5–10 obtains better 

performance than the other two with fewer iterations. 

Figure 6. The trajectories of sequences 11 and 15. (a) Sequence 11; (b) Sequence 15.

5. Discussion
5.1. Effect of Different Sliding Window Sizes

The sliding window size is a key parameter for graph loss. Theoretically, larger
window size brings in complex graphs and stronger geometric constraints, which lead to
better performance. However, it also demands larger computational resources. Therefore,
due to the computing resource limitation, a balance has to be made between efficiency
and accuracy.

To find the proper window size, three groups of windows lengths were set. The first
group of window lengths were randomly selected between 5 and 10, the second group of
window lengths ranged from 15–20, and the third group of window lengths ranged from
25–30. Sequences 00 and 08 were used to train the network, and sequences 09 and 10 were
used for validation. The maximum iteration was 160 epochs. The rest of the parameters
were set the same as previous experiments.

ATE, Terr, Rerr are used to report the performance and the results are shown in Figure 7.
The abscissa axes 0–5, 45–50, 75–80, and 115–120 represent that the best model among the
intervals is selected for comparison to avoid accidental error factors. It can be seen from
Figure 7 that the larger window size (length (25–30)) obtains the best performance with
the lowest values in terms of ATE, Terr, and Rerr when the model is fully trained. Another
interesting fact is that the network converges more quickly with smaller window size than
the larger window size since the window size 5–10 obtains better performance than the
other two with fewer iterations.



Remote Sens. 2022, 14, 1854 15 of 19

Figure 7. Analysis of effects on different sliding window sizes. (a) ATE; (b) Terr; (c) Rerr.

5.2. Effect of Sequence Overlap

Given fixed window size, two sequences strategies are compared, i.e. with and without
overlapping. Figure 8 shows the general idea of with and without the overlapping strategy.
Tables 5 and 6 show the performance of the model trained with and without overlap data
augmentation strategy for training sequences (00,08) and test sequences (09,10), respectively.
It can be seen that using the overlapping strategy can make the training more stable and
improve the prediction accuracy.

Figure 8. Demonstration of sequence overlap.



Remote Sens. 2022, 14, 1854 16 of 19

Table 5. Comparison of overlap and no-overlap on train sequences.

00 08

Terr Rerr ATE RPE(m) RPE(◦) Terr Rerr ATE RPE(m) RPE(◦)

Overlap 2.91 1.34 56.33 0.017 0.210 4.2 1.84 149.32 0.017 0.166

No-overlap 9.51 4.37 241.77 0.020 0.215 9.74 4.21 321.38 0.020 0.171

Table 6. Comparison of overlap and no-overlap on test sequences.

09 10

Terr Rerr ATE RPE(m) RPE(◦) Terr Rerr ATE RPE(m) RPE(◦)

Overlap 13.77 4.47 111.2 0.15 0.215 13.3 5.82 80.64 0.129 0.267

No-overlap 15.58 5.49 208.56 0.138 0.201 23.03 9.57 266.30 0.121 0.244

Figure 9 shows that the model trained with the overlapping strategy of data augmenta-
tion tends to be smoother rather than oscillating both in the train and test dataset sequences.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 19 
 

 

Table 5. Comparison of overlap and no-overlap on train sequences. 

 
00 08 

𝑻𝒆𝒓𝒓 𝑹𝒆𝒓𝒓 ATE RPE(m) RPE(°) 𝑻𝒆𝒓𝒓 𝑹𝒆𝒓𝒓 ATE RPE(m) RPE(°) 

Overlap 2.91 1.34 56.33 0.017 0.210 4.2 1.84 149.32 0.017 0.166 

No-overlap 9.51 4.37 241.77 0.020 0.215 9.74 4.21 321.38 0.020 0.171 

Table 6. Comparison of overlap and no-overlap on test sequences. 

 
09 10 

𝑻𝒆𝒓𝒓 𝑹𝒆𝒓𝒓 ATE RPE(m) RPE(°) 𝑻𝒆𝒓𝒓 𝑹𝒆𝒓𝒓 ATE RPE(m) RPE(°) 

Overlap 13.77 4.47 111.2 0.15 0.215 13.3 5.82 80.64 0.129 0.267 

No-overlap 15.58 5.49 208.56 0.138 0.201 23.03 9.57 266.30 0.121 0.244 

Figure 9 shows that the model trained with the overlapping strategy of data aug-

mentation tends to be smoother rather than oscillating both in the train and test dataset 

sequences. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Comparison of sequence overlap and no overlap trajectories. (a) Sequence 00; (b) Se-

quence 08; (c) Sequence 09; (d) Sequence 10. 
Figure 9. Comparison of sequence overlap and no overlap trajectories. (a) Sequence 00; (b) Sequence
08; (c) Sequence 09; (d) Sequence 10.



