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Abstract: Soil erosion is a global environmental problem. The rapid monitoring of the coverage
changes in and spatial patterns of photosynthetic vegetation (PV) and non-photosynthetic vegetation
(NPV) at regional scales can help improve the accuracy of soil erosion evaluations. Three deep
learning semantic segmentation models, DeepLabV3+, PSPNet, and U-Net, are often used to extract
features from unmanned aerial vehicle (UAV) images; however, their extraction processes are highly
dependent on the assignment of massive data labels, which greatly limits their applicability. At the
same time, numerous shadows are present in UAV images. It is not clear whether the shaded features
can be further classified, nor how much accuracy can be achieved. This study took the Mu Us Desert
in northern China as an example with which to explore the feasibility and efficiency of shadow-
sensitive PV/NPV classification using the three models. Using the object-oriented classification
technique alongside manual correction, 728 labels were produced for deep learning PV/NVP semantic
segmentation. ResNet 50 was selected as the backbone network with which to train the sample data.
Three models were used in the study; the overall accuracy (OA), the kappa coefficient, and the
orthogonal statistic were applied to evaluate their accuracy and efficiency. The results showed
that, for six characteristics, the three models achieved OAs of 88.3–91.9% and kappa coefficients of
0.81–0.87. The DeepLabV3+ model was superior, and its accuracy for PV and bare soil (BS) under light
conditions exceeded 95%; for the three categories of PV/NPV/BS, it achieved an OA of 94.3% and a
kappa coefficient of 0.90, performing slightly better (by ~2.6% (OA) and ~0.05 (kappa coefficient))
than the other two models. The DeepLabV3+ model and corresponding labels were tested in other
sites for the same types of features: it achieved OAs of 93.9–95.9% and kappa coefficients of 0.88–0.92.
Compared with traditional machine learning methods, such as random forest, the proposed method
not only offers a marked improvement in classification accuracy but also realizes the semiautomatic
extraction of PV/NPV areas. The results will be useful for land-use planning and land resource
management in the areas.

Keywords: unmanned aerial vehicle (UAV) images; PV/NPV classification; shaded features; deep
learning semantic segmentation; object-oriented technique; desert

1. Introduction

Vegetation is a critical component of terrestrial ecosystems and an important link
between material cycles and energy flows in the soil, hydrosphere, and atmosphere [1].
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Depending on its activity characteristics, vegetation can be divided into photosynthetic
vegetation (PV) (i.e., plant bodies with chlorophyll tissues that allow photosynthesis,
especially green leaves) and non-photosynthetic vegetation (NPV) (i.e., plant bodies that do
not contain chlorophyll or do not have photosynthetic functions due to reduced chlorophyll,
such as branches, stems, litter, and dry leaves) [2]. Among them, surface litter, as an
important material that affects the energy cycle and ecosystem material cycle, is also
included as NPV in this study. The accurate estimation of the fractional cover of PV
(f PV), NPV (f NPV), and bare soil (BS) (f BS) is of considerable importance for estimating
ecosystem service functions (e.g., biomass, carbon sources/sinks, and water as well as soil
conservation) in addition to improving the precision of related models; it has become a
contemporary important issue in the field of ecological environment research [3–6].

Estimates of f PV and f NPV are typically retrieved by field surveys and remote sens-
ing [7]. In recent years, low-altitude unmanned aerial vehicle (UAV) remote sensing
technology, which offers the rapid and accurate extraction of vegetation information [8],
has been widely applied in forest resource surveys [9], biomass estimation [10,11], veg-
etation cover estimation [12], leaf area index monitoring [13], precision agriculture, and
more [14,15]. Traditional visual interpretation is highly accurate but time-consuming and
labor-intensive, requiring experienced interpreters. Object-based image analysis (OBIA)
can improve image classification accuracy and efficiencies by implementing multiple types
of information (e.g., spectrum, texture, and shape) [16].

Numerous studies have combined OBIA with random forest (RF) [17], support vector
machine (SVM) [18], k-nearest neighbors (KNN) [19], and other machine learning algo-
rithms for unmanned vegetation cover estimations in wetland, sandy, urban, and other
subsurface land classes, achieving an overall accuracy of 85 to 90% [12,20]. However,
traditional machine learning algorithms have a strong reliance on the human–machine
interaction process, lack intelligence and automation capabilities, and are less migratable.

In recent years, following the development of computer vision and artificial intelli-
gence, deep learning convolutional neural networks (CNNs) have been widely applied in
various image processing applications, owing to their powerful ability to automatically ex-
tract features. CNNs are trained by mass data labeling to build deep neural networks, and
they automatically extract features closely related to the target task through the application
of a loss function; these models offer strong robustness as well as migration capabilities [21]
and have emerged as a hot topic of research in remote sensing. CNNs are primarily applied
in the surveillance of weeds [22], the identification of plant pests and diseases [23], the
estimation of crop yields [24], and the classification of precision crops [25].

