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Abstract: Actual evapotranspiration (ETa) is important since it is an important link to water, energy,
and carbon cycles. Approximately 96% of the Qinghai-Tibet Plateau (QTP) is underlain by frozen
ground, however, the ground observations of ETa are particularly sparse–which is especially true
in the permafrost regions–leading to great challenge for the accurate estimation of ETa. Due to
the impacts of freeze-thaw cycles and permafrost degradation on the regional ET process, it is
therefore urgent and important to find a reasonable approach for ETa estimation in the regions.
The complementary relationship (CR) approach is a potential method since it needs only routine
meteorological variables to estimate ETa. The CR approach, including the modified advection-aridity
model by Kahler (K2006), polynomial generalized complementary function by Brutsaert (B2015) and
its improved versions by Szilagyi (S2017) and Crago (C2018), and sigmoid generalized complementary
function by Han (H2018) in the present study, were assessed against in situ measured ETa at four
observation sites in the frozen ground regions. The results indicate that five CR-based models
are generally capable of simulating variations in ETa, whether default and calibrated parameter
values are employed during the warm season compared with those of the cold season. On a daily
basis, the C2018 model performed better than other CR-based models, as indicated by the highest
Nash-Sutcliffe efficiency (NSE) and lowest root mean square error (RMSE) values at each site. On a
monthly basis, no model uniformly performed best in a specific month. On an annual basis, CR-based
models estimating ETa with biases ranging from −94.2 to 28.3 mm year−1, and the H2018 model
overall performed best with the smallest bias within 15 mm year−1. Parameter sensitivity analysis
demonstrated the relatively small influence of each parameter varying within regular fluctuation
magnitude on the accuracy of the corresponding model.

Keywords: actual evapotranspiration; complementary relationship; permafrost; seasonally frozen
ground; Qinghai-Tibet Plateau

1. Introduction

Terrestrial evapotranspiration (ET) is an important part of the water cycle and surface en-
ergy balance, which is not only the nexus of the water cycle in the soil–vegetation–atmosphere
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continuum, but also a crucial link in the mass exchange and energy balance of the land
surface [1,2]. Accurate estimation of ET is important to deeply understand how much liq-
uid or solid water from land transforms as vapor in the atmosphere, which has significant
implications for regional weather or climate conditions, and water resource management, such
as ecological conservation and agricultural management, etc. [3–5].

In practice, ET estimation is often challenging because of complex land–atmosphere
interactions, which often involve relevant micrometeorological, hydrological, or ecolog-
ical methods [6,7]. In recent decades, great progress has been made on the theories and
technologies of actual evapotranspiration (ETa) regardless of observations or simulations,
significantly contributing to our knowledge of the ET process [8–12]. Current ET esti-
mation approaches, such as land surface models or remote sensing technologies, have
been successfully applied to various climatic or ecosystem zones [13–15]; however, the
above approaches generally have relatively higher uncertainty in parameterization schemes
at specific zones and require detailed information on vegetation or soil properties [16],
which is especially difficult for data-scarce regions. For example, the Penman-Monteith
(PM) [17,18] equation is often used to calculate potential evapotranspiration (ETp), which
is close to ETa under ample water supply conditions, and with a higher accuracy. However,
under water-limited conditions, the PM method assumes typically that ETa is proportional
to the ETp (rescaling with soil moisture content), giving rise to practical difficulties such as
soil moisture data unavailability in harsh environments where the estimation has a higher
uncertainty. In addition, the assumption of the positive relationship between ETa and ETp
may be rejected by observational evidence that supports negative correlations between the
two variables [19]. Han [20] emphasized that the correlation between ETa and ETp depends
mainly on water availability rather than always being positive.

Bouchet [21] first proposed another important hypothesis about ETa estimation, often
called the “Bouchet hypothesis”. In contrast to the PM method, Bouchet [21] described the
negative relationship between ETa and ETp caused by land-atmosphere feedback, which is
also referred to as the complementary relationship (CR) approach. The greatest advantage
of the CR approach is that it does not require any vegetation and soil information, and only
a few model parameters and routine meteorological forcing data are needed [22,23]. Vari-
ous models based on the CR approach have been proposed over the past decades [24]. The
most widely used CR-based models include the AA (advection-aridity) model [25], CRAE
(complementary relationship areal evapotranspiration) model [26], and GG (Granger and
Gray) model [27], which are all based on the linearly symmetric CR approach. However,
some later studies [28,29] have found that the complementary relationships are not symmet-
ric, and they further proposed various asymmetric linear CR-based functions. Nevertheless,
Han [30] found that both symmetric and asymmetric linear CR-based functions have poor
generality and are applicable only to some mild climate regions. To extend the applicability
of the CR function, Han [31] and Brutsaert [32] generalized the CR approach; subsequently,
many studies have further refined the CR approach based on the above [33–37]. At present,
various CR-based models have been applied to different ecosystems (shrubland, cropland,
grassland, etc.) or climate (arid, semiarid, temperate) regions around the world on annual,
monthly, daily, and sub-daily timescales [38–42], but very few studies focused on frozen
ground regions on the Qinghai-Tibet Plateau (QTP), which may limit the development and
application of the CR approach in frozen ground regions.

The QTP accounts for approximately a quarter of China’s land area, with an average
altitude greater than 4000 m above sea level, known as the “roof of the world” and the “third
Pole” [43]. Its vast topography and high altitude have significant impacts on the weather
and climate of East Asia and even the world through thermal and dynamic forcing [44,45].
Additionally, frozen ground is widely distributed on the QTP [46], accounting for 96% of
the area (including approximately 40% permafrost and 56% seasonally frozen ground).
In these regions, freeze-thaw seasonal cycles and permafrost degradation [47,48] have
certainly affected the regional hydrothermal balance of the soil–vegetation–atmosphere
system; however, one of the current obstacles is that little is known about how seasonal
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and long-term ETa rates have changed in the frozen ground regions. In recent decades,
several comprehensive observation sites have been established [49,50], improving our
understanding of the ET process, but large-scale ETa estimation in the frozen ground
regions of the QTP is still sparse. Hence, the above CR approach using only routine
meteorological observations seems to be a feasible method. Wang [51] have improved and
validated one CR-based model when applied to a permafrost sites on the QTP, but it is still
unclear about which CR-based models are best for ETa estimation in this region.

This study utilized four comprehensive field sites, which are all located in the frozen
ground regions of the QTP, based on five CR-based models with in situ measurement
meteorological and eddy-covariance (EC) flux data, to calculate variables and optimize
parameters in CR-based models. The objective of this study was to clarify the applicability
of five widely used CR-based models in the frozen ground regions of the QTP and further
investigate the uncertainty of the CR approach in ETa estimation. The results of this study
could provide a reference for the applicability of CR-based models in the frozen ground
regions of the QTP and provide a simple and feasible option for future large-scale terrestrial
ETa in such data-scarce regions.

