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Abstract: Semantic segmentation by using remote sensing images is an efficient method for agri-
cultural crop classification. Recent solutions in crop segmentation are mainly deep-learning-based
methods, including two mainstream architectures: Convolutional Neural Networks (CNNs) and
Transformer. However, these two architectures are not sufficiently good for the crop segmentation
task due to the following three reasons. First, the ultra-high-resolution images need to be cut into
small patches before processing, which leads to the incomplete structure of different categories’
edges. Second, because of the deficiency of global information, categories inside the crop field may
be wrongly classified. Third, to restore complete images, the patches need to be spliced together,
causing the edge artifacts and small misclassified objects and holes. Therefore, we proposed a novel
architecture named the Coupled CNN and Transformer Network (CCTNet), which combines the
local details (e.g., edge and texture) by the CNN and global context by Transformer to cope with the
aforementioned problems. In particular, two modules, namely the Light Adaptive Fusion Module
(LAFM) and the Coupled Attention Fusion Module (CAFM), are also designed to efficiently fuse
these advantages. Meanwhile, three effective methods named Overlapping Sliding Window (OSW),
Testing Time Augmentation (TTA), and Post-Processing (PP) are proposed to remove small objects
and holes embedded in the inference stage and restore complete images. The experimental results
evaluated on the Barley Remote Sensing Dataset present that the CCTNet outperformed the sin-
gle CNN or Transformer methods, achieving 72.97% mean Intersection over Union (mIoU) scores.
As a consequence, it is believed that the proposed CCTNet can be a competitive method for crop
segmentation by remote sensing images.

Keywords: semantic segmentation; agricultural research; remote sensing; deep learning; CNN;
Transformer

1. Introduction

With the development of remote sensing technology, sensing images generated from
satellite and air vehicles are widely used in land-use mapping, urban resources manage-
ment, and agricultural research [1–3]. The world population is anticipated to be over nine
billion by the year 2050, which will cause a rapid escalation of food demand [2,4]. There-
fore, the agricultural industry needs to be upgraded, becoming intelligent and automated
to meet the needs of increasing food demand. In this paper, we completed the task of
semantic segmentation of crop growth images by studying high-resolution agricultural
remote sensing images to obtain crop growth information, which can effectively improve
the level of agricultural intelligence.

Recently, as a method of image processing, deep learning has been widely used in
pixel-level classification (e.g., semantic segmentation) tasks with good results. In particular,
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the CNN and Transformer based on deep learning methods have attracted more and more
attention in crop segmentation tasks due to their excellent performance. To fully realize the
potentials of the CNN and Transformer, three problems in agricultural segmentation should
be solved. It can be seen from Figure 1, first, that the ultra-high-resolution images need to
be cut into small patches because of the memory limitation, which leads to the deficiency
of global information and the incomplete structure of the object edge. Second, the crop
field and the inside soils are both labeled to the crop category, causing the misclassified
prediction of the crop field due to the obvious different characteristics of crop and soils.
Third, to obtain the complete image, the patches need to be spliced together, which usually
causes edge artifacts and small misclassified objects and holes [5,6]. To cope with the
aforementioned three problems and further achieve good segmentation performance,
the global context is needed to help the incomplete patches obtain more surrounding
information, hence improving the object edge [7]. The local details such as color and texture
of the categories are meanwhile needed to help with finer area division. Finally, some
well-designed methods are required when restoring the complete images.

The CNN can obtain local information well, but lacks global information caused by the
limited receptive field of convolution. FCN [8] and ResNet [9] generate a larger receptive
field through continuous stacked convolution layers. Inception [10–13] and AlexNet [14]
obtain more neighborhood information through a larger convolution kernel. DANet [15]
and CBAM [16] establish global relations by introducing the attention mechanism. Both
methods could obtain global information through the attention mechanism, but this dam-
ages the CNN’s original local information, making the acquired global information very
limited. Different from CNN-based methods, Transformer can obtain sufficient global
information, but lacks local information because of its entirely attention-mechanism-based
architecture. ViT [17] is the first visual Transformer to design position encoding, which
can supplement the lost position information caused by serialized input. Based on ViT,
SETR [18] introduces a CNN decoder and successfully applies Transformer in the semantic
segmentation task. ResT [19], VOLO [20], BEIT [21], Swin [22], and CSwin [23] adopt a
hierarchical structure similar to the CNN for achieving local information and obtain SOTA
performance in many semantic segmentation datasets. It is observed that local information
is also very important in the Transformer structure, but the local information generated by
the attention module is not as effective as the local feature obtained by the CNN.

According to the aforementioned literature, the CNN lacks global information, but
has sufficient local information, and Transformer lacks local information, but has sufficient
global information. Therefore, we considered combining the respective advantages of the
CNN and Transformer and further propose the Coupled CNN and Transformer Network
(CCTNet) to combine the features from the CNN and Transformer branches in this paper.
The CCTNet has two independent branches of the CNN and Transformer to retain the
advantages of their respective structures. However, it is very difficult to fuse the advantages
of the two different architectures. Hence, we propose the Light Adaptive Fusion Module
(LAFM) and the Coupled Attention Fusion Module (CAFM) to effectively fuse the features
of these two branches. In addition, in order to learn better features of the CNN, Transformer,
and the fusion branches, we used three supervised loss functions, respectively. Furthermore,
in the inference stage of the model, we propose three methods to improve the performance
of the patches, including Overlapping Sliding Window (OSW), Testing Time Augmentation
(TTA), and the Post Processing (PP) method of correcting misclassified areas especially for
small objects and holes. The code is available at https://github.com/zyxu1996/CCTNet,
accessed on 14 April 2022.

To be clearer, the main contributions of this work are summarized as follows:

• We propose the Coupled CNN and Transformer Network (CCTNet) to combine
the local modeling advantage of the CNN and the global modeling advantage of
Transformer to achieve SOTA performance on the Barley Remote Sensing Dataset.

https://github.com/zyxu1996/CCTNet
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• The Light Adaptive Fusion Module (LAFM) and the Coupled Attention Fusion Mod-
ule (CAFM) are proposed to efficiently fuse the dual-branch features of the CNN
and Transformer.

• Three methods, namely Overlapping Sliding Window (OSW), Testing Time Augmen-
tation (TTA), and the Post-Processing (PP) method of correcting misclassified areas
are introduced to better restore complete crop remote sensing images during the
inference stage.

Figure 1. Ultra-high-resolution crop remote sensing images.

2. Related Work

In this section, some related works regarding State-Of-The-Art (SOTA) remote sens-
ing applications and the model designs are introduced, including CNN-based models,
Transformer-based models, and the fusion methods of the CNN and Transformer. These
methods provide us with experience in solving global and local information deficiency in
crop remote sensing segmentation.

CNN-based models for local information extraction: The conventional FCN [8]
model consists of convolution layers and pooling layers, where the convolution operation
extracts local features and the pooling operation downsamples the feature size to obtain
compact semantic representations. However, it is difficult to obtain semantic representation
while preserving local details, since the downsampling operation damages the spatial
information [24]. To retrieve the local information, UNet [25] proposes the skip-connection
to fuse shallow layers, achieving good performance in the local details. HRNet [26,27]
maintains high-resolution representations throughout the process to avoid the deficiency
of local information.