Deep learning semantic segmentation algorithms offer strong extraction capabilities
for spatial features; they can ensure the rapid and accurate classification of remote sensing
images [26]. More advanced semantic segmentation models have been developed via
the addition of fully convolutional neural networks (FCNs); current examples include
U-Net [27], SegNet [28], PSPNet [29,30], DeepLab [31,32], and more.

An increasing number of studies have combined UAV data with deep learning se-
mantic segmentation models to perform vegetation extraction [21,33,34]. However, in
desert areas vegetation is difficult to classify due to the small leaf sizes and discrete spatial
distributions. Currently, most research on desert vegetation based on UAVs focuses on the
estimation of f PV, and few studies have considered the estimation of f NPV, which occupies
a large ecological niche.

When estimating UAV PV/NPV cover using deep learning semantic segmentation, it
is extremely important to obtain image data labels quickly and accurately. The deep semi-
supervised learning methods based on object-oriented random forest are highly accurate,
easy to operate, and very popular; however, applications for PV/NPV classification using
UAV images remain rare. Vegetation has a three-dimensional structure, and large areas of
shadow masking and obscuration occur when the observation angle of the UAV sensor
does not coincide with the direct sunlight direction [35]. Features present under high
levels of shadow occlusion are misclassified, which seriously affects the accuracy of feature
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classification [12,36]. The current shadow processing approaches for remote sensing images
often apply spectral recovery; however, this changes the information for non-shaded areas
and reduces the accuracy of the source image [37]. Commonly used models and algorithms
for de-shadowing (e.g., histogram matching and the linear stretching of gray-scale images)
involve more parameters, are complicated to operate, and are unsuitable for the fast
extraction of PV/NPV from UAV images [38]. Whether the features in shadow areas of
UAV images can be further refined and classified must also be studied in depth.

The Chinese Mu Us Sandland is located in the arid and semi-arid desert vegetation
zone; it presents with few plant species, low vegetation cover, a simple structure, and
fragile ecology. The accurate and rapid estimation of its vegetation cover characteristics
has become a pressing problem [39,40]. In this study, we take the Mu Us Sandland as
an example, use DJI Phantom 4 Pro UAV RGB aerial photographs as the database, and
incorporate shaded object classification; we then explore the feasibility and efficiency of
combining this classification with object-oriented techniques for PV/NPV cover estimation
using three recently emerging deep learning semantic segmentation models: DeepLabV3+,
PSPNet, and U-Net. The research proceeds as follows:

1. We evaluate the feasibility of object-oriented detection combined with deep learning
semantic segmentation for the estimation of desert-area f PV and f NPV from UAV
high-spatial-resolution visible light images.

2. We compare three deep learning semantic segmentation methods as well as three
machine learning algorithms for the estimation of f PV and f NPV, considering shaded
feature classification.

3. We develop a semiautomatic labeling method based on object-oriented random forest
for PV/NPV data preprocessing.

4. We apply the results to vegetation monitoring in the same type of area to verify the
generalizability of the model.

This study will provide a theoretical basis for automated and accurate vegetation
surveyance in desert areas and provide scientific as well as technological support for the
evaluation and formulation of relevant ecological protection policies.

2. Research Region and Data
2.1. Study Area

The Mu Us Sandland is located south of the Ikezhao League in Inner Mongolia and
northwest of Yulin City in Shaanxi Province; it covers an area of 32,100 km2, with an annual
precipitation decreasing from 400 mm in the southeast to ~250 mm in the northwest. The
vegetation coverage in this area is 40–50%, and a wide variety of sandy and hardy plants
grow on the fixed and semi-fixed sand dunes, primarily Artemisia scoparia Waldst. et Kit.,
Caragana Korshinskii Kom., Salix cheilophila Schneid., and Populus L. [41,42]. In this study,
a sample plot including trees, shrubs, and grasses was selected in a typical sandy area of
Balasu Town, Yuyang District, Yulin City, as shown in Figure 1.
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Figure 1. (a) Location, (b) photograph of the study area, and (c) the UAV orthographic mosaic image
of the study area and four sub-regions (Regions A, B, C, and D were used as alternative location
samples and did not intersect).

2.2. UAV Image Stitching and Processing

The quadrotor DJI Phantom 4 Pro UAV, which is lightweight, flexible, and offers
a stable shooting platform, was used to acquire low-altitude image datasets. The UAV
platform was equipped with a complementary metal oxide semiconductor digital camera
with a resolution of 1920 × 1080 pixels and a field of view of 84◦, covering three visible
wavelengths: R (red), G (green), and B (blue).

