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Abstract: Quantitative assessment of crop water-use efficiency (WUE) is an important basis for
high-efficiency use of agricultural water. Here we assess the WUE of maize in the Hetao Irrigation
District, which is a representative irrigation district in the arid region of Northwest China. Specifically,
we firstly mapped the location of the maize field by using a remote sensing/phenological–based
vegetation classifier and then quantified the maize water use and yield by using a dual-source remote-
sensing evapotranspiration (ET) model and a crop water production function, respectively. Validation
results show that the adopted phenological-based vegetation classifier performed well in mapping
the spatial distributions and inter-annual variations of maize planting, with a kappa coefficient of
0.86. In addition, the ET model based on the hybrid dual-source scheme and trapezoid framework
also obtained high accuracy in spatiotemporal ET mapping, with an RMSE of 0.52 mm/day at the
site scale and 26.21 mm/year during the maize growing season (April–October) at the regional scale.
Further, the adopted crop water production function showed high accuracy in estimating the maize
yield, with a mean relative error of only 4.3%. Using the estimated ET, transpiration, and yield of
maize, the mean maize WUE based on ET and transpiration in the study region were1.94 kg/m3

and 3.06 kg/m3, respectively. Our results demonstrate the usefulness and validity of remote sensing
information in mapping regional crop WUE.

Keywords: Hetao Irrigation District; maize; remote sensing; evapotranspiration; crop classification;
crop yield estimation; water-use efficiency; MODIS

1. Introduction

Water resources are indispensable natural resources that all lives depend on and are
important economic resources for agriculture and industrial development [1]. The shortage
of water resources is thus an important restriction for food security and ecological security
across the globe, especially in arid regions [2,3]. Globally, about 32% of land areas are
located in arid regions, and this proportion is higher than 50% in China [4]. In arid and semi-
arid areas, agricultural production relies heavily on irrigation. However, the available water
for irrigation has been experiencing a continuous decreasing trend under climate change,
whereas the industrial and domestic water demands keep increasing with population
growth [3]. To alleviate the divergence between water supply and demand, programs of
irrigation district rehabilitation have been carried out by the Chinese government since
1998, with the key aim of reducing water diversion from river channels for irrigation while
retaining the same level of crop production [5].

To achieve this purpose, it is necessary to better understand water consumption and
crop yield in affected irrigation districts such as the Hetao Irrigation District in northern
China. Water-use efficiency (WUE) is the ratio of crop yield to evapotranspiration (ET),
which is an important index to measure the coupling and trade-off between water con-
sumption and crop yield. Therefore, WUE has become a typical indicator to evaluate
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the effect of the water-saving programs that can be obtained by field experiments at field
scales [6,7]. However, it is still difficult to map WUE at the regional scale since those field
measurements are otherwise very limited. In this light, remote sensing (RS) data with high
temporal and spatial resolutions have become a promising tool to assess regional WUE
from RS-based crop mapping, ET, and crop yield estimations at the regional scale [8–10].

Over the past few decades, various models for mapping regional ET with RS data,
such as the TSEB model [11], SEBAL model [12], SEBS model [13], METRIC model [14],
MODIS-ET model [15], TTME model [16], and HTEM model, have been proposed [17]. In
terms of maize ET estimation, RS-based ET models generally show acceptable accuracy.
For example, Kamali and Nazari estimated maize water requirements using Landsat data
and the SEBAL model [18] and obtained a relatively high level of accuracy in ET estimation
(higher than 70%) compared with field observations. Several detailed discussions and
comparisons of ET estimation models based on RS data can be found in [19,20].

Accurately identifying crop types is an important priority for crop yield estima-
tion. Earlier studies of crop mapping based on RS data began in the early 1980s [21].
Since then, RS-based methods have become an effective method in crop mapping and
monitoring [22–24]. Previous studies demonstrated good performance in inter-annual crop
mapping using RS-derived vegetation indices and/or phenological events [25–28].

Based on the results of crop mapping, crop yield can be estimated by several types of
RS-based models [29–31], including empirical statistical models, growth efficiency mod-
els, and crop growth models [32,33]. Vegetation indices, photosynthetically active radi-
ation, and temperature were widely used predictors in empirical statistical crop yield
models [34,35]. Radiation-use efficiency (RUE), proposed by Monteith [36], was the basis
of the growth efficiency models [37]. Some parameters of complicated crop growth models
can be obtained by RS, which can be applied in regional crop yield estimations [38].For ex-
ample, Zhang and Yao mapped maize yields using MODIS data coupled with a vegetation
process model from 2007 to 2009 [39].

