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Abstract: Measuring the predictability and complexity of 2D data (image) series using entropy
is an essential tool for evaluation of systems’ irregularity and complexity in remote sensing and
geophysical mapping. However, the existing methods have some drawbacks related to their strong
dependence on method parameters and image rotation. To overcome these difficulties, this study
proposes a new method for estimating two-dimensional neural network entropy (NNetEn2D) for
evaluating the regularity or predictability of images using the LogNNet neural network model.
The method is based on an algorithm for converting a 2D kernel into a 1D data series followed
by NNetEn2D calculation. An artificial test image was created for the study. We demonstrate the
advantage of using circular instead of square kernels through comparison of the invariance of the
NNetEn2D distribution after image rotation. Highest robustness was observed for circular kernels
with a radius of R = 5 and R = 6 pixels, with a NNetEn2D calculation error of no more than 10%,
comparable to the distortion of the initial 2D data. The NNetEn2D entropy calculation method has
two main geometric parameters (kernel radius and its displacement step), as well as two neural
network hyperparameters (number of training epochs and one of six reservoir filling techniques). We
evaluated our method on both remote sensing and geophysical mapping images. Remote sensing
imagery (Sentinel-2) shows that brightness of the image does not affect results, which helps keep a
rather consistent appearance of entropy maps over time without saturation effects being observed.
Surfaces with little texture, such as water bodies, have low NNetEn2D values, while urban areas have
consistently high values. Application to geophysical mapping of rocks to the northwest of southwest
Australia is characterized by low to medium entropy and highlights aspects of the geology. These
results indicate the success of NNetEn2D in providing meaningful entropy information for 2D in
remote sensing and geophysical applications.

Keywords: 2D entropy; NNetEn; time series; data series; neural network; MNIST-10; LogNNet;
image features; remote sensing; geophysical data

1. Introduction

Advanced interpretation of remote sensing (RS) imagery [1] and geophysical map-
ping [2] often requires significant processing efforts. Tasks such as classification, seg-
mentation or change detection can be facilitated by deriving advanced features from the
original imagery. For instance, to extract high-level features from reflectance data, common
approaches include simple ratios, index calculations, texture metrics and manually or auto-
matically constructed filters. The fact that state-of-the-art Deep Learning techniques are
often employed in an end-to-end fashion, using the original imagery directly as an input,
is often taken as an indication that “hand-crafted” processing pipelines are not necessary
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anymore [1]. In fact, the feature maps learned by modern convolutional neural networks
(CNNs) are highly effective for large-scale image recognition [3], object detection [4] and
semantic segmentation [5,6] tasks. Nevertheless, today’s neural networks require extensive
resources for training, and the large amounts of labeled data needed [1,7,8] are often not
available for typical remote sensing applications. Therefore, using pre-processed feature
inputs in combination with reflectance data may help alleviate these limitations, speed up
model training and enable higher accuracies.

One useful type of feature input is entropy. Entropy is a measure of uncertainty in data
and is adopted for maximization of mutual information in remote sensing data processing.
In information theory, the concept of entropy is used to quantify the amount of information
necessary to describe the macro state of a system. Different versions of entropies have been
applied for the effective automation of various remote sensing analyses. Shannon’s entropy is
the most widely used technique for measuring urban sprawl levels [9,10], and exponential
entropy is used for image segmentation [11]. Furthermore, entropy is used to avoid over-
exposure or underexposure of the image and for image quality evaluation [12,13] as well
as change detection [14]. Similarly, the processing of geophysical images (magnetic, gravity
and hyperspectral) commonly involves “texture mapping” [15–17]. Some methods include
derivation of the entropy field [18–20], but little use is made of such results as a true measure
of complexity. It has been shown that magnetic images in particular are multifractal [21],
reflecting the organization of magnetic susceptibility within the rock mass. The establishment
of entropy fields for such images is another step towards understanding such organization as
a dynamic process reflecting deformation, metamorphism and hydrothermal alteration.

There are several 2D calculation models in existence that use approximating prob-
ability distributions. Two-dimensional dispersion entropy (DispEn2D) [22], sample en-
tropy (SampEn2D) [23], permutation entropy (PerEn2D) [24] and approximate entropy
(ApEn2D) [25] have been recently proposed as powerful tools for feature extraction from
images, such as noise, nonlinearity and randomness, and can be considered as an irregular-
ity measure of images. DispEn2D and SampEn2D have the advantage of being insensitive
to translation and rotation [22]. Interpretation of the local neighborhood entropy of pixels
in an image is one of the most valuable types of pre-processed features for many RS tasks.
Typically, such metrics are obtained through the so-called first- and second-order texture
metrics, based on quantized images and Gray-Level Co-occurrence Matrices (GLCM), as
first proposed in [26]. The pixel-wise entropy metric calculated based on GLCM, how-
ever, is not always of high quality, since it is limited to very small kernels that produce a
very sparse GLCM. To better capture the heterogeneity throughout an image, one could
expand the concept to large kernels, multi-band or multi-temporal imagery; however, this
is hampered by excessive processing time.

In this paper, we apply a recently introduced method called NNetEn to remote sensing
imagery (Sentinel-2) and geophysical mapping to explore its potential as an image feature
for classification or segmentation tasks. The scientific novelty of the presented method is a
new approach to estimating the entropy of 2D data using neural networks, with robustness
to image rotation. The method was originally applied to large time series datasets, but is
used here in a new adaptation to single-band imagery. It computes entropy without ap-
proximating probability distributions, but uses the properties of reservoir neural networks,
whose classification ability depends on the degree of irregularity of input information
transformations in the reservoir.