Remote sensing images of the UAV were acquired at 11:30–12:00 a.m. on 13 July and
24 September 2019 under clear weather conditions, without clouds or wind. The flight
height of the UAV was ~50 m, the camera angle was –90◦, the flight speed was 1.2 m/s,
the direction and side overlaps were 80%, the number of main routes was nine, the flight
area was 4 × 104 m2, the flight time was ~15 min, and a total of 700 original aerial images
were obtained in the two time periods and at four sample sites, with an image resolution of
0.015 m (Table 1).

Table 1. UAV flight parameters.

Item Basic Parameters

Flight height/m 50
Flight elevation/m 1200
Flight speed/(m/s) 1.2

Camera angle/◦ −90
Heading overlap/% 80
Parallel overlap/% 80

Flight duration/min 15
Image Resolution/m 0.015

Number of aerial images 350
Aerial survey area/m2 40,000

In this study, the images were orthorectified and stitched using Pix4Dmapper UAV
image stitching software. First, the filtered UAV images were imported, and the geographic
location information was added. Second, the eponymous feature points were automatically
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encrypted by an aerial triangulation model. The geometric correction of the images was
then obtained by combining the above eponymous feature points with ground control point
data. Finally, the orthophoto and digital surface model were finally generated, as shown
in Figure 1. The R-, G-, and B-band transformations were used to enhance the image and
minimize the influences of shadows upon vegetation estimation. The data from September
Region A were selected to train the model, September Regions B, C, and D were used as
alternative location samples for the same period, July Region A was used as an alternative
set of samples for the same location, and July Regions B, C, and D were used as alternative
location and period samples to verify the migration capabilities of the model. The four
regions did not intersect (see Figure 1).

3. Methods
3.1. PV/NPV Estimation Process

An object-oriented and deep-learning-based PV/NPV estimation architecture was
proposed, as shown in Figure 2. This architecture contained four layers: UAV image
preprocessing, labeled dataset construction, semantic segmentation model training, and
PV/NPV classification accuracy evaluation. The experiment used the deep learning module
in ArcGIS Pro, Pytorch, as the development framework, a GeForce GTX 1080 Ti as the
hardware configuration, 11 Gb of video memory, and 128 Gb of RAM; this setup could
quickly train and test the semantic segmentation model. The parameters of the network
training model were set as follows: number of channels: 3; number of categories: 6; batch
size: 4; epoch: 100; base learning rate: 1E-3; learning strategy: ploy; power: 0.9; and
gradient descent method: stochastic gradient descent.
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Figure 2. PV/NPV estimation architecture.

To investigate the advantages and disadvantages of deep learning for the estimation
of PV/NPV in desert areas from high-resolution UAV remote sensing images, this study
used three typical semantic segmentation networks, DeepLabV3+, PSPNet, and U-Net,
to conduct comparison experiments and select the most suitable candidate for migration
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testing. To demonstrate the advantages and disadvantages of the selected model in UAV
PV/NPV estimation, three typical machine learning methods, RF, SVM, and KNN, were
compared against the optimized deep learning model. The three typical machine learning
experiments were based on ENVI and eCognition software.

3.2. Object-Oriented Label Data Creation

The first stage of feature extraction in a deep learning semantic segmentation model
is to annotate the image data at the pixel level. The traditional annotation method is
manual visual interpretation, which is simple but time-consuming and labor-intensive. We
propose an object-oriented classification method supplemented with manual correction for
data annotation; this includes three steps: (1) image segmentation, (2) segmented image
classification, and (3) the manual correction of the classification result.

3.2.1. Feature Classification

To maximally mitigate the impacts of shading upon the feature extraction accuracy,
the features in this study were classified into six feature types: unshaded PV (PV1), shaded
PV (PV2), unshaded NPV (NPV1), shaded NPV (NPV2), unshaded BS (BS1), and shaded
BS (BS2). The unshaded PV appeared bright green in the image; the unshaded NPV was
distributed around the PV and appeared dark gray in the image, with a rough texture and
a tridimensional appearance; and the unshaded BS was distributed in successive patches
and appeared bright yellow. The shaded PV, NPV, and BS were dark green, dark gray, and
dark yellow, respectively.

3.2.2. Multi-Resolution Segmentation

The object-oriented classification was based on image segmentation, in which image
elements of the same object are given the same attribute meaning after segmentation. The
principle of multi-resolution segmentation (MRS) is to quantitatively evaluate intra- and
inter-object heterogeneity via bottom-up traversal and merging from a single pixel, and then
to fully optimize the image to aggregate the elements at different scales [32]. MRS consists
of three core parameters: scale parameter (SP), shape, and compactness. SP determines
the maximum overall heterogeneity allowed for the resulting object and can vary the size
of the image segmentation object; it is the most important parameter in MRS and has a
large impact on the classification accuracy. The shape defines the size of the structural
contrast between the uniformity of the shape and the uniformity of the spectral value. The
compactness is used to optimize the tightness or smoothness of the structural contrast of
the object in the image. The results obtained using different segmentation parameters are
shown in Figure 3.