The objective of this study is to assess the WUE of maize in the Hetao Irrigation District
in Northwestern China from 2003 to 2012. The 2003 to 2012 period was selected because
this was the first decade after the implementation of water-saving rehabilitation in the
region (1998–2002). The assessment algorithm includes four main components, including a
dual-source model (HTEM) for ET mapping, a classifier for maize mapping based on the
ellipsoid state spaces of the vegetation and phenological indices, a crop-yield estimation
model based on the crop water production function, and maize WUE assessment based on
the above outputs.

2. Materials and Methods
2.1. Study Area

The Hetao Irrigation District (40.0◦–41.5◦N, 106.0◦–109.5◦E),located in northwest
China, was defined as the study region. The Hetao Irrigation District is a major grain-
producing area and the third largest irrigation district in China. Four counties in Hetao,
where mainly maize is planted, were selected for the analysis that follows, including
Dengkou, Hangjinhouqi, Linhe, and Wuyuan (Figure 1).The study region has a typically
arid continental climate, which is characterized by a cold winter with little snowfall and a
dry summer with little rainfall. The average annual precipitation is about 150 mm yr−1,
and the mean annual temperature is about 6.5 ◦C [40].
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Figure 1. Location of the study region (a), location of maize sampling points (b),and land cover
classification in the study region as of 2000 (c).

The area of study is mainly plains, with elevations ranging from 1028 m to 1062 m
above sea level, except for a small mountainous area in the northwest of Dengkou county.
The study region covers a total area of 9308 km2, and most of the agricultural lands are
concentrated in Linhe, Hangjinhouqi, and Wuyuan counties, whereas desert land and the
Gobi Desert cover most parts of Dengkou county. Due to limited precipitation, agriculture
in the Hetao Irrigation District mainly depends on irrigation water diverted from the Yellow
River along the south boundary of the district.

The crop planting pattern in the study region is complex, with great variations during
the period under study. Maize, sunflower, and wheat are three major crops in Hetao. The
maize acreage increased from 2003 to 2012 continuously and has become the dominant
crop in the region (over 1/3 of the total crop area) since 2012 [41]. Therefore, summer
maize was selected as a representative crop, which generally grows from early April to
mid-September, with an average growing season length of ~170 days.

2.2. ET Model

The hybrid dual-source scheme and trapezoid framework-based ET model (HTEM) [17]
was used to quantify ET in the Hetao Irrigation District from 2003 to 2012. Briefly, HTEM
estimates ET based on surface energy balance, which is expressed as

Rn = H + λET + G (1)

where Rn is net radiation (W/m2) calculated following Allen et al. [14]; H is the sensible
heat flux (W/m2), G is soil heat flux (W/m2) (for the detailed calculation processes for G,
refer to Long et al. [42]); and λ is the latent heat of evaporation of water (J/kg).

The Rn is then partitioned into radiation received by vegetation canopy and by
soil surface,

Rnc = Rn[1 − exp(−kcLAI)] (2)
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Rns = Rn − Rnc (3)

where Rnc and Rns are net radiation of vegetation and soil (W/m2), respectively; LAI
and kc are the leaf area index and the attenuation coefficient of radiation in the canopy,
respectively.

For each component (vegetation and soil), the surface energy balance equation can be
rewritten as Equations (4) and (5), and sensible heat fluxes of vegetation and soil can be
calculated from Equation (6) to Equation (9).

Rnc = LEL
c + HL

c (4)

Rns = LEL
s + HL

s + G (5)

HP
c = ρCp

Tc − Ta

rh
a

(6)

HP
s = ρCp

Ts − Ta

ra
a + rs

a
(7)

HL
c = fc × HP

c (8)

HL
s = (1 − fc)× HP

s (9)

where superscripts L and P represent layered flux and patch flux, respectively; subscript
s and c represent soil and vegetation, respectively; fc is the vegetation fraction that can
be estimated from NDVI [43,44]; rh

a , ra
a, and rs

a are the aerodynamic resistance (s/m) that
can be calculated following Sánchez et al. [45]; Tc and Ts represent the temperatures of
vegetation surface and soil surface (◦C), respectively; Ta is the air temperature at reference
height (◦C). The relationship between Tc, Ts and land surface temperature (LST) based on
RS data can be described as follows:

LST4 = fc × T4
c + (1 − fc)× T4

s (10)

Estimation of Ts and Tc from LST is the key process in dual-source ET models, and a
trapezoid framework of vegetation fraction and land surface temperature is used in HTEM.
Then LEc and LEs can be calculated from Equations (4) and (5). For a detailed description
of HTEM in determining ET, evaporation, and transpiration, refer to [17].