The rest of the paper is organized as follows. Section 2 describes the structure of
LogNNet for NNetEn1D and the method for two-dimensional NNetEn2D calculation with
circular and square kernels, as well as the structure of test images and the image rotation
method. The numerical examples and results are presented in Section 3. Results are
discussed in Section 4, followed by conclusions and outlook.
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2. Methods
2.1. LogNNet Model for NNetEn1D Calculation

The LogNNet model [27] was originally designed for recognizing handwritten digits
(28 × 28 = 784 pixels) in the MNIST dataset [28]. It comprises three parts (see Figure 1):
(a) input layer with vector Y, containing 785 elements corresponding to the brightness of
the pixels and the zero element Y [0] = 1, (b) a model reservoir of matrix W1 to transform
the input vector Y into an intermediate vector Sh (maximum element index, p = 25), and
(c) a single layer feedforward neural network transforming vector Sh into digits 0–9 in
the output layer Sout. Here, we employ a LogNNet model of architecture 784:25:10 [29] to
calculate entropy values.
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Figure 1. The LogNNet model structure for NNetEn calculation.

To determine entropy, the LogNNet reservoir matrix is filled with elements of the
studied data xn. The network is then trained and tested on MNIST-10 datasets (60,000 and
10,000 images) to obtain classification accuracy. This accuracy is considered as the entropy
measure and denoted as NNetEn1D.

NNetEn1D =
Classification accuracy

100%
(1)

The procedure for calculating NNetEn1D is described in more detail in [29].
The maximum number of elements that can be fed to the model is determined by the

number of elements in matrix W1 (N0 = 19,625). Variations of the techniques for filling the
matrix W1 with a series of data is presented in [30]; they are divided into six methods:

W1M_1: Filling by rows, as in Figure 1, with copying of the series.
W1M_2: Matrix W1 is reset and filled in by rows, as in Figure 1, “restarting” with the

original series at each row.
W1M_3: The original series is converted to a series with N = 19,625 elements using a

linear approximation (data series stretch operation). Then, the matrix is filled row by row
with a stretched series.

W1M_4: Filling as in the W1M_1 method, but by columns.
W1M_5: Filling as in the W1M_2 method, but by columns.
W1M_6: Filling as in the W1M_3 method, but by columns (series stretching operation

by 19,625 elements).
The main method used in this work was the W1M_1 method, except for Section 3.2,

where the W1M_1–W1M_6 methods were used.
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Method W1M_1 ensured greater stability when working with smaller numbers of
input data points (e.g., when using only small local kernels, see Section 2.2). The maximum
number of translations NT of a data series xn of length N can be estimated by the formula

NT =

⌈
19625

N

⌉
(2)

where
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The W1M_5 method works well when N > 11,000 [30]. Methods W1M_3 and W1M_6

have increased accuracy if the data represent the dynamics of a certain physical process
or obey linear or non-linear equations (for example, the distribution of magnetic fields or
other physical quantities). In general, all six methods provide similar results in estimating
entropy, but it is the experimenter’s responsibility to determine the best method for a
given problem.

2.2. Method for Two-Dimensional NNetEn2D Calculation with Circular Kernels

Suppose we have a rectangular grayscale image in which the brightness is represented
by an array of pixels Bi,j. To calculate the NNetEn2D in two-dimensional space, the entire
image is divided into local, overlapping windows (kernels) of radius R, moved along both
axes with step size S, starting from the upper left corner with the coordinates of the center
of the first kernel (DL, DL) (see Figure 2a). The minimum kernel radius Rmin for uniform
coverage of the entire space can be estimated from the Formula (3)

Rmin =

⌈√
2 · S2

2

⌉
(3)

where S is the step and
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Rmin series evaluation is shown in Table 1.

Table 1. Minimum kernel radius Rmin versus step size S.

S 1 2 3 4 5 6 7 8 9

Rmin 1 2 3 3 4 5 5 6 7

Let us introduce the abbreviated name of the circular kernel CIR_R, where R is the
radius, for example, CIR_3, CIR_5.
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With S = 5 Formula (3) results in Rmin = 4 (CIR_4), the location of the circular kernels in
this case is shown in (Figure 2b). Areas that are outside the image boundaries are marked
in red, Bi,j values are not defined in these areas, so the pixel values in these areas are filled
by symmetrical mirroring of the pixels in the image. If S > 1, the red areas may not be
symmetrical on different sides of the pattern; in some cases, symmetry can be restored by
selecting the DL value.

The number of pixels N in a circular kernel has a quadratic dependence on the radius
N ~ R2; evaluation of sample values is given in Table 2.

Table 2. Number of pixels N in a circular kernel versus radius R.

R 1 2 3 4 5 6 7 8 9

N 5 13 29 49 81 113 149 197 253

The advantage of circular kernels over rectangular kernels is that the set of pixels
involved in the calculation is less distorted when the image is rotated. The invariance of
the spatial distribution of entropy during image rotation is a criterion for the universality
of the method.

To calculate NNetEn2D, the set of pixels inside the local kernel was converted into a
one-dimensional data series, with period N, and then calculated in the same way as in the
one-dimensional case.

NNetEn2D = NNetEn1D(after local kernel transformation) (4)

A more detailed description of the procedure for converting a two-dimensional dis-
tribution of pixels into a one-dimensional data series xn is shown in Figure 3a. The figure
shows the sequence in which pixels Bi,j are extracted from a kernel with radius R = 5. The
first element x1 corresponds to the central pixel x1 = Bi,j (ki = 0, kj = 0), then all the pixels
inside the image (x1, x3 . . . x81) are sequentially traversed along the red line. The number
of elements in the data series is N = 81. A basic way to construct a sequence involves the
following steps.
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Figure 3. Scheme for converting a two-dimensional pixel distribution into a one-dimensional data
series xn: (a) CIR_5; (b) CIR_3; (c) CIR_1.

Step 1: Rotation of the vector R clockwise from the initial position R (ki = 0, kj = R).
Step 2: Adding pixels sequentially crossing the vector R.
Step 3: In case of simultaneous intersection of several pixels by the vector, they are

fixed in order of distance from the center of the kernel, as it happens for n = 1, 2, 3, 4, 5, 6,
as well as other pixels on axes kj = 0 and ki = 0; re-adding a pixel is excluded.

Step 4: The vector R rotates one revolution through 360◦.
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Figure 3b shows the transformation sequence for a kernel with a small radius
R = 3, which produces a data series with length of N = 29 elements. Figure 3c shows
the transformation sequence for a kernel with radius R = 1, which produces a data series of
length N = 5 elements.