2. Materials and Methods
2.1. Site Description

In this study, in situ measurement data were collected from four comprehensive
observation field sites (Figure 1). Tanggula (TGL, 91.86◦E, 32.58◦N, 5100 m asl) and Xidatan
(XDT, 94.13◦E, 35.72◦N, 4538 m asl) lie in the south edge and northern limit of permafrost
regions of QTP, covered by alpine steppe and alpine meadow, where the annual average
air temperature is about −4.7 ◦C and −3.6 ◦C, and the annual accumulated precipitation
is about 352 and 384.5 mm, respectively [52]. Another two field sites, Nagqu (BJ, 91.90◦E,
31.37◦N, 4509 m asl) and Nam Co (NAMORS, 90.96◦E, 30.77◦N, 4730 m asl), lie in the
seasonally-frozen ground regions of QTP, covered by alpine meadow and alpine steppe,
where the annual average air temperature is about 0.54 ◦C and −0.36 ◦C, and the annual
accumulated precipitation is about 436 and 462 mm, respectively [53]. All the sites are near
the Qinghai-Tibet highway.
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2.2. In Situ Measurement Data and Data Processing

All four selected field sites include eddy covariance flux data, meteorological data,
soil temperature, soil moisture content, and soil heat flux data in a shallow soil layer. Eddy
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covariance flux data, including latent heat flux (LE) and sensible heat flux (H), were used to
identify the performance of the different CR-based models. All EC systems were installed
on towers about 3 m distance from the ground, consisting of a three-dimensional sonic
anemometer (CAST3, Campbell Scientific Inc., USA) that measured instantaneous horizon-
tal (u,v), vertical (w) wind speeds and sonic air temperature fluctuations, and an open path
infrared gas analyser (Li-7500, LI-cor Inc., USA) that measured the water vapor density
and carbon dioxide concentrations fluctuations. The EC instruments were all sampled at a
frequency of 10 Hz. The corresponding meteorological data, including roughly 2 m down-
wards/upwards shortwave and longwave radiation, air temperature, relative humidity,
wind speed, and pressure, were employed to drive each CR-based model. Soil temperature,
soil moisture content, and soil heat flux data in shallow soil layer (within 10 cm from ground
surface) were used to calculate ground heat flux for variables in CR-based models. All above
observations were recorded at intervals of 30 min. Data of TGL and XDT were provided
from Cryosphere Research Station on the Qinghai-Tibet Plateau, Northwest Institute of Eco-
Environment and Resources, CAS (http://new.crs.ac.cn/, 1 September 2021). Data of BJ
and NAMORS were provided from National Tibetan Plateau Third Pole Environment Data
Center, CAS (https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/,
1 September 2021). In addition, two different selected study periods of each field site were
determined by data integrity and continuity; observation of first and second year was taken
as calibration and validation period, respectively.

The EC flux raw data processing was conducted on EddyPro7.0.6 software, and the
main processing steps included spike detection, lag corrections of H2O/CO2 relative to
the vertical wind component, sonic virtual temperature correction, coordinate rotation
(planar fit rotation), corrections for Webb-Pearman-Leuning density fluctuations, and
frequency response correction. The 30 min data output by EddyPro software was screened
as follows: (1) the data of instrument error was removed; (2) 30-min record data with more
than 10% missing values were excluded; (3) night data with weak turbulence (friction
velocity (u*) less than 0.1 m s−1) were eliminated; (4) data with quality control code “2” (“2”
indicate poor quality) were filtered out [54]. Then, half-hourly data during data available
period accounts for filling the gaps; for gaps within seven consecutive days, they were
filled using REddyProcWeb online tool (https://www.bgc-jena.mpg.de/bgi/index.php/
Services/REddyProcWeb, 1 September 2021); for gaps longer than seven consecutive days,
they were filled alternatively using aerodynamic method [55] or Bowen ratio energy balance
method [56] for 30-min intervals. Finally, 30 min gap-filled flux data were aggregated into
daily values. Ground heat flux were computed by linear method and thermal diffusion
equation (TDE); detailed calculation processes are described in Yang [57] and Yao [58].
The daily energy balance closure ratios are 0.85, 0.79, 0.95, and 1.1 at TGL, XDT, BJ, and
NAMORS, respectively (Figure 2).

It should be noted that on snow cover days, snow sublimation was one of the main
evapotranspiration forms for four selected sites. Due to lack of observation of snow cover,
this study employed the albedo instead, defined as the ratio of upward short wave radiation
to downward shortwave radiation, to identify whether the observation field was snow-free
or not. To exclude the influence of solar elevation angle, daily mean albedo was calculated
as the average of half-hourly albedo from 10:00 to 14:00, local time. According to the
variations of albedo at each observation fields, snow cover days were determined. In
addition, snowfall still occurs during warm season at some observation fields, however,
snow generally melts quickly to liquid water in few hours; thus, on a daily basis, only
sublimation during cold season (from October to April in the next year) were considered.
Then, the latent heat of vaporization—λv (J Kg−1), for snow free days—and the latent heat
of sublimation—λs (J Kg−1), for snow cover days—were calculated using Equation (1), and
the results were then used to calculate the actual evapotranspiration or sublimation [59]:{

λv = (2500− 2.4Ta)× 103

λs = (2834.1− 0.149Ta)× 103 (1)

http://new.crs.ac.cn/
https://data.tpdc.ac.cn/en/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
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where Ta (◦C) is the air temperature measured at 2 m high.
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2.3. Complementary Relationship (CR) Approach

The CR approach involves three types of evaporation, namely, the actual evaporation
(E, note: followed by “E” instead), the apparent potential evaporation (Epa), and the wet-
environment evaporation (Epo). The CR approach is expressed as follows: for relatively
larger and homogeneous surfaces with minimum advection, under certain net radiation
inputs, E decreases with the availability of limited water over the underlying surface, and
the energy that would be consumed by the latent heat flux thus becomes the sensible heat,
thus increasing Epa. Hence, one can predict water-limited E by gauging how much Epa is
raised from the hypothetical evaporation rate that should occur under the full wetness (Epo).
Previous studies [60] hold that a unit decrease in E yields a corresponding unit increase in
Epa, signifying a symmetric CR. This can be expressed as follows:

Epa − Epo = Epo − E (2)

Epa and Epo is calculated as follows:

Epa = Erad + Eaero =
∆(Rn − G)

∆ + γ
+

γ f (U)(eo − ea)

∆ + γ
(3)

Epo = αeErad = αe
∆(Rn − G)

∆ + γ
(4)

where Erad is the radiation term, Eaero is the aerodynamic term, αe is an analog of the
dimensionless Priestley-Taylor coefficient, (Rn − G) is the available energy (mm d−1), ∆ is
the slope of saturation vapor pressure curve at the air temperature Ta (kPa ◦C−1), γ is
the psychrometric constant (kPa ◦C−1), and eo and ea are the saturation and actual vapor
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pressure of the air (kPa), respectively. f (U) (mm d−1 kPa−1) is the wind function calculated
by Penman’s original empirical linear equation:

f (U) = 2.6(1 + 0.54U2) (5)

where U2 is the measured wind speed (m s−1) at 2 m height.
Here, five CR-based models were selected to estimate E: the modified AA model [28]

represents the linear CR version; the polynomial CR function [32] and sigmoid CR func-
tion [36] both represents the generalized nonlinear CR concept, and they represent different
improved versions of the original CR approach mainly in physical boundary constraints;
in addition, the calibration-free CR function and rescaled CR function are two improved
versions based on the polynomial CR function [33–35].