To obtain global context information, DeepLab [28,29] and PSPNet [30] propose multi-
scale pyramid-based fusion modules to aggregate global context from different receptive
fields. Lin et al. proposed FPN [31] to aggregate features of different scales step by
step from top to bottom and assign different scale objects to different resolution feature
maps. Inspired by the substantial ability of attention mechanisms at modeling global
pixels’ relations, DANet [15] designs a dual-attention mechanism of the channel and
spatial dimensions to obtain a multi-dimensional global context. HRCNet [32] proposes
a lightweight dual-attention module to enhance the global information extraction ability,
successfully applying it to the remote sensing image segmentation tasks and achieving
SOTA performance.

Despite its advantages in local feature extraction, the ability of the CNN to capture
global information is still insufficient, which is very important for crop remote sensing
segmentation. Although DeepLab [28,29] and PSPNet [30] expand the receptive field to
obtain the multi-scale global context, the global information is still limited to a local region.
The attention mechanism provides a good pattern for modeling global information, but
is limited by the few module numbers and huge computational burden. Consequently, a
pure attention-based lightweight architecture is needed to achieve sufficient global infor-
mation extraction.

Transformer-based models for global information extraction: Transformer is a pure
attention-based architecture with powerful representation capabilities of global relations,
but is weak at obtaining local details [33]. Vision Transformer [17] is the first work to apply
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the Transformer structure to visual tasks by splitting images into patches to meet the input
format of Transformer. SETR [18] improved on ViT, applying a CNN decoder to obtain the
segmentation results, successfully applying Transformer in semantic segmentation tasks
and achieving SOTA performance. Although the ViT architecture explores a feasible way
to apply Transformer in visual tasks, it ignores the local representations.

To obtain local representations in the Transformer architecture, ResT [19] designs a
patch embedding layer to obtain hierarchical feature representations. VOLO [20], Swin [22],
and CSwin [23] adopt a local window attention mechanism to obtain local representations
such as the convolution operation. The above methods continuously reach new SOTA
performance on the semantic segmentation tasks because of the multi-stage architectures,
such as ResNet [9], which are suitable to obtain multi-resolution features [34]. Such
architectures provide Transformer with local information, but they are not as good as the
CNN. Therefore, the fusion of the CNN and Transformer is intuitively aware and becomes
an important research direction.

CNN and Transformer fusion methods: Fusing the CNN and Transformer is intended
to combine the superiority of each method, such as the local information extraction ability
of the CNN and the global information extraction ability of Transformer. However, it is
hard to fuse both superiorities. Therefore, Conformer [35] adopts a parallel structure to
exchange features from the local and global branches to maximize the retention of the
local and global representations. TransFuse [36] incorporates the multi-level features of
the CNN and Transformer via the BiFusion module, so that both the global dependencies
and the low-level spatial details can be effectively captured. WiCoNet [37] incorporates a
large-scale context branch and a local branch to fuse global and local information, achieving
good performance on the BLU, GID, and Potsdam remote sensing datasets. Besides the
aforementioned parallel fusion methods, the serial fusion methods can also be used to
fuse the CNN and Transformer. Xiao et al. [38] revealed that early convolutions can
help Transformers learn better. BoTNet [39] proposes a serial architecture by replacing
the spatial convolutions with global self-attention, achieving a strong performance while
being highly efficient. CoAtNet [40] is proposed to combine the large model capacity of
Transformer and the right inductive bias of the CNN, which achieves the same scores as
ViT-huge with 23× fewer data. ConvTransformer [41] was first proposed for video frame
sequence learning and video frame synthesis, and it applies a convolutional self-attention
layer to encode the sequential dependence and uses a Transformer decoder to capture
long-term dependence.

Although the aforementioned fusion methods achieve good performance, there are
still some problems: (a) they are trained from scratch; hence, many existing models and
pretrained weights cannot be used; (b) this integral architecture will damage the respective
characteristics of the CNN and Transformer. To avoid the formerly mentioned deficiencies,
we propose a new CNN and Transformer fusion and training method called the CCTNet.
The CCTNet fuses the CNN and Transformer branches to generate a new branch, and the
three branches are trained with different decoders and loss functions, so that they can keep
their respective superiority. In the meantime, the CNN branch and Transformer branch can
be flexibly replaced by other better architectures. To achieve better fusion performance, we
also employed the LAFM and the CAFM to effectively fuse the local and global features.
With the support of the above designs, the CCTNet achieved the best performance on the
Barley Remote Sensing Dataset. Table 1 provides a summary of the related work, including
the pure CNN methods, the pure Transformer methods, and the CNN and Transformer
fusion methods.
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Table 1. Summary of related work.

Pure CNN Pure Transformer CNN and Transformer Fusion

FCN [8], ResNet [9], UNet [25] ViT [17], SETR [18] Conformer [35], TransFuse [36]
HRNet [26], DeepLab [28], PSPNet [30] ResT [19], VOLO [20], BEIT [21] WiCoNet [37], Xiao et al. [38], BoTNet [39]

FPN [31], DANet [15], HRCNet [32] Swin [22], CSwin [23] CoAtNet [40], ConvTransformer [41]

3. Methods

This section first introduces the classic CNN model ResNet [9] and the recent Trans-
former model CSwin Transformer [23]. After that, the framework of Coupled CNN and
Transformer Network (CCTNet) is proposed and the CNN and Transformer fusion modules
(LAFM and CAFM) are analyzed. Finally, three auxiliary loss functions are designed to
improve the performance of the CNN branch, Transformer branch, and fusion branch,
respectively. The detailed description of each part is shown below.

3.1. The CNN-Based ResNet

The Residual Network (ResNet) [9] is proposed to solve the degradation of very deep
CNN models. It uses the residual connection to connect different convolution layers, so that
the feature information from the shallow layers can be propagated to the deep layers. The
specific structure of ResNet is shown in Figure 2. Given an input of H×W× 3 (3 represents
the RGB channel), the resolution is reduced to H

4 ×
W
4 after the stem (the combination

of convolution, Batch Normalization (BN [11]), Rectified Linear Unit (ReLU), and max
pool), where the channel dimension becomes 64. Then, the features pass through four
stages to generate the C1, C2, C3, and C4 features. The resolutions of the four features are
successively reduced by half, respectively 1

4 , 1
8 , 1

16 , and 1
32 , and the channels sequentially

increase to C, 2C, 4C, and 8C. Each stage contains several residual blocks (also called
ResNet blocks); the input feature is added to the main branch output feature via a shortcut,
followed by a ReLU activation function to enhance the non-linearity of the model. At the
first block of each stage, there will be a downsampling convolution and BN in the residual
connection to downsample the features. The design of bottleneck architectures and residual
connections makes the training process easier. To adjust the channel dimensions and
block numbers of ResNet, we could obtain four model sizes named ResNet-18, ResNet-34,
ResNet-50, and ResNet-101. Figure 2 displays the ResNet-50 model with 3, 4, 6, and 3
blocks in each stage. ResNet was chosen as the CNN branch because it is easy to scale to
different model sizes for different task requirements. Furthermore, the multi-scale output
features of C1, C2, C3, and C4 are suitable for dealing with multi-scale objects.