For software implementation, the translation sequence from a two-dimensional image
to a one-dimensional series xn, as shown in Figure 3, can be presented as an array of
coordinates of each xn (Kn,1 = kj, Kn,2 = ki). Files of arrays K, for radii R = 1–7, are given in
Supplementary Materials.

As shown in Section 2.1, the data series xn is repeated NT times when the array W1
is filled (W1M_1). With the circular kernel method described above, such a translation
produces similar sequences when rotating the image. After image rotation by 90◦, a
complete repetition of the sequence is observed for n = 2 . . . N. Preliminary experiments
have shown that it is better to use all elements of xn, n = 1 . . . N to calculate the entropy.

After calculating the entropy in each circular kernel of the image, the resulting entropy
of a pixel is calculated as the average of all NNetEn2D from all the kernels that used
this pixel.

2.3. Method for Two-Dimensional NNetEn2D Calculation with Square Kernels

As an alternative to circular kernels, we explored square kernels with three types
of pixel enumeration. There are three version of square kernels: circular enumeration of
pixels (SQCi_R), with enumeration by rows (SQRo_R) and by columns (SQCo_R), where
the prefix ‘R’ is the radius of the circle inscribed in the kernel.

Examples of the three types of square kernels are shown in Figure 4.
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Figure 4. Scheme of enumeration of pixels in square kernels: (a) SQCi_3, (b) SQRo_3, and (c) SQCo_3.

The number of pixels N in a square kernel has a quadratic dependence on the radius
N = (R·2 + 1)2; some cases are shown in Table 3.

Table 3. Number of pixels N in a square kernel versus radius R.

R 1 2 3 4 5 6 7 8 9

N 9 25 49 81 121 169 225 289 361

It can be seen in Tables 2 and 3 that the number of pixels of N square kernels and
circular kernels can be the same, for example N(SQCi_3) = N(CIR_4) = 49 or N(SQCi_4)
= N(CIR_5) = 81. This allows a better comparison of the effect of the kernel shape on the
distribution of NNetEn2D for these cases.
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2.4. Artificial Test Image

The artificial test grayscale image is shown in Figure 5; it has a size of 99 × 99 pixels.
The principle of its formation is based on the logistic mapping, according to which the pixel
brightness Bi,j is modulated by a recursive function:{

B1,j = 0.1
Bi+1,j = rrj · Bi,j · (1− Bi,j), i = 1 . . . 98

(5)

where the coefficient rrj varies along the j axis in accordance with the dependence shown
in Figure 6a. Such a dependence forms on the test image (Figure 5) areas with chaotic
and ordered behavior and the main five areas are designated as A1–A5. In addition, there
are areas where the logistic function has a transient mode; these areas are designated as
A1t–A5t.

Figure 5. Test image with profiles.

Figure 6. Dependency of logistic mapping coefficient rr on j (a); NNetEn1D profiles for different
number of epochs Ep (b).
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The most ordered behavior should be expected in the area of constant brightness
A2 (4 ≤ j ≤ 30) and the area of uniform increase in brightness A4 (61 ≤ j ≤ 88). Chaotic
behavior should be expected at the edges of the image (areas A1, A5), its center (A3) and
transition regions (A1t–A5t). Figure 5 shows several sections along the axes j = 50 and
i = 50. The NNetEn1D calculation for the data series starting at i > 50 and length N = 49 is
shown in Figure 6b. It can be seen that the entropy has an increased value in the regions
(A1, A3, A5), which is a sign of chaotic behavior, and one should expect similar behavior
from 2D entropy. It can be noted that even the use of a low number of epochs Ep = 4 when
calculating NNetEn allows us to successfully identify areas of chaotic and ordered behavior.
Using a reduced number of epochs allows faster calculations and can be useful in practice.

2.5. Image Preprocessing Methods

Pre-processing comprised removing the constant component from the images and
rotating the images by different angles.

2.5.1. Removing the Constant Component of the Brightness of the Image

For a grayscale image, the calculation of entropy can provide more information if the
constant component is removed from the array, according to the formula

B′i,j = Bi,j − A (6)

where A is a user-defined constant and B′ is a new array of pixel brightness. We used the
average brightness value A = mean(Bi,j).

2.5.2. Image Rotation

For the rotation procedure, we used nearest neighbor resampling. This produces more
pixelated results than bilinear or bicubic interpolation but does not affect the pixel values.
This is especially important for the test image that would have been heavily distorted
by interpolation.

Figure 7 shows two versions for the test image: the original and one rotated by 45◦

(clockwise). The image size of 99 × 99 provides rotational symmetry with respect to pixel
number i = 50, j = 50.

Figure 7. Test image versions: original (a) and rotated by 45◦ (b) (clockwise).

Profile change during rotation was evaluated on a horizontal section i = 50 for the
initial image, which transitioned to a diagonal section when rotated by 45◦ and a vertical
section (j = 50) when rotated by 90◦ (see blue line in Figure 7).
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It can be seen that the sections before and after the rotation by 45◦ do not completely
coincide, since the values change as a result of averaging over pixels. The values best match
in the areas of ordered behavior (A2, A4), and match the worst in the chaotic areas (A3, A5).

To evaluate the change in image profiles and the results of the NNetEn2D calculation
during rotation, the percentage change in profile (PCP) characteristic was introduced.

The initial and final profiles were given in a distance coordinate system, with the
origin at the central pixel (i = 50, j = 50) (See Figure 8). Then, the profiles were divided into
samples NK = 1000, k = 1 . . . NK in the range of distances (−33 ≤ Distance ≤ 33), as shown
in Figure 8, and in each sample the values of the initial profile (V0k) and after rotation (V1k)
were estimated. The values of V0k and V1k were calculated using a linear approximation
between known values.

Figure 8. Sections of the test image (i = 50) before and after rotation by 45◦.

PCP was calculated using the formula

PCP =

∑
k
|V1k −V0k|

NK
1

(V0max −V0min)
· 100% (7)

where V0max is the maximum value of V0k and V0min is the minimum value of V0k. To
estimate the change in the image profile, the brightness value Bi,j was used as the V value.
To estimate the entropy change during rotation, the NNetEn2D value was used as the
V value.