2.3.1. Modified AA Model

The modified AA model extended the symmetric CR principle (herein referred to as
K2006) and the equation becomes asymmetry as follows:

yK =
b + 1

b
xK −

1
b

(6)

where b is a coefficient that depicts the proportion of the sensible heat that increases Epa,
xK = Epo/Epa, yK = E/Epa. The only physical constraint is E ≤ Epo ≤ Epa; when the water
availability of the landscape is not limited, E is assumed to proceed at Epa and E = Epo = Epa.

2.3.2. Polynomial Generalized Complementary Function

Brutsaert [32] reformulated a new general polynomial complementary function satis-
fying boundary conditions based on strictly physical constraints, referred to as the B2015
model, and its boundary conditions were as follows:

yB = 1, xB = 1
yB = 0, xB = 0
dyB
dxB

= 1, xB = 1
dyB
dxB

= 0, xB = 0

(7)

where xB = Epo/Epa, yB = E/Epa. The function form is as follows:

yB = (2− c)xB
2 − (1− 2c)xB

3 − cxB
4 (8)

c is an adjustable parameter which need to be locally calibrated.

2.3.3. Calibration-Free CR Function

Szilagyi [35] utilized the same function forms as the B2015 model (herein referred to
as S2017), and the equation is as follows:

yS = 2XS
2 − XS

3 (9)

where yS is the same as yB, XS is defined as

XS =
Epmax − Epa

Epmax − Epo_c

Epo_c

Epa
(10)

Here two variables (Ep max and Epo_c) are introduced to improve the performance of
S2017 function. Ep max is the maximum value that Epa can theoretically reach, which may
appear when the air loses all moisture, that is,
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Epmax =
∆Tdry(Rn − G)

∆Tdry + γ
+

γ f (U)
(

eo,Tdry − 0
)

∆Tdry + γ
(11)

where ∆Tdry and eo,Tdry are the slope of the saturation vapor pressure curve and saturated
vapor pressure, respectively, at extreme dry environment air temperature, Tdry (◦C). Tdry
can be estimated from the adiabatic line as follows:

Tdry =
eo,Twb(Ta − Twb)

eo,Twb − ea
+ Twb (12)

where Twb (◦C) is the wet-bulb temperature, and eo,Twb (kPa) is the saturated vapor pressure
at Twb. Twb is derived by another iteration of solving for the Bowen ratio during adiabatic
changes, that is,

γ
Twb − Ta

eo,Twb − ea
= −1 (13)

Another one variable Epo_c is defined as

Epo_c = αeErad = αe
∆wea(Rn − G)

∆wea + γ
(14)

where ∆wea (kPa ◦C−1) is the slope of the saturation vapor pressure curve at Twes. Epo_c
is the wet environment evapotranspiration rate calculated with ∆wea instead of ∆. Note
that S2017 function uses Epo_c instead of Epo because the latter variable is based on local air
temperature, which is physically improperly employed to calculate wet environment evap-
oration. Szilagyi and Jozsa (2008) [61] suggested Equation (4) should use wet environment
air temperature (Twea). Twea cannot be measured directly under water-limited conditions
but can be approximated by the wet surface temperature (Twes). According to Szilagyi [62],
Twes can be solved iteratively by implementing the Bowen ratio of a small wet patch, that is,

βw =
Rn − G− Epa

Epa
≈ γ

Twes − Ta

eo,Twes − ea
(15)

in which βw is the Bowen ratio of the wet patch (assuming that the available energy for the
wet patch is close to that of the drying surface), and eo,Twes is the saturated vapor pressure
at Twes(≈Twea). Note that Twes may be larger than Ta when air is close to saturation, and in
such cases, Twea should be replaced by Ta.

2.3.4. Rescaled Complementary Function

Crago [34] used a similar method to the S2017 model, with Ep max introduced to rescale
xB, and new analytical forms (herein referred to as C2018) have been proposed as follows:

xmin =
Epo_c
Epmax

XC = x−xmin
1−xmin

yC = XC

(16)

where yC are consistent with the corresponding variables of yS in the S2017 model.

2.3.5. Sigmoid Generalized Complementary Function

Han [36] brought in the minimum and maximum limits of Erad/Epen (xmin and xmax)
under an assumed constant Erad and rederived four new boundary conditions fitting
to two widely accepted assumptions following Penman’s combination theory, namely,
dE/dEpen = 0 in extremely arid environments and E = Epen in completely wet environments.
The boundary conditions are as follows:
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yH = 0, xH → xmin
yH = 1, xH → xmax
dyH
dxH

= 0, xH → xmin
dyH
dxH

= 0, xH → xmax

(17)

The following new sigmoid function in accordance with the above boundary condi-
tions were also proposed (herein referred to as H2018):

yH =
1

1 + m
(

xmax−xH
xH−xmin

)n (18)

where xH = Erad/Epen, yH = E/Epen, and the calculation of Erad and Epen (equal to Epa) refers
to Equation (3); m and n are two unknown parameters that need to be locally calibrated.{

n=
4α(1+b−1)(x0.5−xmin)(xmax−x0.5)

xmax−xmin

m=
(

x0.5−xmin
xmax−x0.5

)n (19)

where x0.5 is a variable that corresponds to yH = 0.5 (simply reflecting a temperate envi-
ronment). Han [36] conducted that x0.5 = 0.5+b−1

αe(1+b−1)
, xmax and xmin can be simply set as 1

and 0 on a daily time scale, respectively. For longer time scales, xmax and xmin needed to be
locally calibrated.

2.4. Model Parameter Calibration Methods

For the CR approach, one of the most important steps is to determine unknown
parameter values. Generally, “optimal” parameter values could be either derived from
transplanting from elsewhere, or are locally calibrated. First, “optimal” parameter values
between two different sites are roughly equal under similar climatic or underlying surface
conditions. In our study, the vegetation type of all four selected sites was grassland, so
we set the “optimal” parameter values from other grassland sites reported in previous
literature as the default values in each CR-based model. Note that the unknown parameters
in the K2006, B2015, and H2018 models used corresponding values from the US-Fpe flux
site [36] as default values, and the unknown parameters in S2017 and C2018 model used cor-
responding values from the Riggs Creek site at Australia [34] as default values, respectively.
Second, unknown parameters of each CR-based model were all optimized by minimizing
the root mean square error of the simulated and measured daily E during the calibrated
period, and then the calibrated parameter values were used for the validation period.