𝑯𝑯×𝑾𝑾×3

ResNet
Block

Stage1
×3

𝑯𝑯
𝟒𝟒
×𝑾𝑾
𝟒𝟒
×C
C1 

𝑯𝑯
𝟖𝟖
×𝑾𝑾
𝟖𝟖
×2C

𝑯𝑯
𝟏𝟏𝟏𝟏
× 𝑾𝑾
𝟏𝟏𝟏𝟏
×4C

C2 C3 C4 

𝑯𝑯
𝟑𝟑𝟑𝟑
× 𝑾𝑾
𝟑𝟑𝟑𝟑
×8C

Co
nv

M
ax

 P
oo

l

BN
 +

 R
eL

U

ResNet
Block

Stage2
×4

ResNet
Block

Stage3
×6

ResNet
Block

Stage4
×3

Element-wise sum

Residual connection

Downsampling

BN
 +

 R
eL

U

Conv 1×1

Co
nv

3×
3

BN Re
LU

Co
nv

 1
×

1

BN
 +

 R
eL

U

Co
nv

1×
1

BN

ResNet Block

Figure 2. The architecture of ResNet-50.
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3.2. Basic CSwin Transformer

The structure of CSwin Transformer [23] is shown in Figure 3. First, through convo-
lution token embedding (the convolution kernel is 7× 7, and the stride is 4), the input of
H ×W × 3 (3 represents the RGB channel) is divided into 4× 4 windows of size H

4 ×
W
4 ,

for extracting the local features and location information of each window, then mapping
Channel 3 to C. The CSwin Transformer block consists of Layer Normalization (LN), Cross-
Shaped Window Self-Attention (CSWSA), and Multilayer Perceptron (MLP). LN normalizes
the features to make the training process more stable; CSWSA is used to calculate the at-
tention relation between pixels; MLP contains a large number of learnable parameters for
recording the learned relation coefficient. After the CSwin Transformer block extracting
global information, then the convolution with stride 2 (Conv S2) will downsample the
features to half and expand the channels to double. For example, after the Conv S2 behind
Stage1, the shape of the feature is changed from H

4 ×
W
4 × C to H

8 ×
W
8 × 2C. Each Stage

outputs features T1, T2, T3, and T4 in turn, with resolutions of H
4 ×

W
4 , H

8 ×
W
8 , H

16 ×
W
16 ,

and H
32 ×

W
32 and channels of C, 2C, 4C, and 8C. These features contain information at

different scales and can be well adapted to downstream semantic segmentation tasks. By
adjusting the number of blocks in each stage, four scales of CSwin Transformer [23] can be
formed, namely CSwin-Tiny, CSwin-Small, CSwin-Base, and CSwin-Large, and the feature
extraction capability is improved in turn. CSwin Transformer is proven to be powerful and
efficient, and the multi-scale outputs can also meet the segmentation task requirements;
hence, it was chosen as the Transformer branch.

To explain the special design of CSWSA, the commonly used full self-attention is
shown in Figure 4a. To obtain the contextual relationship of this red pixel, it is necessary
to calculate the attention relations of the entire image, so the computational complexity is
the quadratic complexity of the input image size. However, in Figure 4b, CSWSA adopts
a special self-attention design, which splits a cross area into two strip-shaped areas in
the horizontal and vertical directions and controls the width of the strip by adjusting
the value of SW. Self-attention is calculated in each of these two strip areas, and the
positional information is encoded by Locally Enhanced Positional Encoding (LEPE, a
3× 3 convolution). The features enhanced by LEPE are added to the generated attention
features through a residual connection. After that, the Concat operation concatenates
the results in the horizontal and vertical directions to generate cross-shaped attention
features. Compared to full self-attention, the cross-shaped attention design reduces the
computational costs and the LEPE enhances the local information, which shows that
CSWSA is a more efficient design.
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Figure 3. The architecture of CSwin Transformer.
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LEPE
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(b) Cross-Shaped
Window Self-Attention

(a) Full Self-Attention

Figure 4. Explanation of the cross-shaped window self-attention.

3.3. Framework of the Proposed CCTNet

As shown in Figure 5, the CCTNet is divided into four parts, namely the CNN branch,
Transformer branch, fusion module, and loss function. The CNN branch generates four
features C1, C2, C3, and C4, where the resolutions are 1

4 , 1
8 , 1

16 , and 1
32 of the input resolution,

respectively. The number of channels increases in multiples in turn. The Transformer branch
generates four features T1, T2, T3, and T4. The resolution is the same as the CNN, and
the channel numbers are also doubled. The CNN branch contains richer local information,
and the Transformer branch contains more global information. After obtaining the C
and T features, first, the LAFM is used to fuse the features of C1 and T1 and C2 and T2,
because the LAFM can reassign weights to the fused features while preserving the local
information of the CNN branch and the global information of the Transformer branch to
the greatest extent. Moreover, the LAFM is a lightweight design; hence, it is applied in
shallow features without any burden. The CAFM is a feature reconstruction module based
on the attention mechanism, which can select the favorable information from the CNN to
supplement Transformer, as well as select the favorable information from Transformer to
supplement the CNN. Then, the CAFM fuses the features of C3 and T3 and C4 and T4. The
mutual promotion helps the fused CT1, CT2, CT3, and CT4 features to concurrently gain
the advantages of the CNN and Transformer branches. Finally, two auxiliary loss functions
(LossC and LossT) are used to supervise the CNN and Transformer branches, so that both
branches can learn good feature representations, thereby improving the fused features.

For the fusion branch, we adopted an auxiliary loss (LossCT3) to supervise the feature
learning of CT3 and another main loss function (LossCT) to supervise the feature learning
of CT1, CT2, CT3, and CT4. As displayed in Figure 6, the decoders of LossC, LossT , and
LossCT are Multi-Scale Fusion decoders (MSF decoders) with four resolution inputs; the
decoder of LossCT3 is a Single-Scale decoder (SS decoder) with input CT3.

𝐿𝑜𝑠𝑠𝐶𝑇

𝐿𝑜𝑠𝑠𝐶𝑇3

𝐿𝑜𝑠𝑠𝑇

𝐿𝑜𝑠𝑠𝐶

LAFM CAFM

ResNet

CSwin

MSF Decoder

MSF Decoder

MSF Decoder

SS Decoder

T1 T2 T3 T4

C1 C2 C3 C4

CT1 CT2 CT3 CT4

Prediction

Prediction

Ground truth

Prediction

Prediction

Figure 5. The overall framework of the CCTNet.
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Conv 3×3 Conv 3×3 Conv 3×3 Conv 3×3

Conv 1×1 Conv 1×1Concat
Prediction

mapMSF
Decoder

Conv 3×3

Conv 1×1
Prediction

mapSS
Decoder

Figure 6. Multi-scale fusion decoder and single-scale decoder.

3.4. Two Designs for the CNN and Transformer Fusion Module

Two modules, the Light Adaptive Fusion Module (LAFM) and the Couple Attention
Fusion Module (CAFM), are proposed to solve the challenging feature fusion problems.
The LAFM learns the feature weights of the CNN and Transformer and assigns larger
weights to the local features of the CNN and the global features of Transformer, while
suppressing other unimportant features. The CAFM uses the attention mechanism to learn
the favorable feature information of the CNN and Transformer. For example, the CNN can
obtain the global information supplement from Transformer, and Transformer can obtain
the local information supplement from the CNN.

3.4.1. Light Adaptive Fusion Module

As can be seen in Figure 7, first, the input features of the CNN (C1, C2) and Transformer
(T1, T2) go through a 1× 1 convolution, respectively. Next, the Concat operation merges the
two features and sends them to the next 1× 1 convolution to make the interaction among
the CNN and Transformer features. Then, the features are separated by the split operation,
followed by a 1× 1 convolution and a Sigmoid function, respectively, to normalize the
pixel values from 0 to 1 to avoid the maximum and minimum. Finally, the stack operation
to parallel connect both features in the channel dimension is used, and the softmax function
is applied to obtain the pixel-level weights. The weights of the CNN and Transformer in
the same pixel position are summed to 1. The generated feature weight maps of the CNN
and Transformer are then multiplied pixel by pixel with the previous features to perform
pixel-level reweighting operations. In addition, we used the residual connection (the dotted
line) to add previous features to accelerate model optimization and reduce the learning
difficulty of feature weight maps.