Remote Sens. 2022, 14, 1854 17 of 19

6. Conclusions

In this paper, two novel losses based on graph and geodesic distance constraints
are proposed for deep learning-based visual odometry, which exploits the relative pose
constraints from image sequences. The experiments show that the graph loss outperforms
the traditional loss designed based on the consecutive images. The graph loss not only
considers the relative pose loss of consecutive images, but also the relative pose of non-
consecutive images. The relative pose of non-consecutive images is not directly predicted
but computed from the relative pose of the consecutive images. The geodesic rotation
loss is constructed by the geodesic distance and the model regresses Lie algebra so(3) (3D
vector). Lie algebra is introduced into the loss component of the deep learning-based poses
estimation methods. Due to eliminating the self-constraint of the regression variable, the
loss module can reduce the difficulty of training the poses regression. This allows a robust
and stable convergence, and further improves the performance of deep learning-based
visual odometry.

Comparative experiments are conducted on the KITTI odometry dataset. The KITTI
odometry dataset contains different traffic scenes. The obtained results validate that the
proposed method improves the important loss components in deep learning-based visual
odometry methods. The proposed loss components can be easily integrated into other deep
learning-based pose estimation tasks. The proposed method is also compared with the
latest methods to verify its effectiveness. And the source code and weight can be found at
https://github.com/fangxu622/Deep-Graph-VO (accessed on 1 March 2022).

Finally, the effects of different sliding window sizes are analyzed. The analysis shows
that the large window size provides better performance, and a suitable sliding window size
is obtained to achieve a balance between efficiency and accuracy. In order to explore the
effect of overlapping strategies, two strategies are compared: with/without overlapping.
It is found that sequence with overlapping shows better performance. In the future, the
authors plan to fuse multiple sensors observation with Kalman filtering or factor graph
optimization using deep learning techniques to improve the performance of learning-based
visual odometry.

Author Contributions: Conceptualization, X.F. and Q.L. (Qing Li); methodology, X.F. and Q.L.
(Qing Li); software, X.F. and K.D.; validation, Q.L. (Qing Li) and K.D.; writing—original draft
preparation, X.F. and K.D.; writing—review and editing, X.F. and K.D.; visualization, Q.L. (Qing Li);
supervision, Q.L. (Qingquan Li) and J.Z.; project administration, Q.L. (Qingquan Li) and J.Z.; funding
acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Shenzhen Institute of Artificial Intelligence and
Robotics for Society, in part by the Science and Research Service Project of Shenzhen Metro Group
Co., Ltd. under Grant STJS-DT413-KY002/2021. This work was also supported in part by the China
Postdoctoral Science Foundation (Grant No. 2021M702232). This work was also supported in part
by the Basic and Applied Basic Research Funding Program of Guangdong Province of China (Grant
No. 2019A1515110303).

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here: http:
//www.cvlibs.net/datasets/kitti/eval_odometry.php (accessed on 1 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Scaramuzza, D.; Fraundorfer, F. Visual Odometry [Tutorial]. IEEE Robot. Autom. Mag. 2011, 18, 80–92. [CrossRef]
2. Nister, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 27 June–2 July 2004; Volume 1, pp. 652–659. [CrossRef]
3. Weiss, S.; Scaramuzza, D.; Siegwart, R. Monocular-SLAM–based navigation for autonomous micro helicopters in GPS-denied

environments. J. Field Robot. 2011, 28, 854–874. [CrossRef]
4. Kröse, B.J.; Vlassis, N.; Bunschoten, R.; Motomura, Y. A probabilistic model for appearance-based robot localization. Image Vis.

Comput. 2001, 19, 381–391. [CrossRef]

https://github.com/fangxu622/Deep-Graph-VO
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://doi.org/10.1109/MRA.2011.943233
http://doi.org/10.1109/CVPR.2004.1315094
http://doi.org/10.1002/rob.20412
http://doi.org/10.1016/S0262-8856(00)00086-X


Remote Sens. 2022, 14, 1854 18 of 19

5. Wolf, J.; Burgard, W.; Burkhardt, H. Robust vision-based localization by combining an image-retrieval system with Monte Carlo
localization. IEEE Trans. Robot. 2005, 21, 208–216. [CrossRef]

6. Wiseman, Y. Ancillary ultrasonic rangefinder for autonomous vehicles. Int. J. Secur. Its Appl. 2018, 12, 49–58. [CrossRef]
7. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional

Neural Networks. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 2043–2050. [CrossRef]

8. Saputra, M.R.U.; de Gusmao, P.P.; Wang, S.; Markham, A.; Trigoni, N. Learning monocular visual odometry through geometry-
aware curriculum learning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 20–24 May 2019; pp. 3549–3555.