2.5. Model Evaluation Criteria

To assess the model performance, five statistical metrics, including root mean square
error (RMSE), mean absolute error (MAE), mean bias error (MBE), Nash-Sutcliffe efficiency
(NSE), and correlation coefficient (CC) are used to evaluate the accuracy of simulated E
with in situ measurements:

RMSE =

√√√√ 1
N

N

∑
i=1

(Esim,i − Eobs,i)
2 (20)

MAE =
1
N

N

∑
i=1

∣∣Esim,i − Eobs,i
∣∣ (21)

MBE =
1
N

N

∑
i=1

(Esim,i − Eobs,i) (22)
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NSE = 1−

N
∑

i=1
(Esim,i − Eobs,i)

2

N
∑

i=1

(
Eobs,i − Eobs

)2
(23)

CC =

N
∑

i=1

(
Esim,i − Esim

)(
Eobs,i − Eobs

)
√

N
∑

i=1

(
Esim,i − Esim

)2
√

N
∑

i=1

(
Eobs,i − Eobs

)2
(24)

where N is the number of observation, Esim,i (i = 1, 2, 3, . . . , N) is the simulated actual
evapotranspiration value, Eobs,i is the observed actual evapotranspiration value, Esim and
Eobs are the mean values of Esim,i and Eobs,i, respectively.

3. Results
3.1. Variations in ET Rates at Four Observation Sites

The daily variations in actual evapotranspiration (E), sublimation, radiation term
(Erad), and apparent potential evapotranspiration (Epa) rate at four observation field sites
are shown in Figure 3. Note that relatively larger errors of observation may exist at
NAMORS during some periods, especially in the warm season when E is larger than Epa,
which is discrepant with Penman’s evaporation theory. Visibly, among four observation
field sites–whether located in permafrost regions or seasonally frozen ground regions–are
both clear seasonal variations of each ET variable: higher E and Epa usually occurs during
the warm season, maximum E could reach approximately 4 mm d−1 at TGL and XDT, and
5 mm d−1 or more at BJ and NAMORS. For Epa, which exhibited greater daily fluctuations
compared with E and Erad, the maximum Epa ranges from 5 mm d−1 to 7 mm d−1 at
four selected sites: low E occurred during cold seasons and was generally close to zero
when soils were frozen, except at NAMORS, and Epa and Erad was relatively lower, which
was mainly controlled by net radiation. Additionally, some obvious differences between
permafrost regions and seasonally frozen ground regions were that greater variations in E
occurred at seasonally frozen ground regions than permafrost regions, and the onset time
of increasing E after the frozen period in seasonally frozen ground regions (usually in late
March) was earlier than that of permafrost regions (usually in late April), which was due to
the onset time of thawing being earlier in the former. As the ground ice thaws, surface soil
moisture increases, and E also increases.

Some studies found that E is larger than rainfall at the annual scale at observation
sites on the QTP [59,63]; the same phenomenon was also found in our study (see Table 1).
Due to missing values of rainfall during the study period at BJ and NAMORS, we instead
used data from the nearby Naqu and Dangxiong country meteorological station provided
from China Meteorological Administration. The exception of this was when there were
observation errors about precipitation or ET; this phenomenon is often explained by surface
soil moisture providing available water for evaporation. Although limited by land surface
water supply, soil evaporation is one of the main forms of water consumption for the four
selected field sites.
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“W” represents warm season and “C” represents cold season.

Table 1. Sum of daily rainfall (mm), E plus sublimation (mm), Epa (mm) for two periods of every
observational year. The warm season is from May to September, the cold season is from January to
April and October to December.

Sites Variables
First Year Second Year

Warm Season Cold Season Annual Warm Season Cold Season Annual

TGL Rainfall 339.5 54.3 393.8 355.9 36 391.9
(N1 = 365; E plus Sublimation 362.1 70.9 433 364.7 81.6 446.3
N2 = 360) Epa 537.5 409.7 947.2 496 391.1 887.1

XDT Rainfall 299.3 65.1 364.4 200.6 7 207.6
(N1 = 363; E plus Sublimation 312.4 82.9 395.3 178 24.4 202.4
N2 = 185) Epa 515.9 410.1 926 309.7 141.9 451.6

BJ Rainfall a - - - 386 83.2 469.2
(N1 = 363; E plus Sublimation 432.9 118.9 551.8 385.5 117.3 502.8
N2 = 350) Epa 580.8 421.5 1002.3 549.8 363.4 913.2

NAMORS Rainfall b 494.7 54.2 548.9 327 47.3 374.3
(N1 = 337; E plus Sublimation 413.6 128.9 542.5 346 121.2 467.2
N2 = 352) Epa 493.1 336.1 829.2 531.6 411.4 943

Note: N1 represents available samples of first observational year, N2 represents available samples of second
observational year. a Rainfall data on second year from Naqu country meteorological station; b Rainfall data on
second year from Dangxiong country meteorological station.

3.2. Evaluating Model Performance
3.2.1. Model Performance with Default and Calibrated Parameter Values on a
Daily Timescale

This study first employed the default and calibrated parameter values to simulate
the daily actual evapotranspiration (Esim) and then compared with in situ measurements,
respectively (Figure 4).
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models with default parameter against measurements made using EC system at (a–e) TGL; (f–j) XDT;
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by default parameter values and its fitting line; the red scattered dots and dash lines represent E
estimated by calibrated parameter values and its fitting line; the black solid line is the 1:1 line.

The results indicate that Esim was underestimated to different degrees by each CR-
based model at all four selected sites, whether the default or calibrated parameter values
were employed; the highest NSE value was 0.92 at TGL and the lowest NSE value was 0.58
at NAMORS. The average RMSE value was 0.4 mm d−1 at TGL and at XDT, 0.58 mm d−1

at BJ, and 0.63 mm d−1 at NAMORS when default values were employed (Table 2). After
being locally calibrated, the highest NSE value was 0.92 at TGL and lowest NSE value was
0.69 at NAMORS. The average RMSE value was 0.36 mm d−1 at TGL, 0.38 mm d−1 at XDT,
0.56 mm d−1 at BJ, and 0.6 mm d−1 at NAMORS (Table 2), with only a small improvement
in accuracy when compared with the results simulated by default parameter values. In
addition, the CC values of five CR-based models all exceeded 0.87. Therefore, a better
performance of the CR approach was found for daily E estimation in the frozen regions of
the QTP, and unknown parameter values from other similar climatic or underlying surfaces
could also be applicable without local calibration due to a lack of in situ measured E, such
as in data-scarce regions.
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Table 2. Statistical results of CR-based models with default and calibrated (in parentheses) parameter
values against daily actual evapotranspiration measurements from four observation sites. Bold font
indicates the best model based on maximum NSE values among five CR-based models.