ConcatConv 1×1

Conv 1×1

Conv 1×1 Split Conv 1×1

Conv 1×1

Sigmoid

Sigmoid Stack Softmax

Conv 1×1Concat

C1/C2

T1/T2

CT1/CT2

LAFMResidual connection

Figure 7. LAFM designs.

The feature weight maps learned by the CNN and Transformer are shown in Figure 8.
The ground truth means the true value; it is obtained by manual annotation. All the remote
sensing images in this paper have corresponding ground truths. The larger weights are
more red; the smaller weights are more blue; the weights of CNN and transformer at the
same pixel are added to 1; hence they are the inverse of each other. Observing Figure 8,
we can see that the CNN usually has more red and larger weights at the edge details and
Transformer usually has larger weights on larger objects, which also proves the respective
advantages of the CNN and Transformer in processing local and global information.
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(a) Input image (c) CNN (d) Transformer(b) Ground truth

Figure 8. Feature weight maps of the CNN and Transformer. (a) is the crop remote sensing image;
(b) is the true value; (c,d) are the weight maps of the CNN and Transformer, respectively.

3.4.2. Coupled Attention Fusion Module

The CAFM consists of a basic attention module, as well as a global and local interaction
module. As displayed in Figure 9, the inputs of the attention module are the CNN and
Transformer features, where x and y can be C and T or T and C, respectively. First, x
goes through a 1× 1 convolution to generate the query and y goes through two 1× 1
convolution to generate the key and value. Then, using the transpose of the query matrix
and the key to perform matrix multiplication to generate the attention map, the softmax
function then normalizes the attention map. The attention map represents the contribution
of each pixel in the key to each pixel in the query. Finally, the transposed value is matrix
multiplied by the attention map to generate the reweighting features. In general, the whole
process is to help y reweight features via the information of x. Therefore, when x comes
from Transformer (T3 or T4) and y comes from CNN (C3 or C4), the global information of
Transformer is introduced to reweight the local features of the CNN, which we call global
to local. Correspondingly, when x comes from the CNN (C3 or C4) and y comes from
Transformer (T3 or T4), the local information of the CNN is introduced to reweight the
global features of Transformer, which is called local to global. Finally, after the two processes
of global to local and local to global, the CNN features fused with global information and
the Transformer features fused with local information can be obtained. Concatenating the
above two features and applying a 1× 1 convolution to obtain the final output CT3 or CT4,
the above processes establish a good connection between the CNN and Transformer, and
the interactive fusion of local and global information promotes the optimization of their
respective branches.

local to global

global to local

Attention
Module

Attention
Module

Concat

C3/C4

T3/T4

CT3/CT4

CAFM
x_query

y_key

y_value

MatMul Softmax MatMul

Transpose

Transpose

Attention
Module

x

y

(a) Basic attention module (b) Global and local interaction module

Figure 9. CAFM designs.

3.5. Loss Functions’ Design

The loss function is significant in model optimization, determining the final segmen-
tation effect in the semantic segmentation task. The commonly used loss function is the
cross-entropy loss function, which is defined in Formula (1), where N indicates the number
of classification categories, p(xi) ∈ {0, 1} is the ground truth of pixel x belonging to cate-
gory i, and q(xi) ∈ [0, 1] represents the probability that the pixel x is predicted as category i.
To calculate the loss of the entire pixels in an H ×W image, we sum the loss of the H ×W
pixels and average them.

Loss = − 1
H ×W

H×W

∑
j=1

N

∑
i=1

p(xi) log(q(xi)) (1)
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The loss functions used in this paper are all cross-entropy loss functions, including
a main loss function and three auxiliary loss functions. These are respectively the main
loss function of the fusion branch (LossCT), the auxiliary loss function of the fusion branch
(LossCTAux), the auxiliary loss function of the CNN branch (LossC), and the auxiliary loss
function of the Transformer branch (LossT). Among them, LossC and LossT are both used
to supervise the optimization process of the CNN and Transformer branches; removing
them will not affect the normal training process. LossCTAux is used to enhance the feature
CT3. LossCT is the most important loss function, which directly determines whether the
model can be trained and optimized normally. The final loss function (LossAll) of the entire
model can be expressed by Formula (2):

LossAll = LossCT + LossCTAux + LossC + LossT (2)

4. Experimental Results

In this section, we first explore the performance of the mainstream CNN and Trans-
former models on the Barley Remote Sensing Dataset and select the best-performing
Transformer model CSwin-Tiny and the most widely used CNN model ResNet-50 as bench-
marks to explore the fusion method of the CNN and Transformer. Then, we study the
effects of the fusion modules, the LAFM and CAFM, as well as the auxiliary loss functions.
Finally, we discuss the combination of different model sizes of the CNN and Transformer
to verify the flexibility of our proposed CCTNet.

4.1. Dataset and Experimental Settings

The Barley Remote Sensing Dataset (https://tianchi.aliyun.com/dataset/dataDetail?
dataId=74952, accessed on 28 February 2022) presents a rural area in Xingren City, Guizhou
Province, China, containing a large amount of crop fields. It was collected by an Unmanned
Aerial Vehicle (UAV) near the ground, including the three spectrum bands of red, green, and
blue. It collected data on crops such as cured tobacco, corn, and barley rice and provides a
data basis for crop classification and yield prediction. The dataset is shown in Figure 10,
which contains two ultra-high-resolution images, image_1 and image_2, with resolutions
of 50,141 × 47,161 pixels and 46,050 × 77,470 pixels, respectively. A total of four categories
including background (white), cured tobacco (green), corn (yellow), and barley rice (red)
are labeled as Classes 0, 1, 2, and 3. Except for the above four categories, the rest of the
picture is transparent. The background category mainly includes buildings, vegetation, and
other unimportant crops. The three crops of cured tobacco, corn, and barley are divided by
region, and the soil inside the crop field is also labeled as the corresponding crop category.
The crop fields are not all regular, but the same crops are more likely to be distributed in
the same area.

As can be seen from Figure 10, the ground truth, the category distributions of the two
images are inconsistent. In image_1, cured tobacco and barley rice take the larger proportion
and corn takes a small proportion, but in image_2, corn and barley rice take the larger
proportion and cured tobacco takes a small proportion. This situation will affect the training
of the model, leading to low performance. Therefore, we divided the training set and test
set after cutting the two images into many patches, each of which is 6000× 6000 pixels,
as shown in Figure 10. The training region and test region were interval-sampled, and
the completely transparent parts were discarded. Finally, we obtained 44 samples for
training and 41 samples for testing. It is worth noting that for the rest with a resolution
smaller than 6000× 6000 pixels, we reversed the direction to cut a 6000× 6000 area; see the
rightmost column and the bottom row in image_1 and image_2. In fact, due to memory
limitations, the obtained images with a resolution of 6000× 6000 pixels could not be directly
used for training and testing, and further processing was required. In Figure 11, we use a
512× 512 sliding window [32,42] with 1

3 overlap to select training and testing data online,
as well as to discard the completely transparent parts. Finally, the 512× 512 patches were

https://tianchi.aliyun.com/dataset/dataDetail?dataId=74952
https://tianchi.aliyun.com/dataset/dataDetail?dataId=74952
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restored to 6000× 6000, and then, all the 6000× 6000 patches were spliced to obtain image_1
and image_2 with original resolutions of 50,141 × 47,161 pixels and 46,050 × 77,470 pixels.