The ET derived from HTEM is an instantaneous value at the satellite overpassing time.
To obtain long-term ET information, an appropriate temporal upscaling algorithm should
be selected. The crop coefficient (Kc) method was used, which performs best in cropland
with ET upscaling from the instantaneous scale to the daily scale, according to Chávez
et al. [46]. Due to the satellite revisiting cycle, cloud obscuration, and other factors, RS
images were not always available on all days of the crop growing period. For days lacking
RS images, Kc could be obtained by linear interpolation between two adjacent days with
available RS images [47].

In this study, two methods were used to evaluate the accuracy of HTEM-estimated
ET. First, the observed ET in 2009 was used to evaluate the accuracy of the estimated ET
at the field scale [48]. For the regional scale, a water balance analysis was conducted to
evaluate the performance of HTEM during the growing seasons (April to October) from
2003 to 2012. The water balance equation is written as follows:

ETwb = P + D − R − ∆S (11)

where ETwb is the calculated ET according to the water balance equation (mm); P means
total precipitation and D is the total water drawn from the Yellow River; R is the total
outflow volume from the study region; the difference between D and R is the net water
diversion in the study region; ∆S is the variation of soil water storage in saturated and
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unsaturated zones in the crop growing season. Root-mean-square error (RMSE) and relative
error (RE) were selected to evaluate the accuracy of estimated ET at the regional scale.

2.3. Crop Mapping Algorithm

To map multi-year distributions of maize in a large irrigation district under a complex
planting pattern, the crucial task is to capture the characteristics that can distinguish
maize from other crops. In this study, a field investigation was carried out to obtain
representative sampling points of maize. Then, an asymmetric logistic function was selected
to fit the NDVI time series of sampled maize points. By analyzing the characteristics of the
logistic curve, the phenological values of maize could be identified. Finally, appropriate
phenological values and vegetation indices were chosen to develop a maize classifier.

Specifically, an asymmetric logistic function [49] was used to fit the NDVI time series,

NDVI(t) = a + (b/ f )(1 + n)−( f+1)/ f n( f + 1)( f+1)/ f (12)

n = exp[(t + d ln( f )− c)/d] (13)

where NDVI(t) is the NDVI value at DOY of t; and a, b, c, d and f are fitting parameters of the
logistic curve. The least-squares method was used in the curve fitting. Two characteristic
points can be calculated from Equations (12) and (13), including (i) the maximum value
of NDVI and its corresponding time (tmax, NDVImax) when the first derivative of Equation
(12) is equal to 0 and (ii) the left inflection point (tinf, NDVIinf), when the second derivation
of Equation (12) is equal to 0.

Based on the asymmetric logistic curve, the difference between tmax and tinf, repre-
senting the fast growth period (FGP), was selected as a representative phenological index.
Meanwhile, NDVIinf was selected as a representative vegetation index [50]. Consequently,
a maize classifier based on phenology and growth information was established to map the
spatial distribution of maize for multiple years over the study region. Based on the sam-
pling points, we found that sampling FGP-NDVIinf points can be enclosed by an ellipse [50].
The minimum ellipse that encloses all sampled points is calculated by the analytic equation
of an ellipse,

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (14)

where A, B, C, D, E and F are the fitting parameters of the crop classifier; and x and y are the
phenological index and the vegetation index, respectively. These fitting parameters can be
calculated by minimizing the area of the ellipse encircling all sampled points. Considering
that the sampling points of limited number might not contain the entirety of the information
about the maize in the Hetao Irrigation District over the studied period, the semi-major and
semi-minor axes of the minimum ellipse should be amplified by certain ratios to account
for maize growth conditions that were not represented by the sampling points. The total
maize planting areas for three years (2010–2012) in the study region were used to determine
the amplifying ratios of the semi-major and semi-minor axes, and the maize planting areas
of the other seven years (2003–2009) were retained for the evaluation of precision.

By calculating the phenological index and the vegetation index for each pixel according
to Equations (12) and (13), the feature point (FGP, NDVIinf) of each pixel can be obtained.
If the feature point falls in the ellipse, the pixel was identified to be maize. Otherwise, it
was classified as other crops. For a detailed description of the maize classifier, refer to
Jiang et al. [50].

The kappa coefficient [51], which was selected to examine the consistency between the
maize classifier and field survey, is as follows:

κ =
Po − Pc

1 − Pc
(15)

where Po and Pc are observed agreement and chance agreement, respectively.
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2.4. Estimation of Crop Yield

The Stewart water production function, which describes the relationship between crop
ET and yield, was used for crop yield estimation [52],

Y
Ym

= 1 −
M

∑
i=1

βi

(
1 − ETi

ETm,i

)
(16)

where Y and Ym are actual crop yield (kg/hm2) and the maximum crop yield without
water stress (kg/hm2), respectively; m is the total days of crop growth; i is the number of
days during the crop growth period; ETi and ETm,i represent the actual and the maximum
crop evapotranspiration of the day i (mm/day), respectively; and βi is the water sensitivity
index that can be calculated by Equations (17) and (18) [53].