Rotating the image by 45 degrees (Figure 7) gives PCP = 4.4% for brightness. Rotating
the image by 90 degrees gives PCP = 0%, which is expected, and indicates a complete match
of the brightness profiles.

2.6. Main Steps for Estimating the NNetEn2D of Images

On the basis of Sections 2.1–2.5 the main steps in the calculation of the NNetEn2D are:

• Carrying out image preprocessing if necessary,
• Select kernel type (CIR_R, SQCi_R, SQRo_R, SQCo_R),
• Choose parameters R, S, DL, and division of the image area into circular kernels,
• Selecting the number of epochs Ep for calculating NNetEn2D and techniques for filling

the matrix (W1M_1-W1M_6),
• Calculation of NNetEn2D in each spherical kernel,
• Calculate the resulting entropy for each pixel as the average of all NNetEn2D from all

kernels using that pixel.

Software for calculating NNetEn2D can be downloaded in the Supplementary Materials.
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3. Results
3.1. Research Results on the Test Image
3.1.1. Effects of Kernel Radius and Number of Epochs on NNetEn2D Variance

The dependence of the distribution of NNetEn2D on the radius of circular kernels was
studied on a test image area (A5t) with a size of 25× 25 pixels (Figure 9a). The distributions
of NNetEn2D for various radii are shown in Figure 9b–d; black corresponds to the minimum
value of NNetEn2D and white corresponds to the maximum value of NNetEn2D. Figure 10
shows the dependence of the maximum and minimum values of NNetEn2D in the area
under study depending on the kernel radius. It can be seen that as the radius increases, the
sharpness of the NNetEn2D distribution decreases, while the range of NNetEn2D variation
also changes.

Figure 9. Test image subset of 25 × 25 pixels (a), NNetEn2D distributions for R = 1 (b), R = 3 (c), R = 6
(d), (Ep = 4).

Figure 10. Dependence of the maximum and minimum values of NNetEn2D depending on the
kernel radius.

As the radius increases, the maximum value of entropy increases, which is associated
with an increase in the number of pixels in the kernel. Short data series of 2–15 elements do
not give a high entropy value, since it is impossible to build a chaotic distribution using a
small number of elements (see discussion section). With an increase in the radius to R = 5
and above, the number of elements in the data series increases N ≥ 81; as a result, the
entropy value can reach maximum values. When the kernel diameter becomes comparable
with the size of the picture (R ≥ 10), size effects begin to play a role, which are expressed
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by an increase in the minimum entropy value and a decrease in NNetEn2D maximum
value. This is due to the principle of mirroring pixels in areas outside the image, and
the intersection of many pixels for kernels in different parts of the image. Thus, for the
considered example, the widest range of NNetEn2D corresponds to the radii R = 5–12.

An increase in the range of NNetEn2D can also be achieved by increasing the number
of epochs Ep. Figure 10 shows the dependences of the maximum and minimum values of
NNetEn2D for the number of epochs Ep = 4, 20, 100. It can be seen that the maximum range
increases with the number of epochs. The choice of the number of epochs when calculating
the entropy is user dependent; a lower number of epochs ensures faster algorithm operation.
In practical implementation, a low number of epochs, Ep = 4 or Ep = 20, provide a reliable
spatial separation of the regular and chaotic behavior of 2D data.

3.1.2. NNetEn2D Distribution Examples for Different Kernels

Examples of the distribution of NNetEn2D for different types of kernels are shown in
Figure 11. The first column corresponds to circular kernels (CIR_R), the rest correspond to
square kernels SQCi_R, SQRo_R, and SQCo_R. In general, all the kernels correctly identified
chaotic areas A1, A3, A5, and A1t–A2t, which have an increased value of NNetEn2D
compared to regions with ordered dynamics A2 and A4. The results of circular and square
kernels with circular filling symmetry CIR_R and SQCi_R have similar distributions. This
is especially noticeable in examples with the same number of pixels in N kernels. For
example, the distribution of CIR_4 is similar to SQCi_3, where N = 49 and CIR_5 is similar
to SQCi_4, where N = 81. Distributions with SQCo_R have a low contrast in the chaotic
central area (A3), and SQRo_R, on the contrary, has a high contrast in A3. Using CIR_R
and SQRo_R allows areas A2 and A4 to be effectively separated, while other kernels fare
worse at this task. According to our interpretation, the best representation of dynamics in
the test pattern with sufficient image sharpness is given by kernels with radii of 4–6.

3.1.3. Effects of Image Rotation on the NNetEn2D Distribution

The PCP calculation results for NNetEn2D at rotations by 45◦ and 90◦ are shown in
Table 4. The smaller the PCP, the smaller the change in the profile during rotation and the
better the method. The best result was shown by the method using circle kernels CIR_R,
the worst was for SQCo_R kernels. For CIR_5, PCP = 9.6% and for SQCo_5, PCP = 704.5%.

Table 4. PCP for NNetEn2D at rotations by 45◦ and 90◦ (Ep = 4).

PCP (%) R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7

kernel PCP (%) for NNetEn2D when rotated by 45◦

CIR_R 18.9 12.1 22.3 14.2 9.6 9.9 11.6
SQCi_R 12.2 16.1 21.6 14.7 15.7 29.3 25.3
SQRo_R 27.0 42 26.2 37.2 45.8 24.1 27.4
SQCo_R 34.9 101.9 107.2 113.2 169.7 105.7 98.3

PCP (%) for NNetEn2D when rotated by 90◦

CIR_R 12.9 10.5 10.9 8.7 4.3 3.9 6.1
SQCi_R 8.1 11.4 12.5 7.3 7.6 3.2 3.2
SQRo_R 34.0 45 33.4 51.6 57.2 43.9 48.6
SQCo_R 115.9 322.7 164.4 301.1 704.9 163.5 180.9
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Figure 11. Examples of calculating NNetEn2D distributions for a test image with 4 types of kernels,
CIR_R, SQCi_R, SQRo_R, and SQCo_R, in the range R = 1–7.