Sites Model αe b c RMSE
(mm d−1)

MAE
(mm d−1)

MBE
(mm d−1) NSE R2 Average

(mm d−1)

TGL

K2006 0.88
(1.01)

16.67
(2.41) - 0.457 (0.381) 0.375 (0.31) 0.053 (−0.056) 0.84

(0.889)
0.872

(0.891)

1.24

B2015 0.92
(1.03) - −1.35

(2.22) 0.428 (0.347) 0.338 (0.269) 0.109 (−0.032) 0.86
(0.908)

0.88
(0.91)

S2017 1.12
(1.13) - - 0.394 (0.388) 0.279 (0.275) −0.136 (−0.112) 0.881

(0.885)
0.897

(0.899)

C2018 1.12
(1.08) - - 0.321 (0.324) 0.244 (0.245) 0.039 (−0.041) 0.921

(0.919)
0.924

(0.924)

H2018 0.97
(1.07)

5.56
(1.44) - 0.415 (0.343) 0.328 (0.266) 0.128 (−0.01) 0.868

(0.91)
0.889
(0.91)

XDT

K2006 0.88
(0.94)

16.67
(4.1) - 0.372 (0.375) 0.282 (0.281) 0.052 (−0.07) 0.839

(0.837)
0.845

(0.852)

1.09

B2015 0.92
(1.01) - −1.35

(1.48) 0.388 (0.361) 0.287 (0.268) 0.093 (−0.049) 0.826
(0.849)

0.852
(0.861)

S2017 1.12
(1.18) - - 0.486 (0.467) 0.354 (0.341) −0.198 (−0.07) 0.725

(0.746)
0.778

(0.799)

C2018 1.12
(1.11) - - 0.37 (0.366) 0.277 (0.274) 0.017 (−3.4 × 10−4)

0.841
(0.844)

0.852
(0.852)

H2018 0.97
(1.04)

5.56
(1.8) - 0.381 (0.36) 0.289 (0.269) 0.105 (−0.042) 0.831

(0.849)
0.856

(0.859)

BJ

K2006 0.88
(1.03)

16.67
(2.63) - 0.609 (0.59) 0.463 (0.439) 0.001 (0.003) 0.746

(0.762)
0.748

(0.773)

1.44

B2015 0.92
(1.05) - −1.35

(2.55) 0.604 (0.578) 0.453 (0.42) 0.074 (−0.031) 0.75
(0.772)

0.755
(0.789)

S2017 1.12
(1.14) - - 0.544 (0.553) 0.405 (0.41) −0.156 (−0.092) 0.798

(0.791)
0.826

(0.824)

C2018 1.12
(1.11) - - 0.531 (0.523) 0.377 (0.371) 0.038 (0.013) 0.808

(0.813)
0.819

(0.821)

H2018 0.97
(1.11)

5.56
(1.17) - 0.596 (0.584) 0.45 (0.421) 0.092 (−0.013) 0.757

(0.767)
0.764

(0.792)

NAMORS

K2006 0.88
(1.13)

16.67
(10.07) - 0.637 (0.601) 0.458 (0.464) −0.231 (0.08) 0.704

(0.737)
0.755

(0.757)

1.33

B2015 0.92
(1.17) - −1.35

(0.76) 0.607 (0.585) 0.448 (0.455) −0.204 (−0.033) 0.731
(0.751)

0.764
(0.774)

S2017 1.12
(1.25) - - 0.756 (0.653) 0.573 (0.516) −0.516 (−0.273) 0.583

(0.689)
0.78

(0.785)

C2018 1.12
(1.2) - - 0.579 (0.549) 0.422 (0.413) −0.264 (−0.139) 0.756

(0.78)
0.806

(0.803)

H2018 0.97
(1.28)

5.56
(1.72) - 0.601 (0.6) 0.431 (0.475) −0.197 (−0.041) 0.737

(0.738)
0.769

(0.776)

However, a relatively larger bias occurred when there were lower E values for each
model at all four sites, which indicated poor applicability of the CR approach. There were
even some negative Esim values by the K2006 model when E was low at all four observation
sites, probably because there were no strict boundary conditions constrained in the K2006
model, which led to abnormal values near the border of the boundary. In general, the
CR approach may be inappropriate during the cold season in the frozen regions of the
QTP because lower E values mainly occurred during the cold season. The S2017 model
performed poorly among the five CR-based models, with relatively lower NSE values
and higher RMSE and MBE values (Table 2), especially at NAMORS, where the MAE
values reached 0.57 mm d−1 and 0.52 mm d−1 with the default and calibrated parameter
values, respectively, signifying the largest bias during the study period. The C2018 model
performed best at TGL, BJ, and NAMORS, and performed very well at XDT, and the NSE
values of the C2018 model were all above 0.75. The overall performances of the B2015 and
H2018 models were slightly inferior to that of the C2018 model, and the NSE and RMSE
values of the above two models were close to those of the C2018 model.
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Note that for the C2018 model, although there was only one unknown parameter
to calibrate, there were more variables, such as wet and dry environment temperature,
which meant a relatively more complex calculation process. For the B2015 model, previous
studies have pointed out its deficiency in physical boundaries, which may be inappropriate
for extremely dry or wet environments and periods. Therefore, the H2018 model, with
relatively robust physical boundary constraints and a simpler calculation process, may
be the most appropriate CR-based model for daily E estimation in the frozen regions of
the QTP.

3.2.2. Performance of Different CR-Based Functions against Relationships among Three
Evapotranspiration Variables

To determine relationships among three evapotranspiration variables (E, Epo and Epa)
during warm and cold seasons and to further elucidate the applicability and optimal
form of CR-based functions in the frozen ground regions of the QTP, the performance of
different function forms using calibrated parameter values combined with observation
data is presented in Figure 5. Here, all data at each field site were divided into three
parts: daily ET variables that fulfill the preconditions of each CR-based model, judged by
“po (Epo_c) ≤ Epa” for the K2006, B2015, S2017, and C2018 models, “E ≤ Epo and E ≤ Epen”
for the H2018 model, and the above data can be used to further divide based on the warm
and cold season, respectively. The remaining data are daily evapotranspiration variables
that do not fulfill the CR-based models. Note that although parameter calibration was
performed, there were still some data that did not satisfy the CR-based models, which may
have been due to observation errors or inapplicability of the CR approach to that time.

The results indicated that observation data were unevenly scattered around CR-
fitting lines at each site, and all CR-based function forms basically captured relationships
among the three types of evaporation during the warm season in the frozen ground
regions of the QTP, similar to the simulated results from some other sites around the
world [36,42,64]. However, when variable y converges to 0 (that is, E is low), which often
occurs in cold seasons, the dimensionless variable x (or X) has a relatively wide range, even
above 0.6, because strong radiation (Erad) on the QTP leads to a high proportion of radiation
to apparent potential evapotranspiration (Epa). Usually, a high proportion of radiation
indicates there is strong evaporation energy available and higher actual evaporation;
however, for water-limited frozen ground regions, water availability is another important
factor affecting evaporation. Figure 5a–t shows relatively small deviations during warm
seasons and the CR-fitting lines cross near the center of the observation data; five different
CR-based functions both captured the daily E values well without evident differences,
however, differences were clear in the lower E values. Because most studies about CR
approach focus on warm seasons or growing seasons when E is relatively high, it is not
enough to take into account the conditions of small E values during cold seasons; difficulties
lie in high uncertainty of observation data during cold seasons, which leads to a lack of
reliable data to validate whether the hypothesis of the CR approach is applied to cold and
high-altitude areas or cold seasons from the aspect of the mechanism.