Z(t) =
K

1 + B(M/t − 1)n (17)

β(t) = n
Z(t)[1 − Z(t)/K]

t(M − t)
M2dt (18)

where Ym, B, K and n are parameters that can be calibrated by the least squares method
with the minimum squared error between the statistical and estimated maize yields as the
objective function. The water sensitivity index is close to 0 during the crop sowing and
harvesting periods, which are less sensitive to water stress. For a detailed description of
the model, refer to Jiang et al. [54].

2.5. Water-Use Efficiency (WUE) Assessment

WUE of maize can be calculated from [55],

WUEET =
Y

ET
(19)

WUET =
Y
T

(20)

where ET and T are the total evapotranspiration and transpiration of maize during the
growing season (m3/hm2), respectively, and WUEET and WUET are maize WUE based on
evapotranspiration and transpiration (kg/m3), respectively.

2.6. Data Sources

The Moderate Resolution Imaging Spectroradiometer (MODIS) data were chosen as
the main RS data in this study due to their appropriate spatial and temporal resolutions
and availability on a global scale from 2000 (https://ladsweb.modaps.eosdis.nasa.gov
(accessed on 15 October 2019)). Two specific MODIS datasets (MOD09GA and MOD11A1)
were used to obtain the reflectance of specific bands, LST, and other required information.
All original RS data were re-projected into the UTM projection and resampled to a 250 m
spatial resolution. Images with a cloud cover larger than 5% were not used (Table A1). The
broadband surface albedo and NDVI were calculated using specific MODIS reflectance
bands following Liang et al. [56] and Huete et al. [57].

The land use map used in this study was downloaded from the Environmental and
Ecological Science Data Center for West China (http://westdc.westgic.ac.cn (accessed on
1 November 2019)). DEM data and meteorological data for the Hetao Irrigation District
were downloaded from http://srtm.csi.cgiar.org (accessed on 20 November 2019) and
http://data.cma.cn (accessed on 3 December 2019). All data were resampled into a 250 m
spatial resolution to be consistent with the MODIS data.

A field investigation on the locations of the maize fields was carried out throughout
the study region in 2012. A total of 29 representative maize points were selected based
on a global positioning system with positioning accuracy of 2–5m (Figure 1b). Statistical

https://ladsweb.modaps.eosdis.nasa.gov
http://westdc.westgic.ac.cn
http://srtm.csi.cgiar.org
http://data.cma.cn
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acreage and yield data for the maize used in this study are available at the Bayannur
Agricultural Information Network (http://www.bmagri.gov.cn (accessed on 30 December
2019)). Water diversion and drainage data used for water balance analysis were obtained
from the Hetao Irrigation District Administration in the Inner Mongolia Autonomous
Region (http://www.zghtgq.com (accessed on 10 January 2020)).

3. Results
3.1. Model Validation of HTEM and Spatiotemporal Patterns of ET

At the field scale, ET estimated by HTEM closely agrees with the observation (Figure 2a),
with an RMSE of 0.52 mm/day and a mean relative error of 7.0%. The results also showed
that the performance of HTEM in the early and late growth stages was generally better
than that in the middle growing season when ET is higher. At the regional scale, The ET
during the crop growing season estimated by HTEM agreed well with those estimated by
the water balance approach (Figure 2b), with an RMSE and relative error of 26.21 mm/year
and 5.3%, respectively.
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Figure 2. Comparisons of ET estimated from HTEM with observed ET at field scale (a) and regional
ET estimated from water balance analysis (b).

Evapotranspiration based on RS data not only provides the total water consumption
for different land use types but also describes the spatiotemporal variations of ET on
a regional scale. Taking the year 2012 as an example, the spatial distribution of plant
growing period ET, evaporation (E), and transpiration (T) in the study region is illustrated
in Figure 3. Generally, the growing season ET in the northeast of the Hetao Irrigation
District is relatively higher (generally higher than 600 mm), whereas that in the southwest
is significantly lower (lower than 250 mm). The growing season ET of the study region
ranges from 100 mm to 800 mm, and the maximum value occurs in the area near the Yellow
River, along the southern edge of the Hetao Irrigation District.
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The partitioning of soil evaporation and crop transpiration is an advantage of the
dual-source ET models (e.g., HTEM used herein). During the growing season, transpiration
ranges from 250 to 350mm in farmland (Figure 3c) and accounts for 48% of ET on average.
Desert lands and the Gobi Desert occupy most of the southwest regions, with low vegetation
coverage, which leads to smaller transpiration there. Soil evaporation during the growing
season ranges from 250 to 350 mm in most farmland (Figure 3b), accounting for 52% of the
total ET. The highest evaporation is found in flood plains on the left bank of the Yellow River
along the southeast edge of the study area, which is caused by low vegetation coverage
and high soil moisture due to river flooding and seepage [58].The total ET, soil evaporation
(E) and vegetation transpiration (T) of agricultural land during the growing seasons from
2003 to 2012 are shown in Appendix A (Table A2). Our results are broadly consistent with
previous findings in the same region. For example, Yang et al. (2012) [20] mapped temporal
and spatial patterns of ET in Hetao Irrigation District using the SEBAL model and MODIS
data and reported an agricultural land ET ranging from 547 to 605 mm.