View of NNetEn2D distributions with profiles for different type of kernel are shown in
Figure 12.
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Figure 12. Examples of calculation of NNetEn2D distributions for a test image with 4 types of kernels,
CIR_5, SQCi_5, SQRo_5, and SQCo_5, with rotation by 45◦ and 90◦, with profile visualization.

For images rotated by 45◦ using CIR_5, we observe good profile repeatability in the
central part of the image and increased entropy values at the border. This effect can be
attributed to an artifact; it is associated with zero entropy values outside the picture, where
mirror symmetry has not been implemented. For images rotated by 90◦ for circular CIR_5
kernels, we see good repeatability of NNetEn2D profiles over the entire cross section range.
The use of square kernels leads to a significant distortion of the entropy profiles during the
rotation operation.

Table 5 shows the results of calculating the PCP with a variation in the number of
epochs Ep, using the CIR_R circular kernels.
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Table 5. PCP for NNetEn2D at 45◦ and 90◦ rotation at different epoch numbers.

PCP (%) R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7

kernel type PCP (%) for NNetEn2D when rotated by 45◦

CIR_R, Ep = 4 18.9 12.1 22.3 14.2 9.6 9.9 11.6
CIR_R, Ep = 20 18.9 13.4 9.3 17.1 8.4 9.2 18
CIR_R, Ep = 100 18.9 9.5 7.4 10.4 7.8 4.1 12.2

PCP (%) for NNetEn2D when rotated by 90◦

CIR_R, Ep = 4 12.9 10.5 10.9 8.7 4.3 3.9 6.1
CIR_R, Ep = 20 12.9 13.8 6.3 10.1 3.1 1.5 1.5
CIR_R, Ep = 100 12.9 16.3 6.9 7.6 1.5 1.2 4

It can be seen that there is a tendency for PCP to decrease with increasing Ep for
kernels with radius R = 5 and R = 6. Thus, by choosing the values of R and Ep, one can
achieve a smaller value of PCP, thereby reducing the effect of the rotation operation on the
entropy distribution. As an example, Figure 13 shows the distributions of NNetEn2D for
Ep = 20, where the profiles almost completely coincide after rotation by 90◦.
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Figure 13. Examples of calculation of NNetEn2D distributions for a test image (CIR_5, Ep = 20), with
rotation by 45◦ and 90◦, with profile visualization.

3.1.4. Effects of Removing Constant Component on the NNetEn2D Distribution

Figure 14 shows the result of NNetEn2D calculation before and after removing the
constant component of image brightness. It can be seen that the removal of the constant
component increased the range of change in NNetEn2D, while some areas increased in
contrast (for example, (A2)), others decreased (A3). Thus, preprocessing allows us to see
the distribution of entropy in a different contrast and can be useful in practice.

Figure 14. NNetEn2D distribution for initial test image (a), for test image after removing the constant
component of image brightness (b), NNetEn2D profile at i = 50 (c).
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3.2. Results of the Study on Sentinel-2 Images

We selected five images of a region in Brandenburg, Germany. The subset was chosen
to represent a variety of different land cover types, including croplands, forests and urban
areas, as well as water bodies. The images (Sentinel-2) were acquired between March and
August 2018, illustrating varying conditions throughout the main growing season. The size
of the studied images was 500 × 500 pixels.

In Section 2.6, the main steps in calculating the entropy of NNetEn2D were given. The
calculation result mainly depends on the choice of calculation parameters, which include:
image preprocessing method; kernel type (CIR_R, SQCi_R, SQRo_R or SQCo_R); parame-
ters R, S, DL; number of epochs Ep; and techniques for filling the matrix (W1M_1-W1M_6).

Based on the results of Section 3.1, the following parameters were chosen: kernel type
CIR_5, R = 5, S = 6, and DL = 1. The choice of step S is determined by the size of the image
and the radius of the kernel. A minimum step S = 1 drops the entropy calculation speed, so
S = 6 is the compromise value. Number of epochs Ep = 4.

It is necessary to determine the preprocessing method and the technique of filling the
matrix (W1M_1-W1M_6). The preprocessing method has two options: (1) use the original
data or (2) subtract the constant component from the data according to the method in
Section 2.5.1. In the next section, we will show the preliminary results of the calculation by
varying these parameters and choosing the best combinations.

3.2.1. Effects of Data Preprocessing on the NNetEn2D Distribution

Figure 15a shows an image from a satellite (Sentinel-2) with a size of 500 × 500 pixels
and a constant component A = 0.348320. Figure 15b shows a subset of the main image
(highlighted with a red frame), 250 × 250 pixels in size.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 26 
 

 

3.2. Results of the Study on Sentinel-2 Images 

We selected five images of a region in Brandenburg, Germany. The subset was cho-

sen to represent a variety of different land cover types, including croplands, forests and 

urban areas, as well as water bodies. The images (Sentinel-2) were acquired between 

March and August 2018, illustrating varying conditions throughout the main growing 

season. The size of the studied images was 500  500 pixels. 

In Section 2.6, the main steps in calculating the entropy of NNetEn2D were given. The 

calculation result mainly depends on the choice of calculation parameters, which include: 

image preprocessing method; kernel type (CIR_R, SQCi_R, SQRo_R or SQCo_R); param-

eters R, S, DL; number of epochs Ep; and techniques for filling the matrix (W1M_1-

W1M_6). 

Based on the results of Section 3.1, the following parameters were chosen: kernel type 

CIR_5, R = 5, S = 6, and DL = 1. The choice of step S is determined by the size of the image 

and the radius of the kernel. A minimum step S = 1 drops the entropy calculation speed, 

so S = 6 is the compromise value. Number of epochs Ep = 4. 

It is necessary to determine the preprocessing method and the technique of filling the 

matrix (W1M_1-W1M_6). The preprocessing method has two options: (1) use the original 

data or (2) subtract the constant component from the data according to the method in 

Section 2.5.1. In the next section, we will show the preliminary results of the calculation 

by varying these parameters and choosing the best combinations. 