9. Zhan, H.; Weerasekera, C.S.; Bian, J.-W.; Reid, I. Visual odometry revisited: What should be learnt? In Proceedings of the 2020
IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4203–4210.

10. Clark, R.; Wang, S.; Markham, A.; Trigoni, N.; Wen, H. Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 6856–6864.

11. Li, Q.; Zhu, J.; Cao, R.; Sun, K.; Garibaldi, J.M.; Li, Q.; Liu, B.; Qiu, G. Relative Geometry-Aware Siamese Neural Network for
6DOF Camera Relocalization. Neurocomputing 2021, 426, 134–146. [CrossRef]

12. Xue, F.; Wu, X.; Cai, S.; Wang, J. Learning Multi-View Camera Relocalization With Graph Neural Networks. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 11372–11381. [CrossRef]

13. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
14. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
15. Kumar, G.; Bhatia, P.K. A detailed review of feature extraction in image processing systems. In Proceedings of the 2014 Fourth

International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 8–9 February 2014; pp. 5–12.
16. Kummerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2O: A general framework for graph optimization. In Proceed-

ings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613.
[CrossRef]

17. Dellaert, F.; Kaess, M. Factor Graphs for Robot Perception. Found. Trends Robot. 2017, 6, 1–139. [CrossRef]
18. Jiang, S.; Jiang, C.; Jiang, W. Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools.

ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [CrossRef]
19. Ji, S.; Qin, Z.; Shan, J.; Lu, M. Panoramic SLAM from a multiple fisheye camera rig. ISPRS J. Photogramm. Remote Sens. 2020, 159,

169–183. [CrossRef]
20. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34,

1004–1020. [CrossRef]
21. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]
22. Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An open-source library for real-time metric-semantic localization

and mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France,
31 May–31 August 2020; pp. 1689–1696.

23. Zhang, G. Towards Optimal 3D Reconstruction and Semantic Mapping. Ph.D. Thesis, University of California, Merced, CA,
USA, 2021.

24. Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the European Conference on
Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 430–443.

25. Bay, H.; Ess, A.; Tuytelaars, T.; van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359.
[CrossRef]

26. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary features. In Proceedings of the
European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany,
2010; pp. 778–792.

27. Harris, C.; Stephens, M. A combined corner and edge detector. Alvey Vis. Conf. 1988, 15, 10–5244.
28. Aguiar, A.; Sousa, A.; Santos, F.N.d.; Oliveira, M. Monocular Visual Odometry Benchmarking and Turn Performance Optimization.

In Proceedings of the 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Porto,
Portugal, 24–26 April 2019; pp. 1–6. [CrossRef]

29. Geiger, A.; Ziegler, J.; Stiller, C. StereoScan: Dense 3d reconstruction in real-time. In Proceedings of the 2011 IEEE Intelligent
Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 963–968. [CrossRef]

30. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

31. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Proceedings of the Computer Vision—ECCV
2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8690,
pp. 834–849. [CrossRef]

32. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [CrossRef]

http://doi.org/10.1109/TRO.2004.835453
http://doi.org/10.14257/ijsia.2018.12.5.05
http://doi.org/10.1109/ICRA.2017.7989236
http://doi.org/10.1016/j.neucom.2020.09.071
http://doi.org/10.1109/CVPR42600.2020.01139
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/34.888718
http://doi.org/10.1109/ICRA.2011.5979949
http://doi.org/10.1561/2300000043
http://doi.org/10.1016/j.isprsjprs.2020.04.016
http://doi.org/10.1016/j.isprsjprs.2019.11.014
http://doi.org/10.1109/TRO.2018.2853729
http://doi.org/10.1109/TRO.2021.3075644
http://doi.org/10.1016/j.cviu.2007.09.014
http://doi.org/10.1109/ICARSC.2019.8733633
http://doi.org/10.1109/IVS.2011.5940405
http://doi.org/10.1109/TRO.2017.2705103
http://doi.org/10.1007/978-3-319-10605-2_54
http://doi.org/10.1109/TPAMI.2017.2658577


Remote Sens. 2022, 14, 1854 19 of 19

33. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

34. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. Available online: http://arxiv.
org/abs/1804.02767 (accessed on 21 April 2021).

35. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towar ds Real-Time Object Detection with Region Proposal Networks. arXiv
2016, arXiv:1506.01497. Available online: http://arxiv.org/abs/1506.01497 (accessed on 19 February 2021). [CrossRef]

36. Kwon, H.; Kim, Y. BlindNet backdoor: Attack on deep neural network using blind watermark. Multimed. Tools Appl. 2022, 81,
6217–6234. [CrossRef]

37. Kendall, A.; Cipolla, R. Geometric Loss Functions for Camera Pose Regression With Deep Learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

38. Konda, K.R.; Memisevic, R. Learning visual odometry with a convolutional network. In Proceedings of the VISAPP (1), Berlin,
Germany, 11–14 March 2015; pp. 486–490.