3.2. Evaluation of the Crop Classifier and Spatiotemporal Patterns of Maize Distribution

The asymmetric logistic curve described in Equation (12) was chosen to fit the NDVI
time series of sampled maize points (Figure 4a). The fitting result showed that the squared
correlation coefficient between the fitted and sampled values was as high as 0.99. This
result also illustrated that the logistic curve achieved high accuracy in fitting the vegetation
index time-series and captured most of the vegetation growth information.
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Figure 4. Mean NDVI series for sampled points and fitted asymmetric logistic function in 2012 (a) and
the developed ellipse classifier (b).

Results of FGP-NDVIinf at sampled points are illustrated in Figure 4b. The FGP-
NDVIinf points can be approximately encircled by an ellipse. Similar results can also be
found in Peña-Barragán et al. [58]. The minimum ellipse that encircled all sampled maize
points was calculated by the least squares method (Figure 4b).Based on the total maize
planting area for three years (2010–2012) in the study region, the enlarged ratios for the
semi-major and semi-minor axes of the minimum ellipse are calibrated to be 1.38 and 1.45,
respectively (Figure 4b), and the final ellipse classifier for maize [50] is

209x2 + 195xy + 72y2 − 623x − 348y + 495 = 0 (21)

Comparisons of the statistical and classified maize planting areas (Figure 5a) show
that the classifier captured most maize land successfully. The average relative error of
the classifier for the training years (2010–2012) and testing years (2003–2009) were 5.1%
and 20.5%, respectively, and the consistency between the maize classifier and the field
investigation was also checked. The kappa coefficient was as high as 0.86, which shows
that the mapped maize based on the classifier is consistent with the field investigation.
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spatial distribution of maize in 2012 (b).

As an example, Figure 5b shows the spatial distribution of maize in 2012 mapped by
the above maize classifier. Little maize is found in Dengkou because most parts are covered
with non-agricultural land. On the contrary, Linhe is the most important maize planting
region in the study region, and the proportion of maize in all four counties is 32%.

3.3. Maize Evapotranspiration during the Whole Growth Period

Maize ET can be estimated from the results of Sections 3.1 and 3.2. Due to little
maize planting area in Dengkou County, the maize growing season ET of the other three
counties (HH, LH and WY) were analyzed and further used in crop yield estimations.
Taking Hangjinhouqi as an example, the county-averaged daily ET and T during the maize
growing season in 2012 are shown in Figure 6. The results show that maize was sown
around the 114th day and harvested around the 278th day, with an average growth period
of 165 days. The daily ET during the maize growth period tended to increase first and then
decrease, with a total ET of 531 mm. The daily ET at the beginning of the growing season
was as small as 2 mm/day and gradually increased thereafter. The daily ET reached the
highest value of >5 mm/day around the 200th day. Then the maize ET started to decrease
until harvest.
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Figure 6. Variations in maize ET and T in Hangjinhouqi during the growing season of 2012.

The maize transpiration during the growth period (Figure 6) shows that the total
transpiration of maize in Hangjinhouqi was 324 mm in 2012, accounting for 61% of the total
ET. The results illustrate that the variation in maize transpiration (T) is generally similar
to that of ET. Transpiration of maize is low at the beginning of the growing season when
the vegetation fraction is small. Afterward, transpiration increases rapidly. The maximum
transpiration of >4 mm/day occurs at about the 200th day and the 220th day. Subsequently,
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transpiration decreases until the end of the growing season.The detailed ET and T of maize
in the study region are summarized in Appendix A (Table A3).

3.4. Maize Yield Estimation Based on ET and Maize Mapping

Maize yield over the study region was estimated by the crop water production function,
as described in Section 2.4. The simulated result of the crop yield based on the water
production function is shown in Table 1 [54]. The results show that the estimated yield
agrees well with the statistical yield during the study period. The mean relative error and
the mean absolute error of the Stewart function are 4.30% and 446.33 kg/hm2, respectively,
and the correlation coefficient between estimated yield and statistical yield is 0.75. The
results of estimated maize yields averaged in three counties from 2003 to 2012 can be found
in Table 2. It is seen that the average annual maize yield estimated in Hangjinhouqi, Linhe
and Wuyuan are 10,353 kg/hm2, 10,104 kg/hm2 and 10,071 kg/hm2, respectively. By
comparing the maize yields of different counties, Hangjinhouqi and Wuyuan have the
highest and lowest maize yields, respectively. The relative errors between estimated yield
and statistical yield in Hangjinhouqi, Wuyuan, and Linhe range from 1.52% to 11.84%,
from 0.45% to 14.49%, and from 0.03% to 5.28%, respectively. Compared with other similar
studies [59,60], the maize yield estimation model based on crop water production function
is reliable, with high accuracy.