3.2.3. Model Performance with Calibrated Parameter Values on a Monthly Timescale

We also investigated the performance of five CR-based models with calibrated param-
eter values on a monthly timescale. Figure 6 illustrates that the monthly Esim got acceptable
accuracy at TGL, XDT, and BJ, but relatively larger deviations occurred at NAMORS.
The simulated performance between each CR-based model was very close, which indi-
cated more stable performance to the CR approach on longer timescales. Compared with
variations in precipitation, the peak of E was not always synchronized with the peak of
precipitation on a monthly timescale. Taking TGL (Figure 6a) for an example, the peak
of E occurred in August and was higher than concurrent precipitation; higher E may be
contributed by water stored in the soil layer by antecedent precipitation, due to the peak of
precipitation in July.
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To further determine the contributions of monthly simulated bias to annual total
bias at each field site, the monthly absolute bias of each CR-based model was calculated
(Figure 7). Although the performance of the five CR-based models varied from one site
to another, overall, the H2018 model seemed to have a smaller annual bias than the other
models. According to Figure 7e,i,o,t, the H2018 model underestimated annual E at each site,
and the bias was within 15 mm. The K2006, B2015, and C2018 models performed slightly
inferior to the H2018 model; larger biases all occurred at NAMORS, and the rest of the sites
performed relatively well. The S2017 model performed worst among the five CR-based
models at each site, and the largest bias occurred at NAMORS, which was close to 100 mm
on an annual timescale. Considering the contribution of monthly or seasonal bias to annual
total bias (see Table 3), negative annual bias was mainly contributed by the negative bias of
the warm season at TGL; however, the negative bias of the cold season contributed more
to the total bias at XDT, BJ, and NAMORS. The larger negative monthly bias frequently
occurred in October or November, and the maximum bias was −15.3 mm (in October) at
TGL, −5.42 mm (in July) at XDT, −11.72 mm (in July) at BJ, and −17.58 mm (in October)
at NAMORS.

1 
 

 

Figure 7. Bias of monthly E estimated by five CR-based models at (a–e) TGL; (f–j) XDT; (k–o) BJ;
(p–t) NAMORS, respectively. Dash lines represent annual total bias. The grey filled area represents
the warm season.
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Table 3. Bias of simulated E by CR-based models with calibrated parameter values against measurements by EC on different timescales (monthly, seasonal, annual)
at TGL, XDT, BJ and NAMORS. Grey-filled area is warm season period (May to September), bold font stands for model with minimum absolute bias during
corresponding period.

Site Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Warm Season Cold Season Year

TGL

K2006 0.06 4 13.07 14.84 4.91 −4.75 −9.91 −9.49 −8.03 −10.39 −9.12 −5.21 −27.27 7.25 −20.02
B2015 1.65 4.49 12.01 12.54 4.18 −2.86 −7.55 −7.9 −7.44 −11.54 −8.36 −0.59 −21.57 10.2 −11.37
S2017 0.22 0.2 3.35 1.15 −0.32 0.69 −3.77 −7.25 −6.33 −15.3 −10.06 −2.86 −16.98 −23.3 −40.28
C2018 2.23 4.28 9.02 8.33 3.09 −2.08 −7.31 −8.68 −6.21 −9.51 −7 −0.8 −21.19 6.55 −14.64
H2018 1.94 5.12 12.38 12.61 4.51 −1.67 −6.21 −6.76 −6.72 −11.41 −7.85 0.3 −16.85 13.09 −3.76

XDT

K2006 −2.54 −3.19 1.47 - 1.12 2.48 −4.26 −0.27 −0.52 - −3.41 −3.77 −1.45 −11.44 −12.89
B2015 −1.68 −3.06 1.02 - −0.37 2.82 −3.92 1.81 0.88 - −3.07 −3.42 1.22 −10.21 −8.99
S2017 −3.4 −5.35 −0.52 - −4.28 2.02 −5.42 5.8 5.67 - −3.29 −4.2 3.79 −16.76 −12.97
C2018 −0.28 −1.55 1.19 - −0.61 3.76 −5.01 3.93 3.9 - −2.52 −2.87 5.97 −6.03 −0.06
H2018 −1.15 −2.54 1.17 - −0.65 2.66 −4.04 1.87 1.05 - −2.99 −3.23 0.89 −8.74 −7.85

BJ

K2006 −3.07 −0.8 8.06 10.73 −1.25 4.63 −11.72 14.75 −5.06 −5.56 −6.92 −2.66 1.35 −0.22 1.13
B2015 −3.13 −1.77 5.08 5.79 −3.9 4.11 −9.11 14.12 −4.22 −6.35 −9.28 −2.25 1 −11.91 −10.91
S2017 −5.14 −4.91 −0.5 −0.89 −7.31 0.89 −2.93 10.88 −0.86 −6.06 −11.33 −3.98 0.67 −32.81 −32.14
C2018 −2.66 0.25 4.02 8.24 −2.22 3.27 −6.72 13.17 −1.86 −4.37 −6.23 −0.48 5.64 −1.23 4.41
H2018 −2.99 −1.92 4.54 4.86 −3.48 5.65 −6.55 15.5 −2.68 −5.9 −9.49 −2.21 8.44 −13.11 −4.67

NAMORS

K2006 −7.92 0.73 6.17 22.71 18.67 15.86 5.41 −18 −2.06 −2.72 −5.96 −4.59 19.88 8.42 28.3
B2015 −10.5 −3.52 1.7 15.62 14.63 12.23 3.11 −16.32 −6.57 −8.49 −8.37 −5.12 7.08 −18.68 −11.6
S2017 −13.01 −8.75 −4.44 −2.77 2.54 0.67 −3.92 −15.14 −16.21 −17.58 −11.14 −6.4 −32.06 −64.09 −96.15
C2018 −10.07 −4.58 0.08 6.63 8.45 5.21 −1.21 −19.3 −10.15 −11.23 −8.03 −4.66 −17 −31.86 −48.86
H2018 −11.56 −5.13 0.77 14.39 15.45 13.3 4.75 −15.05 −6.28 −9.85 −9.5 −5.7 12.17 −26.58 −14.41
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4. Discussion
4.1. Uncertainty of Actual Evapotranspiration Estimation by the CR Approach

Using only routine meteorological variables (air temperature, relative humidity, wind
speed, and net radiation) in the CR approach can better estimate daily or monthly E in the
frozen ground regions of the QTP according to the present study; however, the uncertainty
of the CR approach itself, physical variable calculations, and key parameter values are still
non-negligible for estimating E on different spatiotemporal scales.

For the K2006 model, characterizing variables such as Epa and Epo is difficult. Al-
though using the Penman equation to calculate Epa is widely accepted, determining Epo is
controversial because a fixed analog of the Priestley-Taylor coefficient αe usually cannot
vary with climate, which means that the value of αe cannot truly reflect the interaction
between the land and atmosphere [65,66]. We also need to know atmospheric status–such
as air temperature–under well-supplied water conditions at the land surface before deter-
mining Epo, despite some progress [61,62] that has been made in obtaining air temperature
under well-supplied water conditions. However, usual iterative solving exists for un-
solved or anomalous solutions, which makes it difficult to promote the above method as a
universal approach.