Image_1 Image_2

Train set Test set Discarded

Ground truth_1 Ground truth_2

Cured tobacco Corn Barley rice Background

Figure 10. Display of the Barley Remote Sensing Dataset.

512

512

Discarded

Used

Image Ground Truth

6000

Figure 11. Overlapping sliding window processing.

The dataset division details, experimental platform, and training settings are listed in
Table 2, where TrS, TeS, DL, CE, and LR denote Training Size, Testing Size, Cross-Entropy,
Deep Learning, and Learning Rate, respectively. The evaluating metrics follow the official
advice, including Precision, Recall, F1, Overall Accuracy (OA), and mean Intersection over
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Union (mIoU). The formula is shown in Formulae (3) and (4). The AdamW optimizer
was used to accelerate the training process. The Poly learning rate scheduler was applied
to make the training process smoother. The CE loss function is the commonly used seg-
mentation loss function to calculate errors between the prediction and ground truth. LR,
mini-batch size, and epoch were manually adjusted according to the evaluation results.

Table 2. Details of the experiment’s settings.

Dataset Platform Training Settings

Trs/sample 6000 × 6000/44 CPU Intel(R) Xeon(R) E5-2650 v4 Optimizer AdamW
Tes/sample 6000 × 6000/41 GPU NVIDIA TITAN RTX-24GB LR scheduler Poly
Patch size 512 × 512 Memory 128 GB Loss function CE

Overlap ratio 1/3 DL Framework Pytorch V1.6.0 LR 0.0001
Class No. 4 Compiler Pycharm 2020.1 Mini-batch size 16

Spectrum bands R, G, B Program Python V3.6.12 Epoch 50

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2× Precision× Recall
Precision + Recall

(3)

OA =
TP + TN

P + N
, IoU =

TP
TP + FP + FN

(4)

where T, F, P, and N represent true, false, positive, and negative, respectively. TP denotes
the pixels of the truly predicted positive class. TN is the truly predicted negative pixels. FP
is the falsely predicted positive pixels. FN is the falsely predicted negative pixels. mIoU is
the average of all categories of the IoU. Among the formerly mentioned metrics, F1, OA,
and mIoU are the main reference indicators.

4.2. Methods’ Comparison on the Barley Remote Sensing Dataset

This part first explores the performance of the classic CNN and the latest Trans-
former models on the Barley Remote Sensing Dataset, including BiseNet-V2 [43], FCN [8],
UNet [25], FPN [31], DANet [15], ResNet-50* [9] (* means the segmentation applica-
tion of ResNet), PSPNet [30], and DeepLab-V3 [28]. It is worth noting that DANet [15],
PSPNet [30], and DeepLab-V3 [28] all use dilated ResNet-50 as the backbone, which uses
dilated convolution to replace downsampling convolution to keep high-resolution represen-
tations. FPN and ResNet-50* are based on the original ResNet-50 backbone, using an MSF
decoder. The Transformer-based models all use a multi-stage structure like ResNet-50* to
fuse multi-scale features, which can better fuse local details and deep semantic information.

The experimental results are shown in Table 3. Taking the mIoU as the main com-
parison indicator, it can be seen that BiseNet-V2 [43] and FCN [8], which are stacked
with simple convolutions, achieved 62.18% and 64.51% accuracy, respectively. Using the
encoder–decoder method of UNet [25] to fuse shallow features, the result achieved a 0.32%
improvement compared to FCN. By introducing the attention mechanism or incorporat-
ing multi-scale features, FPN, DANet, ResNet-50*, PSPNet, and DeepLab-V3 had mIoU
scores close to 70%. We can conclude that the attention mechanism and multi-scale fusion
methods can significantly improve the segmentation performance, which benefits from
the promotion of global information and local information. Transformer models that use
multi-scale feature fusion, such as ResT-Tiny [19], Swin-Tiny [22], and VOLO-D1 [20],
obtained good mIoU scores, but were slightly weaker than the CNN models. However,
CSwin-Tiny [23] using Locally Enhanced Positional Encoding (LEPE) significantly outper-
formed other Transformer models. As the Transformer model lacks local information, the
LEPE enhances CSwin-Tiny’s ability to extract local features, which shows the significance
of local information.
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Table 3. Comparison of the CNN and Transformer methods on the Barley Remote Sensing Dataset.

Method Recall (%) Precision (%) F1 (%) OA (%) mIoU (%)

BiseNet-V2 [43] 71.87 76.91 74.30 83.28 62.18
FCN [8] 75.15 77.23 76.18 84.22 64.51

UNet [25] 75.59 77.62 76.59 84.27 64.83
FPN [31] 79.40 81.83 80.60 86.92 69.76

DANet [15] 79.94 81.66 80.79 86.99 70.02
ResNet-50* [9] 79.74 82.05 80.88 87.17 70.18

PSPNet [30] 80.33 81.85 81.08 87.20 70.45
DeepLab-V3 [28] 80.26 82.46 81.34 87.48 70.75

ResT-Tiny [19] 79.29 80.03 79.66 86.14 68.61
Swin-Tiny [22] 79.76 81.48 80.61 87.18 69.91
VOLO-D1 [20] 79.01 82.46 80.70 87.20 69.93

CSwin-Tiny [23] 81.04 82.39 81.71 87.58 71.23

Finally, in order to pursue the best performance while considering the flexibility of the
model size, we adopted the best-performing CSwin as the Transformer benchmark and the
flexible ResNet as the CNN benchmark. CSwin provides four model sizes of Tiny, Small,
Base, and Large, and ResNet includes four model sizes of ResNet-18, ResNet-34, ResNet-50,
and ResNet-101. The subsequent experiments were based on the Transformer branch of
CSwin-Tiny and the CNN branch of ResNet-50, and the decoder adopts the MSF decoder
in Figure 5. The experimental settings followed those in Table 2.

4.3. Study of the CNN and Transformer Fusion Modules

Because of the huge diversity of the CNN and Transformer features, the simple
strategy to directly merge these two features will be a big challenge, resulting in a bad
performance. Existing methods, such as Conformer [35] and TransFuse [36], fuse the CNN
and Transformer at the shallow level and send the fused features in the subsequent training
of the CNN and Transformer branches. Such a method confuses the characteristics of the
CNN and Transformer, making their respective advantages fade out. Therefore, we propose
the Light Adaptive Fusion Module (LAFM) and the Coupled Attention Fusion Module
(CAFM) to fuse features without damaging their diversity. In this section, the location
settings of the LAFM and CAFM at four positions to generate CT1, CT2, CT3, and CT4 are
discussed in the experiments. The four positions are respectively behind the four stages
in the CNN and Transformer branches, making the fusion of the CNN and Transformer
features. Moreover, some detailed designs of the structure are also discussed.