Table 1. Results of fitted water production function and accuracy evaluation [54].

Function
Parameters Accuracy Evaluation

K B n MRE 1 (%) MAE 1 (kg/hm2) R2

Stewart 1.10 2.76 5.00 4.30 446.33 0.75
1 MRE and MAE refer to mean relative error and mean absolute error, respectively.

Table 2. Comparison of estimated and statistical maize yields in three counties from 2003 to 2012.

Year

Hangjinhouqi Linhe Wuyuan

Estimated
Yield

(kg/hm2)

Statistical
Yield

(kg/hm2)

Relative
Error (%)

Estimated
Yield

(kg/hm2)

Statistical
Yield

(kg/hm2)

Relative
Error (%)

Estimated
Yield

(kg/hm2)

Statistical
Yield

(kg/hm2)

Relative
Error (%)

2003 11,737.06 13,313.34 11.84 11,508.48 11,484.26 0.21 11,998.44 10,479.76 14.49
2004 10,144.89 11,169.42 9.17 9999.46 9917.54 0.83 9970.73 9010.49 10.66
2005 10,322.50 11,184.41 7.71 10,267.22 9932.53 3.37 9722.08 9160.42 6.13
2006 10,466.77 11,154.42 6.16 9988.67 9925.04 0.64 9821.04 9152.92 7.30
2007 9627.42 9992.50 3.65 9177.72 9107.95 0.77 8602.49 8268.37 4.04
2008 9695.19 10,202.40 4.97 9821.48 9767.62 0.55 10,018.23 9580.21 4.57
2009 10,069.08 10,224.89 1.52 10,116.72 10,119.94 0.03 9906.74 9745.13 1.66
2010 9797.02 10,337.33 5.23 10,282.75 10,187.41 0.94 10,306.02 9887.56 4.23
2011 10,710.15 10,277.36 4.21 9550.31 10,082.46 5.28 9947.46 9902.55 0.45
2012 10,956.75 10,682.16 2.57 10,328.28 10,172.41 1.53 10,418.75 10,862.07 4.08

Mean 10,352.68 10,853.82 4.62 10,104.11 10,069.72 0.34 10,071.20 9604.95 4.85

3.5. Spatiotemporal Variations of Maize WUE from 2003 to 2012

Spatial distributions of WUEET and WUET in four representative years are shown in
Figures 7 and 8, and the annual WUEET and WUET averaged in the three counties are given
in Figure 9. The average annual WUEET of maize in Hangjinhouqi (HH), Linhe (LH), and
Wuyuan (WY) are 1.93 kg/m3, 1.96 kg/m3, and 1.92 kg/m3, respectively, with little inter-
annual variation (Figure 9), and the WUEET in Linhe is slightly higher than the other two
counties in most years (Figures 7 and 9). Meanwhile, the average annual WUET of maize
in these three counties varied greatly during the study period (Figures 8 and 9). Wuyuan
and Linhe exhibited the highest and lowest average WUET of 3.08 kg/m3 and 3.04 kg/m3,
respectively. Considering the spatial distribution of WUEET, maize planting maybe more
concentrated in the middle parts of the study region (e.g., Linhe and Hangjinhouqi).
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Figure 9. Average WUE of maize in three counties during the study period.

The WUEET and WUET varied over the years. Taking Hangjinhouqi as an example, the
WUEET of maize ranged from 1.75 kg/m3 in 2004 to 2.19 kg/m3 in 2006, with an average
value of 1.93 kg/m3 in the study period, while the average annual WUET varied more than
the WUEET, ranging from 2.70 kg/m3 in 2007 to 3.43 kg/m3 in 2006, with an average of
3.07 kg/m3. These results are consistent with the results in [61], which simulated the crop
water-use efficiency of Hangjinhouqi in 2012 and 2013 based on the Hydrus-Epic model.

4. Discussion

In this study, we assessed the water-use efficiency (WUE) of maize in three counties of
the Hetao Irrigation Districts from RS-based maize mapping and ET and maize yield esti-
mation models. The maize mapping and ET estimation models were fed with MODIS data,
and the maize yield estimation model took the estimated ET as input. These models were
calibrated and validated with field experiments, field surveys, and/or official statistical
data. Results show that the accuracy levels of the models are all satisfactory.