3.2.1. Effects of Data Preprocessing on the NNetEn2D Distribution 

Figure 15a shows an image from a satellite (Sentinel-2) with a size of 500  500 pixels 

and a constant component A = 0.348320. Figure 15b shows a subset of the main image 

(highlighted with a red frame), 250  250 pixels in size. 

  
(a) (b) 
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Figure 15. Main image (a) and its subset (b). The subset area is marked with a red frame.

Figure 16 shows the result of calculating NNetEn2D for the initial data for the subset,
using all techniques for filling the reservoir matrix (W1M_1-W1M_6).
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from which the constant component is removed (Figure 17) shows, in our opinion, the 
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Figure 16. NNetEn2D for the subset in Figure 13b, with different reservoir matrix filling techniques
(W1M_1-W1M_6).

It can be seen that the application of the W1M_1, W1M_3 and W1M_4 techniques
to the initial subset leads to a greater selection of boundaries and a weak contrast of the
entropy of the remaining regions. The result of applying the W1M_2, W1M_5 and W1M_6
techniques does not lead to an obvious delimitation of areas according to features, with a
narrow range of entropy changes.

Figure 17 shows the result of calculating NNetEn2D for the initial data for the subset
from which the constant component A = 0.348320 has been removed, using all techniques
for filling the reservoir matrix (W1M_1-W1M_6).
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Figure 17. NNetEn2D for the subset in Figure 15b after subtracting the constant component, with
different techniques for filling the reservoir matrix (W1M_1-W1M_6).

The application of the W1M_1, W1M_3 and W1M_4 techniques to the initial subset
from which the constant component is removed (Figure 17) shows, in our opinion, the best
results in highlighting areas of chaos and order and a wide range of entropy changes. The
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result of applying the techniques W1M_2, W1M_5 and W1M_6 leads to the identification
of areas with only high entropy and a narrow range of entropy changes.

3.2.2. Effect of Image Rotation on the NNetEn2D Distribution

Figure 18d shows the entropy calculation result after rotating the image by 45◦ (original
in Figure 18a). It can be seen that NNetEn2D quite accurately repeats the result in Figure 18b.
This, once again, confirms the operability of the method of using circular kernels.
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Figure 18. Original satellite image (a), satellite image rotated by 45◦ (c), NNetEn2D after subtracting
the constant component at W1M_1 (b,d).

3.2.3. NNetEn2D Distribution of Sentinel-2 Images

In Figure 19, we compare results of the new method using different matrix filling
schemes, after subtracting the constant component. In general, it can be seen that the
entropy characterizes the structure of the Sentinel-2 scenes quite well. Areas of sharp
transitions (e.g., between fields and urban areas) have high entropy values, while more
homogeneous areas have consistently low values (e.g., water bodies, top right). Brightness
changes in the images throughout the growing season do not affect the entropy results with
homogeneous fields appearing dark throughout time. Even different types of forests (top
left) seem to be distinguishable. An interesting effect is that both clouds and cloud shadows
lead to consistently low entropy values, highlighting a potential of using this technique
for cloud and shadow detection. These characteristics indicate the success of NNetEn2D in
providing meaningful entropy information for 2D imagery.
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Figure 19. Comparison of different entropy maps in five sample images of the same area over time
(one growing season). Columns show from left to right: input image, NNetEn2D (kernel R = 5, S = 6,
Ep = 4) with W1M_1, W1M_3 and W1M_5 filling schemes.
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Regarding different filling methods, Figure 19 indicates that W1M_1 and W1M_3 lead
to clearer results with higher contrast than W1M_5. W1M_1 seems to best capture local
heterogeneities while W1M_3 tends to create a blurrier picture with less distinct features.

In Figure 20, we show results of the NNetEn2D and GLCM entropy. This illustrates
the superior performance of the new method in distinguishing heterogeneous from ho-
mogeneous image areas to form a more coherent picture of the conditions. While water
bodies are clearly visible in GLCM entropy, also with constantly low values, homogeneous
fields especially are less clearly separated and borders between objects are expectedly much
less precise.
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Figure 20. Original satellite image (a), NNetEn2D after subtracting the constant component at W1M_1
(b), GLCM entropy (c).

Another observation is that results of GLCM entropy are not affected by subtracting the
constant component of the image. Since calculation of GLCM first involves a quantization of
pixel values, most commonly based on evenly spaced thresholds or by evenly distributing
pixel values across bins, a constant change applied to all pixels indiscriminately does not
affect the distribution after quantization.

3.3. Research Results on Aero-Magnetic Images

As an example of a geophysical image, we selected an area (Figure 21a) from southwest
Australia [31]. The aeromagnetic image is shown in Figure 21b and is extracted from [32].
The entropy images are shown in Figure 21c. In particular, Figure 21d shows Figure 21c
draped over the aeromagnetic image. The geophysical structure is amplified in this image
and confirms the geophysical mapping that shows that the rocks to the north-west, charac-
terized by low to medium entropy, also occupy the core of the fold in the northeast of the
area and also occur further to the south. This kind of information would be very useful
prior to undertaking field mapping.

When using the W1M_6 technique for filling the matrix, the NNetEn2D distribution
takes the form shown in Figure 21e. The entropy distribution in this case similarly labels
regions of high and low entropy, but with less contrast. The entropy range in Figure 21c
is NNetEn2D (0.368 . . . 0.717) and in Figure 21e is NNetEn2D (0.218 . . . 0.245). This distri-
bution confirms the conclusions made above, but may be more preferable for the visual
perception of the results.
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Figure 21. Entropy maps of aeromagnetic image. (a) Regional setting for image analyzed (blue
square) that spans the Albany-Fraser domain of southwest Australia [31]. (b) Grey scale from 0 to
255 of aeromagnetic image in the blue square from Geological Survey of Western Australia; 2013
magnetic merged grid of Western Australia [32]. (c) Entropy map W1M_1 is used. (d) The entropy
map of (c) draped over the aeromagnetic map (b). (e) Entropy map W1M_6 is used. (f) The entropy
map of (e) draped over the aeromagnetic map (b).
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4. Discussion

In this paper, two criteria for the quality of the methodology are proposed. First, a test
image was generated that used the logistic mapping (Equation (5)), for which the areas of
chaos and order are known depending on the control parameter rr. It is shown that our
method correctly identified chaotic areas A1, A3, A5, A1t–A2t, which have an increased
value of NNetEn2D compared to regions with ordered dynamics A2 and A4 (see Figure 11
and NNetEn2D profiles Figures 12 and 13). In addition, NNetEn2D for area A5 is larger than
for area A3 (kernel type CIR_R), which repeats the dependence for one-dimensional entropy
in Figure 6. However, there is a big difference between the profiles of the one-dimensional
and two-dimensional tasks, since the irregularity of the two-dimensional distribution is
due to the irregularity along two axes. The second quantitative criterion is the calculation of
the PCP characteristic (Equation (7)), which clearly shows the best shape of kernel invariant
to rotation.