39. Vu, T.; van Nguyen, C.; Pham, T.X.; Luu, T.M.; Yoo, C.D. Fast and efficient image quality enhancement via desubpixel convolutional
neural networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany,
8–14 September 2018.

40. Jeon, M.; Jeong, Y.-S. Compact and Accurate Scene Text Detector. Appl. Sci. 2020, 10, 2096. [CrossRef]
41. Kendall, A.; Grimes, M.; Cipolla, R. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. In

Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 2938–2946. [CrossRef]

42. Zhou, L.; Luo, Z.; Shen, T.; Zhang, J.; Zhen, M.; Yao, Y.; Fang, T.; Quan, L. KFNet: Learning Temporal Camera Relocalization
using Kalman Filtering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 4919–4928.

43. Li, Q.; Zhu, J.; Liu, J.; Cao, R.; Fu, H.; Garibaldi, J.M.; Li, Q.; Lin, B.; Qiu, G. 3D map-guided single indoor image localization
refinement. ISPRS J. Photogramm. Remote Sens. 2020, 161, 13–26. [CrossRef]

44. Costante, G.; Mancini, M.; Valigi, P.; Ciarfuglia, T.A. Exploring Representation Learning With CNNs for Frame-to-Frame
Ego-Motion Estimation. IEEE Robot. Autom. Lett. 2016, 1, 18–25. [CrossRef]

45. Muller, P.; Savakis, A. Flowdometry: An optical flow and deep learning based approach to visual odometry. In Proceedings
of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017;
pp. 624–631.

46. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning
optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 2758–2766.

47. Wang, S.; Clark, R.; Wen, H.; Trigoni, N. End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural
networks. Int. J. Robot. Res. 2018, 37, 513–542. [CrossRef]

48. Bian, J.; Li, Z.; Wang, N.; Zhan, H.; Shen, C.; Cheng, M.M.; Reid, I. Unsupervised scale-consistent depth and ego-motion learning
from monocular video. Adv. Neural Inf. Process. Syst. 2019, 32, 35–45.

49. Zhao, C.; Tang, Y.; Sun, Q.; Vasilakos, A.V. Deep Direct Visual Odometry. IEEE Trans. Intell. Transp. Syst. 2021, 1–10. [CrossRef]
50. Clark, R.; Wang, S.; Wen, H.; Markham, A.; Trigoni, N. VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning

Problem. arXiv 2017, arXiv:1701.08376.
51. Liu, Q.; Li, R.; Hu, H.; Gu, D. Using Unsupervised Deep Learning Technique for Monocular Visual Odometry. IEEE Access 2019,

7, 18076–18088. [CrossRef]
52. Jiao, J.; Jiao, J.; Mo, Y.; Liu, W.; Deng, Z. Magicvo: End-to-end monocular visual odometry through deep bi-directional recurrent

convolutional neural network. arXiv 2018, arXiv:1811.10964.
53. Fang, Q.; Hu, T. Euler angles based loss function for camera relocalization with Deep learning. In Proceedings of the 2018 IEEE

8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin,
China, 19–23 July 2018.

54. Li, D.; Dunson, D.B. Geodesic Distance Estimation with Spherelets. arXiv 2020, arXiv:1907.00296. Available online: http:
//arxiv.org/abs/1907.00296 (accessed on 28 January 2022).

http://doi.org/10.1145/3065386
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1007/s11042-021-11135-0
http://doi.org/10.3390/app10062096
http://doi.org/10.1109/ICCV.2015.336
http://doi.org/10.1016/j.isprsjprs.2020.01.008
http://doi.org/10.1109/LRA.2015.2505717
http://doi.org/10.1177/0278364917734298
http://doi.org/10.1109/TITS.2021.3071886
http://doi.org/10.1109/ACCESS.2019.2896988
http://arxiv.org/abs/1907.00296
http://arxiv.org/abs/1907.00296

	Introduction 
	Related Work 
	Geometry-Based Methods 
	Deep Learning-Based Methods 

	Deep Learning-Based Visual Odometry with Graph and Geodesic Distance Constraints 
	Deep Learning-Based Visual Odometry 
	Network Architecture 
	Graph Loss 
	Geodesic Rotation Loss 

	Results 
	Dataset 
	Experiment on Dataset with Ground Truth 
	Experiment on Dataset without Ground Truth 

	Discussion 
	Effect of Different Sliding Window Sizes 
	Effect of Sequence Overlap 

	Conclusions 
	References