Based on the WUE estimation results, the impact of total water input (precipitation +
net water diversion from the Yellow River) on ET, T, yield, and WUE were further analyzed
(Figure 10). In the study period, total water input decreased slightly due to the water-
saving practices in the Hetao Irrigation District, which caused a slight decrease in maize
transpiration and ET (Figure 10a), although the decreasing trends are not statistically
significant at the significance level of 0.05. Meanwhile, the maize yield also showed a slight
decreasing trend (Figure 10b), but the relative rate of decrease (the ratio of the absolute
value of slope to constant in the fitted trend line) was slightly smaller than that of ET and
significantly smaller than that of T. As a result, both WUEET and WUET showed increasing
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trends, especially WUET (Figure 10b). These results imply a negative correlation between
WUE and the total water input, and the reduction in total water input may improve WUE
to a certain extent, especially for WUET. Moreover, these results also demonstrate the effect
of the water-saving rehabilitation program, i.e., increased WUE with decreased net water
diversion.
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Figure 10. Variations in maize evapotranspiration (ET), transpiration (T), and total water input
(precipitation + net water diversion, P+Wn) (a) and maize yield, WUEET, and WUET (b) in the
study period.

Considering the trade-off between maize yield decrease and WUE increase, the water-
saving program should be planned properly to avoid a significant decrease in maize yield.
The reduced irrigation water diversion from the Yellow River during the study period
resulted in a decrease in maize yield, which will become more severe if the amount of
irrigation water continues to decrease. Maintaining a relatively steady level irrigation water
diversion is necessary for the sustainability of crop production in the region.

5. Conclusions

The growing seasons (April to October) ET and maize cover from 2003 to 2012 in the
Hetao Irrigation District were mapped using HTEM and a crop classifier fed with MODIS
data. Maize yield was then estimated by the crop water production function, and the WUE
of maize was estimated and analyzed for the study period. The results are summarized
as follows:

(1) The HTEM model performs well in the study region, with RMSE of 0.52 mm/day at
the field scale and 26.21 mm from April to October at the regional scale during the
whole study period.

(2) The asymmetric logistic function is applicable in describing the maize NDVI time
series at sampling points with a mean coefficient of determination of 0.99. Meanwhile,
a classifier based on phenological and vegetation indices can obtain spatial distribution
and determine the inter-annual variability of maize cover in multiple years. The mean
relative errors for the training and testing years were 5.13% and 20.53%, respectively.

(3) The maize yield estimation model based on the Stewart water production function can
estimate maize yield with high accuracy in multiple years. The mean relative error
and mean absolute error between estimated yield and statistical yield were 4.30% and
446.33 kg/hm2, respectively.

(4) The average annual WUEET and WUET in the Hetao Irrigation District were 1.94 kg/m3

and 3.06 kg/m3, respectively. The results show a negative correlation between WUE
and net water diversion.

This study provides a reliable method for mapping crop WUE on a regional scale.
More studies on WUE in the Hetao Irrigation District in recent years will continue, for
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example, by mapping more kinds of crops under complex planting structures with high
spatiotemporal-resolution remote-sensing data, by analyzing the spatiotemporal variation
of WUE in recent years, by identifying the major influencing factors (vapor pressure deficit,
CO2 concentration, temperature, photosynthetic efficiency, etc.), and by understanding the
response mechanisms of WUE to climate change and human activity.
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Appendix A

Table A1. MODIS images used in this study.

Year Total Number Day of Year

2003 58
36, 43, 54, 57, 68, 79, 80, 85, 103, 105, 108, 110, 114, 120, 121, 128, 129, 139, 144, 148, 153, 156, 157, 164, 173, 174,
189, 201, 208, 214, 217, 223, 228, 231, 235, 245, 251, 253, 255, 256, 265, 266, 274, 287, 288, 290, 294, 297, 299, 303,
306, 308, 319, 326, 333, 335, 340, 347

2004 65
2, 37, 41, 50, 53, 60, 66, 71, 90, 92, 94, 98, 99, 101, 105, 108, 114, 117, 119, 126, 128, 133, 142, 151, 160, 162, 172,
174, 183, 188, 202, 208, 217, 220, 225, 229, 238, 241, 244, 247, 252, 259, 261, 264, 265, 266, 270, 275, 277, 281, 284,
286, 288, 295, 300, 302, 313, 316, 320, 325, 334, 336, 339, 345, 354