4.3.1. The Location Settings of the LAFM and the CAFM

To generate the four fused features CT1, CT2, CT3, and CT4, four fusion modules at
the corresponding positions are selected from the LAFM or the CAFM. 1©, 2©, 3©, and 4©
represent the positions to generate CT1, CT2, CT3, and CT4 respectively. “\” means that
the marked module was not used. Taking the mIoU as the main reference indicator, the
first line in Table 4 represents that without fusion modules, the score was lower than using
only CSwin-tiny, which can only reach 71.12%. This shows that simply fusing the features
of the CNN and Transformer cannot obtain their respective advantages, but results in being
worse. The second line uses the LAFM to replace the original rough fusion method, and the
mIoU increased by 0.36%, proving the effectiveness of the LAFM. The third and fourth lines
replace the two positions 3© or 4©with the CAFM, which further improved the performance.
When both positions 3© and 4© are replaced by the CAFM, the best mIoU score of 72.07%
was obtained, which was 0.59% higher than the second experiment, indicating that the
CAFM is effective and the effect is better than the LAFM.

However, the effect of the CAFM is related to the position. For example, being set in
the 2© 4© positions, the score was not as good as that in the 4© position as the CAFM is an
attention module that usually works better on rich semantic features, such as positions
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3© and 4©. Moreover, the CAFM numbers were exquisite; the positions 2© 3© 4© all use the
CAFM, but obtained poor performance. When the CAFM is placed in the 1© or 2© position,
it took up much memory. Consequently, the LAFM is more lightweight and is suitable for
the positions 1© and 2©; the CAFM has better performance, but has a large computational
burden; it is suitable for the positions 3© and 4© to fuse rich semantic features.

Table 4. Experiments on the location settings of the LAFM and the CAFM.

Method LAFM CAFM F1 (%) OA (%) mIoU (%)

CCTNet

\ \ 81.61 87.77 71.12
1© 2© 3© 4© \ 81.88 87.92 71.48

1© 2© 4© 3© 82.04 87.94 71.66
1© 2© 3© 4© 82.13 88.10 71.76
1© 2© 3© 4© 82.36 88.18 72.07
1© 3© 2© 4© 82.11 88.11 71.75

1© 2© 3© 4© 81.98 87.99 71.60

4.3.2. The Structure Settings of the LAFM and the CAFM

To make the LAFM and the CAFM work, some special structural designs are required.
The LAFM includes the residual connection to fuse shallow layers and accelerate the model
convergence. The CAFM consists of two major parts, the global to local (G → L) module
and the local to global (L → G) module, to generate two fusion features. After obtaining
the two fusion features, there are two methods (Concat and add) to fuse them. The Concat
operation splices the two features in the channel dimension, and it can better retain the
original information. The add operation fuses the two features in an elementwise sum
way, which may confuse the information of local and global. Here, we performed an
ablation study (see Table 5) by adding or removing the residual connection in the LAFM.
Furthermore, the choices of the G → L and L → G modules are discussed, and the fusion
methods of Concat and add were tried when fusing the G → L and L → G modules in
the CAFM.

Table 5 shows the experimental results. Taking the mIoU as the main reference, the
analysis is given below. First, looking at the top three lines, when only G → L or L → G is
used, the mIoU was 71.38% and 71.55%, respectively, which is a significant drop compared
to the 72.07% score obtained by using the two modules simultaneously. This shows that
the CNN and Transformer can complement each other to improve the performance. The
fourth line replaces the Fusion mode with add, and the mIoU had a big decrease of 0.85%,
indicating that the Concat fusion method is significantly better than add. The fifth line
removes the residual connection in the LAFM, and the mIoU was also reduced by 0.55%,
proving that the residual structure is significant in the LAFM. Through the exploration
of the structure designs, we finally determined the appropriate structure settings for the
LAFM and the CAFM and achieved good performance.

Table 5. Ablation experiments on the structure settings of the LAFM and the CAFM.

Method
LAFM CAFM

F1 (%) OA (%) mIoU (%)
Residual G → L L → G Fusion

CCTNet

X X Concat 81.81 87.85 71.38
X X Concat 81.96 87.91 71.55
X X X Concat 82.36 88.18 72.07
X X X Add 81.67 87.81 71.22

X X Concat 81.96 87.97 71.52
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4.4. Ablation Experiments of the Auxiliary Loss Function

The auxiliary loss function plays a vital role in learning more effective representations
in semantic segmentation tasks. It works in the training stage and can be completely
discarded when performing inferring, so it is free on the inference consumption. A total of
three auxiliary loss functions were used in this paper, where Aux Loss CT3 was applied
to supervise the feature CT3 and Aux Loss C and T were used to optimize the CNN and
Transformer branches. In Table 6, we discuss the experimental settings with (w/) or without
(w/o) these auxiliary loss functions and the situation of Aux Loss C and T sharing the same
decoder. The detailed analysis is as follows:

The experiment in the first line removed Aux Loss C and T; compared with the second
line, the mIoU score decreased by 0.82%. Without the extra supervision of Aux Loss C and
T, the model generated poor features of the CNN and Transformer branches. Moreover,
the auxiliary loss functions can also synchronize the learning progress of the CNN and
Transformer, achieving the coupled optimization. The third experiment shared the same
parameters in the decoder, resulting in the mIoU dropping sharply. Because the diversity
of the CNN and Transformer is tremendous, the same decoder parameters cannot afford
the CNN and Transformer at the same time. The last experiment removed Aux Loss CT3,
and the mIoU had a slight drop of 0.31%. The purpose of Aux Loss CT3 is to make CT3
learn better features, so that the next CT4 can also learn good features. Therefore, in the
semantic segmentation task, it is common and effective to add an auxiliary loss function
at the third output feature of the encoder. Consequently, auxiliary loss functions are
very important in the fusion process of the CNN and Transformer, especially the CCTNet
proposed in this paper, which relies on the independent and good features of the CNN and
Transformer. Of course, we can also train the CNN and Transformer branches separately
and then fix the weights; this will keep their respective characteristics. However, this
practice increases the complexity of the model design; it is not an end-to-end architecture
like our proposed CCTNet.

Table 6. Ablation experiments for the auxiliary loss functions.

Method Aux Loss CT3 Aux Loss C & T F1 (%) OA (%) mIoU (%)

CCTNet

w/ w/o 81.71 87.64 71.25
w/ w/ 82.36 88.18 72.07
w/ Share 81.40 87.69 70.74

w/o w/ 82.15 87.99 71.76

4.5. Results of Different CNN and Transformer Model Sizes

Because of the independent design of the CNN and Transformer branches, the CCTNet
makes it easy to adjust the size of the CNN and Transformer models, meaning that the
pretrained weights can be used to make it easier to fit in different downstream tasks. This
section discusses the combinations of different CNN and Transformer model sizes for the
Barley Remote Sensing Dataset in Table 7. The CNN was selected from ResNet-18, ResNet-
34, ResNet-50, and ResNet-101, where the larger number means a larger size. Transformer
was selected from CSwin-Tiny, CSwin-Small, and CSwin-Base; the model size increases
in turn.

Fixing Transformer to CSwin-Tiny, the mIoU gradually increased when the model size
changed from ResNet-18 to ResNet-50, but the mIoU of ResNet-101 had a slight decrease,
indicating that changing the model size of the CNN will significantly affect the performance.
When the CNN branch was ResNet-50, the accuracy saturated. Therefore, we fixed the
CNN to ResNet-50 and changed the Transformer size; the mIoU had a small decline. It
can be seen that the Transformer size did not affect the final accuracy very much, and
CSwin-Tiny can already meet the needs of the CCTNet for global information. Furthermore,
the Transformer branch had the main computation consumption, so using the lightweight
Transformer model in this paper is better.
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Table 7. Results for the auxiliary loss functions.