The best results were obtained with kernels of circular symmetry CIR_R; the advantage
was the greater invariance of the result when the image was rotated. However, square
kernels are also able to distinguish regions of chaos and order, and for the same number of
pixels, can give similar distributions to circular kernels such as SQCi_3 and CIR_4.

This property can be used to replace circular kernels with square kernels for rough
calculations. Square kernels are in general much easier to implement and often more
efficient to execute in many programming languages (e.g., Python, Delphi or MATLAB), so
their consideration may be of practical interest to researchers. In addition, it is of interest to
compare the result of NNetEn2D calculation after the operation of rotating the image for
different types of kernels.

The best performance for the test pattern was shown by kernels with radii R = 5
and R = 6 pixels; low PCP values were observed for them, not exceeding 10% for Ep = 4
(Table 5), and a wide range of entropy (Figure 10). For kernels with a small radius R = 1–3,
the entropy range narrowed significantly. For R = 1, the maximum and minimum values
of NNetEn2D practically coincided; PCP~18% in this case also has higher value. The low
range of NNetEn2D for small radii is due to the fact that short data series do not give a
high entropy value, since it is impossible to build a chaotic distribution on a small number
of elements. Figure 10 shows that the entropy range can also be expanded by increasing
the number of epochs Ep; this is due to the training effect of the LogNNet neural network.
A larger number of epochs leads to a greater degree of classification of LogNNet and,
accordingly, an increase in NNetEn2D; this effect is demonstrated in Figure 6b.

From Table 5, one can see the effect of decreasing PCP for entropy with an increasing
number of epochs Ep for radii R = 5 and R = 6, PCP can reach very low values (~1.2%)
when the pattern is rotated by 90◦. For radius R = 1, the PCP values do not change with the
number of epochs, which indicates that the limiting values of NNetEn2D quickly reach the
limit in the case of small values of the number of elements in the kernel.

Thus, for a reliable determination of the entropy, it is preferable to use R ≥ 4. The
selection of the radius in each specific case is the task of the user. For example, with artificial
scaling of images, the pixel density changes and, therefore, it is necessary to select the
optimal radius individually.

The NNetEn2D entropy calculation method has two main geometric parameters (kernel
radius and its displacement step), as well as two parameters of neural network (number of
training epochs and one of six reservoir filling techniques). The choice of these parameters
determines which features of the image will be highlighted to a greater extent.

With almost any transformation of the image, including rotation, changes to the
location and values of pixels in the work, it was calculated that a rotation by 45◦ leads
to a value of PCP = 4.4% for brightness. NNetEn2D is a sensitive tool for detecting these
changes. Therefore, in Figure 12 for the CIR_5 kernel, the formation of alternating stripes
in the center of the figure is seen. Similar stripes are also observed in Figure 7b, but their
contrast is very weak. Thus, the calculation of NNetEn2D makes it possible to reveal hidden
changes when the image is rotated or modified in some other way.
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Figures 16 and 17 show that modifying the constant component of 2D data significantly
affects NNetEn2D. NNetEn is a value that determines the measure of data disorder relative
to the zero level. For example, a signal in the form of weak noise against the background of a
high constant component has a low entropy, but when the constant component is removed,
the remaining noise, on the contrary, has a high entropy. Therefore, data preprocessing is
an important step in NNetEn2D calculations and allows focusing on certain phenomena of
the chaotic dynamics of 2D data.

In our tests on remote sensing imagery, the method demonstrates capacity to represent
entropy accurately in different image parts. Heterogeneous areas (sharp transitions, strong
texture) are consistently highlighted, while homogeneous areas have very low entropy
values. In particular, the consistent highlighting of both clouds and cloud shadows may
prove advantageous in the future. Although results are encouraging, remote sensing
applications would benefit significantly from a more detailed, pixel-wise application rather
than the large kernel averaging that was applied in this study. However, the high processing
requirements of the technique make this very difficult, for now. Therefore, further research
will be focusing on increasing efficiency, as well.

The comparison with GLCM further revealed advantages but also disadvantages of
this early version of the technique. On the one hand, results are of significantly higher
quality and consistency, but on the other, the effect of the constant component on results
needs further analysis to gather real-world guidelines.

As far as the aeromagnetic image (Figure 21b) is concerned, the patterns arise from
different distributions of magnetic susceptibility in the rock and their interaction with
the Earth’s magnetic field. The mineral responsible for the magnetic susceptibility is
mainly magnetite. Metamorphism at high temperatures and pressures along with plastic
deformation distributes the magnetite in patterns that derive from deterministic processes
(reaction–diffusion). Hence, the entropy is saying something about these processes and
the complexity associated with them. The choice of the kernel radius R, the technique of
filling the matrix (W1M_1-W1M_6) and the value of Ep allow one to select favorably certain
features of the NNetEn2D entropy for further analysis.

The task of increasing the speed of NNetEn2D entropy calculation is important. At
the moment, calculating an area of 99 × 99 pixels takes about 9 min, and larger areas of
500 × 500 pixels require about 200 min of computing time using the 30 threads of an AMD
Ryzen 9 3950× 16-core processor with 64GB of RAM.