For generalized complementary functions, in addition to the above common problems,
the definition of boundary constraint conditions is another one important problem. Han [65]
noted that boundary constraint conditions determine the domain of definition and the
analytic formula of complementary functions. Many of the latest debates [67,68] on the
CR-based functions have focused on boundary constraint conditions, which is controversial
for the CR approach. The above-mentioned problems reflect a great lack of understanding
of the evaporation process on different spatiotemporal scales for frozen ground regions on
the QTP, where the current CR function forms seem to perform inferiorly in the specific
regions described by Wang [42].

For the CR principle, an important prerequisite of the CR approach is that at large and
homogeneous land surfaces, the influence of air advection could be negligible, so atmo-
spheric evaporation demand is totally caused by feedback of the land surface. Morton [26]
pointed out that the CR principle should be applied at spatial resolutions larger than 1 km
and temporal resolutions longer than five days, since large-scale weather fronts may bring
air masses over the land with a moisture signature decoupled from the underlying surface,
which thus may temporarily disrupt the dynamic equilibrium of air humidity and surface
fluxes in the land–atmosphere system. Although previous studies [28,38,42,69] have ap-
plied the CR approach to hourly or daily E estimations, the theory of the CR principle on
short timescales still needs to be improved.

4.1.1. Influence of Parameter Values on Actual Evapotranspiration Estimation

Determining the parameter values of CR functions is urgent for the application of
each CR-based model to estimate E, as well as for the development of a CR approach. The
K2006 and H2018 both have two parameters, αe and b; the B2015, S2017, and C2018 all
have one parameter, αe (note: parameter c in the B2015 model is an adjustable parameter,
c = 0 often in most conditions, so, here we did not discuss parameter c). To determine
the impacts of parameter values on evapotranspiration estimation, we discuss the fol-
lowing two problems: (i) difference in simulated results by each CR-based model with
parameter calibration on different time lengths and (ii) parameter sensitivity for actual
evapotranspiration estimation.

Here, we first investigated the influence of calibrated parameter values by different
time lengths (whole year and warm season) on simulating daily E during the warm season.
For the cold season, due to higher uncertainty of observations, we did not discuss the
results here. Table 4 compares the parameter values and simulated NSE values during the
warm season by the calibration period of one whole year and the corresponding warm
season, respectively. The results indicated that the time length of parameter calibration
did not have much of an impact on simulated E during the warm season, parameter αe
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was very close between the two calibration periods, and the differences in parameter b was
slightly larger. According to our results, the simulated E was insensitive to the variations
in parameter b in the K2006 and H2018 model, because even if the difference in parameter
b was large, like the K2006 model at NAMORS, the simulated daily E between the two
calibrated parameter values were still approximate. However, variations in parameter αe
in all five CR-based models exerted more of an influence on the simulated results. The
above results indicated that parameter calibration—especially αe—in CR-based models at
specific sites is more important to simulate daily E compared with different time lengths of
calibration periods in the frozen ground regions of the QTP.

Table 4. Comparison of simulated results by different CR-based models using two different calibrated
parameter values during the warm season. One is calibrated by a whole year period, another is
calibrated by a corresponding warm season.

Site Model
Calibrated Period by Warm Season Calibrated Period by Whole Year

αe b c NSE αe b c NSE

TGL

K2006 1.02 2.49 - 0.759 1.01 2.41 - 0.73
B2015 1 - 0.8 0.764 1.03 - 2.22 0.752
S2017 1.12 - - 0.559 1.13 - - 0.581
C2018 1.08 - - 0.731 1.08 - - 0.731
H2018 1.01 2.58 - 0.764 1.07 1.44 - 0.762

XDT

K2006 1 2.93 - 0.657 0.94 4.1 - 0.669
B2015 0.98 - 0.38 0.656 1.01 - 1.48 0.657
S2017 1.18 - - 0.376 1.18 - - 0.376
C2018 1.12 - - 0.607 1.11 - - 0.617
H2018 0.99 3.03 - 0.657 1.04 1.8 - 0.65

BJ

K2006 1.11 1.13 - 0.323 1.03 2.63 - 0.357
B2015 1.1 - 4.66 0.294 1.05 - 2.55 0.361
S2017 1.14 - - 0.429 1.14 - - 0.429
C2018 1.11 - - 0.466 1.11 - - 0.466
H2018 1.17 0.75 - 0.27 1.11 1.17 - 0.341

NAMORS

K2006 1.18 3.81 - 0.577 1.13 10.07 - 0.58
B2015 1.19 - 1.01 0.577 1.17 - 0.76 0.588
S2017 1.25 - - 0.492 1.25 - - 0.492
C2018 1.2 - - 0.622 1.2 - - 0.622
H2018 1.35 1.03 - 0.525 1.28 1.72 - 0.573

4.1.2. Sensitivity Analysis of CR-Based Models to Parameter Values

Then, we tested the sensitivity of five CR-based models to parameter values at each
site, by adding increments from −50 to 50% at an interval of 10% to optimized parameter
values for each CR-based model. Figure 8 displays the RMSE of the simulated E values for
the in situ measurement. It is clear that variations in b values combined with constant αe
values have little impact on evapotranspiration estimation, and a 50% variation in the αe
value combined with constant b values led to increased RMSE values within 0.5 mm d−1.
The K2006, B2015 and H2018 models exhibited lower sensitivity to variations in parameter
values, and the H2018 model had the lowest sensitivity among all CR-based models.

We also noticed that larger RMSE values for the S2017 and C2018 models when the
optimized αe value increased more than 20% because there were many abnormal E values,
which indicated that the S2017 and C2018 models were more sensitive to parameter values,
especially when the αe value increased more than 20%. Brutsaert [70] found that αe was
closely related to the aridity index (AI, AI = Epa/P); accordingly, based on the global
distribution of the parameter αe, the αe values were mainly from 0.8 to 1.2 around the
world, except in extremely arid and wet regions. Assuming αe values were within the
above scope in the present study–which means αe mainly varied from about −10% to
20% of its optimized values for all five CR models at each field site–according to Figure 8,
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the averaged RMSE increased by 0.14 mm d−1, 0.12 mm d−1, 0.15 mm d−1, 0.09 mm d−1

from the RMSE of the E estimated when using optimized αe values at TGL, XDT, BJ, and
NAMORS, respectively.
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Thus, the parameter αe value is very important to the accuracy of E estimation accord-
ing to our study; certainly, the smaller deviation of optimized αe value would exert little
impact on the accuracy of E estimation. Furthermore, the K2006 and H2018 models were
completely insensitive to deviations of parameter b values.