Method CNN Transformer F1 (%) OA (%) mIoU (%)

CCTNet

ResNet-18 CSwin-Tiny 81.55 87.66 71.07
ResNet-34 CSwin-Tiny 82.11 88.02 71.77
ResNet-50 CSwin-Tiny 82.36 88.18 72.07

ResNet-101 CSwin-Tiny 82.09 87.99 71.69

ResNet-50 CSwin-Small 82.25 88.13 71.96
ResNet-50 CSwin-Base 82.24 88.06 71.89

4.6. Study on the Improvements of Each Category

In this section, we compare the performance of ResNet-50* [9], CSwin-Tiny [23], and
CCTNet on the mIoU performance of four categories: background, cured tobacco, corn, and
barley rice. It can be seen in Table 8 that the Transformer method was more effective, because
the Transformer-based method CSwin-Tiny was 0.25%, 0.48%, 1.57%, and 1.91% higher
than the CNN-based method ResNet-50* in the above four categories, especially on the corn
and barley rice categories. The reason is that the background and cured tobacco categories
are concentrated in continuous regions without too much interference, and the background
is easier to recognize, so both the CNN and Transformer classified correctly more easily.
However, the corn and barley rice categories were scattered, and these two categories
appear alternately and interfere with each other. Therefore, the global context is needed
here, and Transformer performed better in the corn and barley rice categories. Compared
with ResNet-50*, the CCTNet achieved a 1.00%, 1.28%, 2.48%, and 2.81% IoU promotion,
respectively, as well as performed greatly in the corn and barley rice categories, indicating
that the CCTNet has the advantages of the Transformer structure. Compared with CSwin-
Tiny, the CCTNet increased the IoU scores by 0.75%, 0.80%, 0.91%, and 0.90%, respectively,
which benefited from the introduction of the CNN for improving the segmentation in edge
details. Meanwhile, we analyzed the inference speed of each model; the unit was the
processed images per second (img/s). It can be seen that the CCTNet only obtained a
slight inference speed decrease, which shows that the increment of the mIoU score was not
obtained at the expense of significantly increasing the execution time.

Table 8. IoU scores of each category on the Barley Remote Sensing Dataset.

Method Background Cured Tobacco Corn Barley Rice mIoU (%) Img/s

ResNet-50* [9] 84.60 94.05 45.46 56.61 70.18 33.5
CSwin-Tiny [23] 84.85 94.53 47.03 58.52 71.23 36.2

CCTNet 85.60+1.00
+0.75 95.33+1.28

+0.80 47.94+2.48
+0.91 59.42+2.81

+0.90 72.07+1.89
+0.84 27.3

In Figure 12, we compare the prediction maps of ResNet-50* [9], CSwin-Tiny [23], and
the CCTNet on the local details and global classification. It can be seen that the CCTNet
performed better on edge and detail processing than CSwin-Tiny and performed better on
global classification than ResNet-50*. This shows that the CCTNet successfully combines
the advantages of CNN in local modeling and Transformer in global modeling and achieved
good results in the crop remote sensing segmentation task.
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(a) Input image (b) Ground truth (c) ResNet-50 (d) CSwin-Tiny (e) CCTNet

Figure 12. Comparison of the improvements of each method.

5. Discussion

Some methods for improving model performance at inference time were introduced
here, including the Overlapping Sliding Window testing (OSW), Testing Time Augmenta-
tion (TTA), and Post-Processing (PP) methods to remove small objects and small holes. Due
to the large image resolution and memory limitations, we cut the image into pieces before
running the model, resulting in incomplete objects at the slit and affecting the segmentation
effect [44]. Therefore, the OSW method was introduced. It retained a 1

3 overlap during
inference, so that the overlapped part was inside the image, thus reducing the influence of
incomplete objects. TTA is a method to fuse different predictions by translating different
inputs, by averaging the results to obtain better performance. In this paper, horizontal
flipping and vertical flipping were used to generate different inputs in TTA. Moreover,
we observed that the category regions in the Barley Remote Sensing Dataset were mainly
large; small areas are very rare in this dataset. Therefore, we specifically proposed a
post-processing method to remove small objects and small holes. The specific process was
as follows: first, calculate the number of pixels in a connected area, then set a threshold
(40,000 pixels in this paper) for the maximum pixels in the connected area; finally, replace
the objects or holes smaller than the threshold with surrounding pixels.

Table 9 and Figure 13 display the improvements of using the above three methods.
Without OSW, the gap of the patch had obvious edge artifacts. When using OSW, the edge
parts were significantly improved, and the mIoU increased by 0.47%, which shows the
availability of OSW for improving the edge parts. When using TTA, the mIoU further
increased by 0.16%, but there were still some small wrongly predicted regions and holes.
When PP was used, the mIoU increased by 0.27%; these mispredicted parts were replaced
with surrounding categories, making them look cleaner and more complete. Compared
with the insignificant mIoU promotion, the visual effects are more important.

Table 9. Results of methods to improve performance during inference time.

Method Recall (%) Precision (%) F1 (%) OA (%) mIoU (%)

CCTNet 81.03 83.73 82.36 88.18 72.07
CCTNet + OSW 81.07 84.44 82.72 88.72 72.54

CCTNet + OSW + TTA 81.11 84.67 82.85 88.79 72.70
CCTNet + OSW + TTA + PP 81.38 85.14 83.22 88.56 72.97
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(a) Input image (b) Ground truth (c) w/o (d) SW (e) SW+TTA (f) SW+TTA+PP

Figure 13. Improvements by adding Overlapping Slide Window (OSW), Testing Time Augmentation
(TTA), and the Post-Processing (PP) method of removing small objects and holes.

6. Conclusions

In this paper, we analyzed challenging problems in crop remote sensing images’ seg-
mentation, such as incomplete objects at the edge and the imbalance of global and local
information, which severely damage the performance. To solve the above problems, the
proposed model should combine the advantages of CNN in local modeling and Trans-
former in global modeling. Therefore, we proposed the CCTNet to fuse the features of the
CNN and Transformer branches, while keeping their respective advantages. Furthermore,
to conduct end-to-end training of the CCTNet, the auxiliary loss functions were proposed
to supervise the optimization process. In order to smoothly fuse the features of the CNN
and Transformer, we proposed the LAFM and the CAFM to selectively fuse their advan-
tages while ignoring their drawbacks. By using the above methods, our CCTNet achieved
a 1.89% mIoU improvement compared to the CNN benchmark ResNet-50* and a 0.84%
mIoU promotion compared to the Transformer benchmark CSwin-Tiny. This proves the
importance of combining the CNN and Transformer for the crop segmentation task. In
addition, three methods were introduced to further improve the performance at inference
time, for example using the overlapping slide window to eliminate edge artifacts, apply-
ing the testing time augmentation method to enhance the stability, and employing the
post-processing method to remove small objects and holes to obtain clear and complete
prediction maps. The application of the above three methods further brought a 0.9% in-
crease in the mIoU, finally achieving 72.97% mIoU scores on the Barley Remote Sensing
Dataset. The ability of the current CCTNet may be limited, but based on the flexibility
of the structure, it can be continuously optimized with the development of the CNN and
Transformer methods. In the future, we will consider introducing multi-spectral crop data
to improve the classification of the challenging corn and barley rice categories.