To estimate the computational cost, it is convenient to introduce a vector C with com-
ponents expressing the number of addition and subtraction operations N(±), multiplication
operations N(*), division operations N(/) and exponential operation N(exp), C = (N(±),
N(*), N(/), N(exp)). In vector C, we only consider mathematical operations and do not take
into account the operations of extracting and writing data to memory. Table 6 presents
the main stages of the calculation algorithm, with their brief description and evaluation of
the vectors C. The vector index corresponds to the stage number.The basic operations are
the first five stages with vectors C1–C5; they are repeated at the stages of training C8 and
testing the C10 neural network.

The total computational cost for a single kernel C11 contains a huge number of mathe-
matical operations ~109. To calculate an image of 99 × 99 pixels, the computational cost
of C12 is required, where the number of multiplication operations reaches ~1012. Let us
estimate the calculation time approximately. To do this, we first estimate the time to execute
each operation included in the vector C, in relation to real numbers, taking into account the
extraction and writing of values to a memory cell.

For a 1.61 GHz processor, the estimates give the following values: addition
t(±) = 3.56 ns, multiplication t(*) = 6.04 ns, division t(/) = 8.22 ns, and exponent
t(exp) = 71 ns. As a result, it is easy to estimate the total time T = N(±)·t(±) + N(*)·t(*) +
N(/)·t(/) + N(exp)·t(exp) for C12—it is T~265 min. In this work, we used parallel calcu-
lations into 30 threads at stage 12, which gives a correct estimate of the experimentally
observed time of about 9 min.
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The problem of high computational costs is a common problem of neural networks, in
particular deep learning networks applied to individual pixels of an image. Specialized
libraries such as TensorFlow or PyTorch are optimized for the efficient use of GPUs and
parallel computation.

The present algorithm has the disadvantage that the computational cost is independent
of the number of elements in the data series. A series with the N = 50 or N = 19,625 will be
calculated in the same time, since the dimension of the reservoir matrix W1 does not change.
Let us compare the computational cost for another well-known method for calculating
the approximate entropy (ApEn). In the ApEn [33] calculation algorithm, the number
of operations grows quadratically, ~N2, and reaches about 109 at N = 19,625, which is
comparable to the computational cost of NNetEn2D at stage 11 in Table 6.

Table 6. Computational cost of the main stages of the NNetEn2D calculation algorithm.

Stage Number Stage Description Vector of Computational Cost
C = (N(±), N(*), N(/), N(exp))

1 Multiplication of the W1 matrix by the Y vector in the
reservoir (see Figure 1) C1 = (19,625, 19,625, 0, 0)

2 Normalization of the vector Sh C2 = (100, 0, 25, 0)

3 Forward method of the output neural network,
multiplication of the matrix W2 by the vector Sh

C3 = (260, 260, 0, 0)

4 Normalization of the vector Sout C4 = (10, 0, 10, 10)

5 Back-propagation method C5 = (280, 540, 0, 0)

6 LogNNet training on one image C6 = C1+ C2+ C3+ C4+ C5
C6 = (20,275, 20,425, 35, 10)

7 LogNNet training using 60,000 MNIST images C7 = C6·60,000
C7 = (1.2165 × 109, 1.2255 × 109, 2.1 × 106, 6 × 105)

8 LogNNet training using Ep = 4 epochs C8 = C7·Ep
C8 = (4.866 × 109, 4.902 × 109, 8.4 × 106, 2.4 × 106)

9 LogNNet testing on one image C9 = C1+ C2+ C3+ C4
C9 = (19,995, 19,885, 35, 10)

10 LogNNet testing using 10,000 MNIST images C10 = C9·10,000
C10 = (1.9995 × 108, 1.9885 × 108, 3.5 × 105, 1.0 × 105)

11 NNetEn2D entropy calculation for one kernel C11 = C8+ C10
C11 = (5.0660 × 109, 5.1009 × 109, 8.75 × 106, 2.5 × 106)

12
Calculation of entropy for one image sized 99 × 99 pixels,

with parameters S = 6, R = 5. 324 circular kernels are
needed to cover the entire image

C12 = C11·324
C12 = (1.6414 × 1012, 1.6527 × 1012, 2.835 × 109, 8.1 × 108)

NNetEn2D calculation time reduction can be achieved by reducing the computational
cost and through parallel computing.

We can suggest the following methods of parallel computing:

1. Parallelize the calculation of the product of a matrix and a vector in steps 1 and 3; this
can increase speed up to 10–100 times.

2. Organize a parallel calculation of the entropy for each image kernel at step 12. For the
example shown in the Table 6, the acceleration will be 324 times.

Reducing the computational cost can be achieved by modifying the methodology and
architecture of the neural network. The following paths can be suggested:

1. Reduce the number of training images in step 7.
2. Reduce the number of test images in step 10.

Further exploration of our technique in this direction will be the subject of further
research.

The grayscale image (Figure 15a) is a set of pixels Bi,j. Suppose there is a need to process
color images. The data for the three color channels (R, G, B) will represent three arrays RBi,j,
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GBi,j, and BBi,j. In this case, we will offer three options for calculating NNetEn2D: (1) for
each color channel separately, (2) converting a color image to grayscale, and (3) concatenate
data for three colors. In the future, we plan to further explore the potential of this method
in remote sensing applications, including the expansion to multi-band imagery and the
development of a 4D version, taking into account not only spatial and spectral but also
temporal information. This can help interpret more complex multi-image data series.

5. Conclusions

This paper shows the possibility of calculating the NNetEn2D entropy of 2D data
presented as an array of numbers or an image. Kernels of various types and preprocessing
operations on an artificial test image are investigated. Examples of using NNetEn2D for
satellite grayscale images are shown.

Conceptual innovation of the method lies in (1) the use of circular kernels to calculate
NNetEn2D of two-dimensional images with robustness to image rotation and (2) calculating
entropy using a neural network applied to two-dimensional images. The approach com-
putes entropy without approximating probability distributions, but uses the properties of
reservoir neural networks whose classification ability depends on the degree of irregularity
of input information transformations in the reservoir.

Further exploration of our technique in the direction of reducing the computational
cost will be the subject of further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
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