4.2. Comparison with Previous Studies on the QTP at a Single Point Scale

Here, we compared estimation results of monthly E by five CR-based models in the
present study with the latest two improved remote-sensing ET models that have been
validated for the QTP. One is an improved MOD16 model by Yuan [71], referred to as
“MOD16_Yuan” in this study; the another one is an improved SEBS model by Han [72],
referred to as “SEBS_Han” in this study. Both obtained better accuracy with in situ measure-
ments than that in previous results. Due to shared use observation data with Yuan’s work
at NAMORS in 2009 and with Han’s work at BJ in 2013, the above two field sites during the
corresponding period were chosen for comparison. Note that there are some differences



Remote Sens. 2022, 14, 2047 20 of 25

in the observed E between this study and the above two works, which may be caused by
different data procedure processes, such as quality control and gap-filling approaches.

Figure 9a exhibits the estimation results of monthly E by the CR approach and
MOD16_Yuan model at NAMORS. Statistical results showed that in situ measured annual
E values ranged from 467.2 to 481.6 mm, and the annual E values simulated from the five
CR-based models were 495.5 mm (K2006), 455.6 mm (B2015), 371.1 mm (S2017), 418.4 mm
(C2018), and 452.8 mm (H2018), respectively. For the MOD16_Yuan model, the annual
E values reached 539.7 mm which was overestimated by 12.1% compared with in situ
measurements. The largest bias occurred in June when the positive bias could reach 36 mm.
The K2006 model overestimated the annual E by 6.1% with smaller positive deviations
than the MOD16_Yuan model. The B2015 and H2018 models obtained better accuracy with
smaller negative bias–approximately 20 mm on an annual scale–and both two CR-based
models performed better than the K2006 and MOD16_Yuan models. However, the S2017
and C2018 models both performed poorly due to large negative biases, especially the S2017
model, with a bias of approximately 100 mm on an annual scale.
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Figure 9. Comparison of monthly observed E values (filled area enclosed by calculated results from
this study and another corresponding work) and simulated E values (solid lines) of CR-based models
with improved MOD16 evapotranspiration model by Yuan [71] at (a) NAMORS; with improved SEBS
model by Han [72] at (b) BJ.

Figure 9b is the same as Figure 9a, but for BJ. Due to the lack of observed E data
in some months, only available data during the corresponding month were analyzed.
The simulated monthly E values by the five CR-based models were very close to each
other– which could also capture the monthly variations in observed E–but a larger positive
bias occurred in August. The SEBS_Han model performed well in August; however, it
significantly overestimated monthly E values in May, June, and July, with a larger positive
bias than that of the five CR-based models. Thus, the overall performance of the CR
approach is still better than that of the SEBS_Han model in the present study.

Both the MOD16_Yuan and the SEBS_Han models have solid physical foundations,
and the MOD16_Yuan model based on the original MOD16 model takes soil moisture
and soil texture into soil evaporation estimation, and simultaneously optimizes canopy
transpiration estimation. The SEBS_Han model introduces the description of the form
drag caused by subgrid-scale topographical obstacles, the effective roughness lengths for
momentum, and sensible heat transfer into the SEBS model. The above two models both
improved the description capability of remote sensing models for the physical process
of ET. For the CR approach, from another aspect of feedback of atmospheric evaporation
demand to land surface moisture conditions, with a few unknown parameters and routine
meteorological variables, the CR approach has also been demonstrated to have comparable
accuracy with current sophisticated ET models in the present study.

4.3. Perspectives from the Present CR-Based Model Evaluations

This study provided a relatively comprehensive assessment about applicability of the
CR-based models to frozen ground regions on the QTP. A performance comparison of five
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CR-based models was evaluated at four observation field sites. After local calibration, the
E estimated by all five CR-based models captured daily variations; however, consistent
with the findings of previous studies, it is difficult to capture daily variations during
cold seasons (Figure 5). The reason for poor performance during cold seasons is still
unclear. Theoretically, variable Epo (approximated by the Priestley-Taylor equation) in the
CR approach assumes evaporation for an extensive saturation with minimal advection;
however, during cold seasons, air advection is usually stronger than that in warm seasons.
Thus, greater deviations may be derived from the conduction of Epo by only local air
temperature and humidity in cold seasons, and the degree of land–atmosphere coupling
during the cold season is usually weaker than that in warm seasons. The above conditions
for cold seasons hardly satisfy the requirements of the CR approach.

Han [65] pointed out that accurate terrestrial ET estimation depends on precisely
determining the land surface and atmospheric status; however, the deficiencies of CR-
based models are focused only on the atmospheric status and neglect the land surface
status, and the influence of land surface status on evaporation processes may not be fully
captured through changes in atmospheric status alone, especially at small spatiotemporal
scales. The CR principle may be an alternatively valuable approach when there is a lack
of land surface information in the past, but for now, remote-sensing technologies make
obtaining information on land surface status significantly easier. The CR approach also
needs to take land surface information into account. Currently, some studies [70,73,74]
have introduced shallow soil moisture, the vegetation index, or AI into the CR approach
when applied at large-scale regions. Some other studies [75,76] also adhere to using only
atmospheric status information, developing a free-calibrated CR approach when estimating
large-scale ET. Further assessments about two different CR approaches need to be explored
in the future.

5. Conclusions

This work assessed the actual evapotranspiration estimated by the CR approach in
the frozen ground regions of the QTP. The uncertainties associated with observation and
modeling of E at point scale were analyzed by investigating the parameter determined
by different lengths of calibrated periods and parameter deviations on the accuracy of E
estimation. Finally, two more latest works were compared with the CR-based models in
this study at BJ and NAMORS.

Five CR-based models–whether with default or calibrated parameters–performed well
in daily E estimation: the NSE values were both above 0.7, the accuracy of each CR-based
model was close to another, the C2018 and H2018 models performed better among five
CR-based models on daily and monthly timescales at four field sites, and the S2017 model
performed poorest. The five CR-based models could estimate daily E during warm seasons,
however, they are hardly applied during cold seasons. Nevertheless, the amount of E
during cold seasons only account for small proportion of annual evaporation. Therefore,
CR-based models with fewer data requirements and parameters provide a feasible approach
to estimate daily and monthly E without needing detailed information on moisture and
vegetation in the frozen ground regions of the QTP.

For calibrated parameter αe and b in CR-based models, all models are more sensitive
to variations of αe than b. Specifically, within a certain range of deviations of parameter
αe (for example, deviations from −10 to 30% in this study), the RMSE values will increase
about 0.1 mm d−1 compared with RMSE of E estimation with optimized parameter values.
Parameter b has little impact on the accuracy of E estimation. Thus, reasonable parameter
αe values are of much importance to the performance of CR-based models.

Compared with previous studies about the application of CR-based models on the
QTP, this study uses more in situ measurement data and more CR-based models. The
present study also demonstrates better capability of CR approach on estimating E in high
altitude and cold regions over QTP. At present, the CR approach has been developed as a
benchmarking tool for large-scale evapotranspiration estimates, however, discrepancies
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in different spatiotemporal scales with other mainstream evapotranspiration products
indicated that with the exception of developing physically CR-based models, hybrid
modelling approaches such as combining CR approach with data-driven models are of
great significance to large-scale and high-accuracy ET estimation in the future.
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