Author Contributions: H.W., Z.X. and J.L. conceived of the idea; Z.X. verified the idea and designed
the study; X.C. and J.L. analyzed the experimental results; Z.X. and T.Z. wrote the paper; H.W. and
T.Z. gave comments on and suggestions for the manuscript. All authors read and approved the
submitted manuscript.

Funding: This work was supported by the Fundamental Research Funds for the China Central
Universities of USTB (FRF-DF-19-002) and the Scientific and Technological Innovation Foundation of
Shunde Graduate School, USTB (BK20BE014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Guangzhou Jingwei Information Technology Co., Ltd., and
the Xingren City government for providing the Barley Remote Sensing Dataset.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 1956 19 of 20

References
1. Witharana, C.; Bhuiyan, M.A.E.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Daanen, R.; Griffin, C.G.; Kent, K.;

Jones, M.K.W. Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution
commercial satellite imagery for automated ice-wedge polygon detection. ISPRS J. Photogramm. Remote Sens. 2020, 170, 174–191.
[CrossRef]

2. Zhang, T.; Su, J.; Liu, C.; Chen, W.H. State and parameter estimation of the AquaCrop model for winter wheat using sensitivity
informed particle filter. Comput. Electron. Agric. 2021, 180, 105909. [CrossRef]

3. Zhang, T.; Su, J.; Xu, Z.; Luo, Y.; Li, J. Sentinel-2 satellite imagery for urban land cover classification by optimized random forest
classifier. Appl. Sci. 2021, 11, 543. [CrossRef]

4. Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad.
Sci. USA 2011, 108, 20260–20264. [CrossRef] [PubMed]

5. Qin, X.; Zhang, Z.; Huang, C.; Gao, C.; Dehghan, M.; Jagersand, M. Basnet: Boundary-aware salient object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 7479–7489.

6. Yang, G.; Zhang, Q.; Zhang, G. EANet: Edge-Aware Network for the Extraction of Buildings from Aerial Images. Remote Sens.
2020, 12, 2161. [CrossRef]

7. Zhen, M.; Wang, J.; Zhou, L.; Li, S.; Shen, T.; Shang, J.; Fang, T.; Quan, L. Joint Semantic Segmentation and Boundary Detection
using Iterative Pyramid Contexts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 14–19 June 2020; pp. 13666–13675.

8. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

11. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456.

12. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

13. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017; Volume 31.

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

15. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154.

16. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

17. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

18. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking Semantic
Segmentation from a Sequence-to-Sequence Perspective with Transformers. In Proceedings of the 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6877–6886.

19. Zhang, Q.; Yang, Y. ResT: An Efficient Transformer for Visual Recognition. arXiv 2021, arXiv:2105.13677.
20. Yuan, L.; Hou, Q.; Jiang, Z.; Feng, J.; Yan, S. VOLO: Vision Outlooker for Visual Recognition. arXiv 2021, arXiv:abs/2106.13112.
21. Bao, H.; Dong, L.; Wei, F. BEiT: BERT Pre-Training of Image Transformers. arXiv 2021, arXiv:abs/2106.08254.
22. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. arXiv 2021, arXiv:2103.14030.
23. Dong, X.; Bao, J.; Chen, D.; Zhang, W.; Yu, N.; Yuan, L.; Chen, D.; Guo, B. CSWin Transformer: A General Vision Transformer

Backbone with Cross-Shaped Windows. arXiv 2021, arXiv:abs/2107.00652.
24. Ling, Z.; Zhang, A.; Ma, D.; Shi, Y.; Wen, H. Deep Siamese Semantic Segmentation Network for PCB Welding Defect Detection.

IEEE Trans. Instrum. Meas. 2022, 71, 5006511. [CrossRef]
25. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

International Conference on Medical Image Computing And Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

26. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5693–5703.

http://doi.org/10.1016/j.isprsjprs.2020.10.010
http://dx.doi.org/10.1016/j.compag.2020.105909
http://dx.doi.org/10.3390/app11020543
http://dx.doi.org/10.1073/pnas.1116437108
http://www.ncbi.nlm.nih.gov/pubmed/22106295
http://dx.doi.org/10.3390/rs12132161
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TIM.2022.3154814


Remote Sens. 2022, 14, 1956 20 of 20

27. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-resolution representations for
labeling pixels and regions. arXiv 2019, arXiv:1904.04514.

28. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

29. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

30. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

31. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

32. Xu, Z.; Zhang, W.; Zhang, T.; Li, J. HRCNet: High-resolution context extraction network for semantic segmentation of remote
sensing images. Remote Sens. 2021, 13, 71. [CrossRef]

33. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. arXiv 2021, arXiv:2101.01169.
34. Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the design of spatial attention in vision

transformers. arXiv 2021, arXiv:2104.13840.
35. Peng, Z.; Huang, W.; Gu, S.; Xie, L.; Wang, Y.; Jiao, J.; Ye, Q. Conformer: Local Features Coupling Global Representations for

Visual Recognition. arXiv 2021, arXiv:abs/2105.03889.
36. Zhang, Y.; Liu, H.; Hu, Q. TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI, Strasbourg, France, 27
September–1 October 2021.

37. Ding, L.; Lin, D.; Lin, S.; Zhang, J.; Cui, X.; Wang, Y.; Tang, H.; Bruzzone, L. Looking outside the window: Wide-context
transformer for the semantic segmentation of high-resolution remote sensing images. arXiv 2021, arXiv:2106.15754.

38. Xiao, T.; Dollar, P.; Singh, M.; Mintun, E.; Darrell, T.; Girshick, R. Early convolutions help transformers see better. In Proceedings
of the Advances in Neural Information Processing Systems, Online, 6–14 December 2021; Volume 34.

39. Srinivas, A.; Lin, T.Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck transformers for visual recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 16519–16529.

40. Dai, Z.; Liu, H.; Le, Q.; Tan, M. Coatnet: Marrying convolution and attention for all data sizes. In Proceedings of the Advances in
Neural Information Processing Systems, Online, 6–14 December 2021; Volume 34.

41. Liu, Z.; Luo, S.; Li, W.; Lu, J.; Wu, Y.; Sun, S.; Li, C.; Yang, L. Convtransformer: A convolutional transformer network for video
frame synthesis. arXiv 2020, arXiv:2011.10185.

42. Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing
images. Remote Sens. 2017, 9, 22. [CrossRef]

43. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time
Semantic Segmentation. arXiv 2020, arXiv:2004.02147.

44. Xu, Z.; Zhang, W.; Zhang, T.; Yang, Z.; Li, J. Efficient transformer for remote sensing image segmentation. Remote Sens. 2021,
13, 3585. [CrossRef]

http://dx.doi.org/10.3390/rs13010071
http://dx.doi.org/10.3390/rs9010022
http://dx.doi.org/10.3390/rs13183585

	Introduction
	Related Work
	Methods
	The CNN-Based ResNet
	Basic CSwin Transformer
	Framework of the Proposed CCTNet
	Two Designs for the CNN and Transformer Fusion Module
	Light Adaptive Fusion Module 
	Coupled Attention Fusion Module

	Loss Functions' Design

	Experimental Results 
	Dataset and Experimental Settings
	Methods' Comparison on the Barley Remote Sensing Dataset
	Study of the CNN and Transformer Fusion Modules
	The Location Settings of the LAFM and the CAFM
	The Structure Settings of the LAFM and the CAFM

	Ablation Experiments of the Auxiliary Loss Function
	Results of Different CNN and Transformer Model Sizes
	Study on the Improvements of Each Category

	Discussion
	Conclusions
	References