2005 61
50, 64, 66, 71, 76, 78, 82, 87, 94, 99, 103, 105, 107, 110, 117, 121, 123, 126, 128, 131, 133, 147, 149, 153, 162, 164,
169, 171, 173, 186, 196, 204, 212, 215, 229, 238, 244, 245, 251, 256, 265, 276, 279, 281, 283, 288, 290, 297, 302, 304,
309, 313, 315, 317, 322, 324, 327, 329, 332, 350, 357

2006 56
8, 49, 54, 60, 65, 67, 72, 74, 79, 81, 83, 85, 88, 105, 110, 113, 120, 126, 133, 138, 142, 147, 151, 154, 161, 165, 167,
177, 181, 186, 207, 209, 211, 213, 218, 227, 232, 245, 248, 252, 259, 277, 282, 284, 289, 291, 294, 295, 298, 303, 305,
309, 312, 314, 318, 325

2007 53
12, 17, 31, 36, 83, 93, 95, 97, 114, 116, 120, 125, 132, 138, 139, 145, 146, 148, 152, 155, 159, 164, 175, 191, 196, 200,
212, 214, 219, 225, 228, 232, 239, 246, 251, 253, 262, 264, 266, 267, 287, 292, 298, 301, 308, 310, 312, 317, 324, 331,
333, 349, 365

2008 64
4, 9, 53, 57, 59, 62, 64, 66, 69, 75, 77, 86, 93, 98, 101, 105, 107, 114, 116, 119, 121, 125, 126, 128, 135, 139, 141, 144,
151, 158, 162, 176, 182, 183, 186, 188, 194, 197, 203, 215, 217, 224, 235, 240, 244, 249, 255, 256, 274, 276, 279, 285,
290, 299, 304, 306, 309, 313, 324, 333, 336, 340, 345, 352

2009 70
22, 27, 32, 36, 41, 45, 50, 59, 64, 72, 79, 82, 87, 91, 95, 98, 105, 111, 116, 119, 123, 125, 132, 137, 142, 146, 150, 151,
155, 164, 171, 174, 175, 176, 180, 182, 187, 192, 196, 205, 212, 214, 217, 221, 223, 224, 225, 226, 228, 231, 239, 242,
244, 254, 260, 264, 265, 267, 269, 271, 275, 279, 281, 285, 287, 290, 297, 299, 301, 311

2010 58
49, 50, 56, 74, 85, 91, 92, 96, 103, 105, 113, 119, 121, 122, 130, 131, 139, 151, 153, 156, 162, 169, 170, 171, 178, 186,
190, 192, 199, 201, 202, 203, 209, 210, 217, 220, 231, 234, 238, 240, 247, 254, 256, 265, 266, 268, 276, 277, 279, 281,
288, 290, 298, 325, 332, 334, 336, 352

2011 55
28, 30, 33, 44, 58, 62, 69, 74, 83, 92, 100, 101, 104, 108, 111, 132, 133, 136, 141, 143, 150, 152, 163, 165, 181, 193,
195, 196, 197, 200, 207, 211, 213, 214, 218, 221, 228, 234, 238, 241, 243, 253, 255, 266, 268, 275, 277, 289, 293, 314,
316, 319, 323, 341, 348

2012 76
32, 34, 38, 41, 45, 49, 52, 57, 66, 68, 70, 72, 83, 84, 90, 95, 97, 107, 112, 118, 122, 130, 135, 137, 139, 143, 145, 151,
153, 160, 162, 164, 167, 168, 169, 177, 184, 186, 187, 193, 205, 208, 211, 221, 222, 225, 232, 234, 235, 239, 241, 242,
248, 250, 257, 258, 263, 271, 272, 273, 276, 283, 285, 296, 299, 301, 303, 305, 306, 317, 319, 324, 330, 331, 333, 344
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Table A2. Total ET, soil evaporation (E), and vegetation transpiration (T) of agricultural land during
the growing seasons from 2003 to 2012.

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Max Min Average

ET/mm 625 618 600 599 624 603 617 640 622 617 640 599 617
E/mm 287 317 306 331 310 326 332 335 325 319 335 287 319
T/mm 338 301 294 268 314 277 285 305 297 298 338 277 298
T/ET 0.54 0.48 0.49 0.45 0.50 0.46 0.46 0.48 0.48 0.48 0.54 0.45 0.48

Table A3. ET and T of maize during the growing seasons from 2003 to 2012.

Year
Hangjinhouqi Linhe Wuyuan

ET/mm T/mm ET/mm T/mm ET/mm T/mm

2003 574 373 560 369 594 386
2004 581 361 536 354 568 364
2005 540 343 522 338 497 322
2006 478 305 474 307 486 306
2007 539 356 529 344 523 343
2008 512 310 489 314 479 311
2009 541 310 537 323 533 318
2010 547 353 523 333 512 302
2011 550 352 512 334 544 325
2012 531 324 510 314 553 303

Average 539 339 519 333 529 328
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