To determine the parameter combinations suitable for PV–NPV estimation in the study
area, the shape and compactness factors were set to 0.1, 0.3, 0.5, 0.7, and 0.9; the traversal
method was adopted to compare different parameter combinations. When the shape was
0.1 and the compactness was 0.3, the internal homogeneity of the object was higher, the
segmentation of the PV and NPV edge was clearer, and the estimation performance was
strong (Figure 4b). Based on the combinations of parameters of the optimal homogeneity
criterion, this study performed MRS for parameters in the range of 1 to 400 (increment: 10)
to determine the optimal parameters of the segmentation scale. The results showed that,
for PV/NPV features in sandy land, the optimal segmentation parameters were shape: 0.1;
compactness: 0.3; and SP: 61. The segmentation results could finely portray the spatial
distribution patterns of PV and NPV.
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compactness factor set to 0.5 and 0.9; (f) Segmentation effect with shape factor and compactness
factor set to 0.7 and 0.9.
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3.2.3. Object-Oriented Random Forest Classification Algorithm

We defined six feature classes: PV1, PV2, NPV1, NPV2, BS1, and BS2. For each class,
an appropriate number (~2/3) of samples was selected as training samples to calculate
the shape, spectrum, and other characteristic values of the objects; we then established
a suitable feature space for the object to guide classification using the parameters of the
feature space. However, too many classification features can lead to redundancies, resulting
in problems such as increased computation, reduced classification efficiency, and even
reduced accuracy. After comparison, the optimal feature space was selected to include
15 features that offer the largest differentiability between different classes; these were as
follows: visible vegetation index, normalized green–blue difference index, red-green ratio
index, normalized green–red difference index, overgreen index, difference vegetation index,
spectral features, RGB raw band mean, brightness, max.dff, texture features, gray level
cooccurrence matrix (GLCM) mean, GLCM homogeneity, GLCM ang.2nd moment, GLCM
dissimilarity, and GLCM correlation. The random forest algorithm was then used to classify
the images into features.

3.2.4. Manual Correction of Classification Results

The random forest algorithm can suffer from misclassifications and omissions when
classifying features; these need to be corrected by manual visual interpretation. Manual
correction requires the direct assignment of attributes to polygon units or the changing of
attributes based on the results of manual visual interpretation. After manual correction
was completed, the classification result map was converted into an index map (Figure 4)
for subsequent training of the semantic segmentation model. Considering the limitations of
the experimental equipment and the network structure of the model, the regional images
were segmented into 512 × 512 pixel image sets with a cut step of 256. To expand the
dataset (to alleviate the overfitting and enhance the generalizability of the model), data
augmentation was performed; this not only increases the number of datasets but also
enhances the stability and generalizability of the network. The data-augmented training set
contained 728 images, the validation set contained 548 images, and the test set contained
180 images.

3.3. Deep Learning Semantic Segmentation Methods

Currently, numerous network models are available for deep semantic segmentation,
including both fully and weakly supervised image semantic segmentation methods; how-
ever, the performances of most weakly supervised methods still lag behind those of the
former. Therefore, in this study fully supervised image semantic segmentation methods
were chosen. Three of the more advanced network models, DeepLabV3+, PSPNet, and
U-Net, were selected to segment UAV images.

3.3.1. DeepLabV3+

DeeplabV3+ is the fourth-generation model of the Deeplab series. DeepLabV3+ incor-
porates an atrous spatial pyramid pooling (ASPP) structure and encoder–decoder method
(commonly used for semantic segmentation) to fuse multi-scale information; it not only
fully exploits multi-scale contextual information but can also determine the boundary of an
object by reconstructing the empty information of an image.

In the encoder–decoder architecture, multiple dilated convolution modules with differ-
ent dilation rates are designed to fuse multi-scale features without increasing the number of
parameters, and the dilated convolution increases the receptive field without information
loss, giving each convolution output a larger range of information. DeepLabV3+ applies
deep separable convolution to ASPP and a decoder to replace all max pooling operations,
thereby reducing the number of parameters and improving the model speed.

The details of DeepLabV3+ model structure could be seen in ref [31]. The proponent
study used ResNet50 as the skeleton network in the encoding part to initially extract low-
level features from UAV images. The ASPP module then performed a 1 × 1 convolution; a
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3 × 3 convolution with expansion rates of 6, 12, and 18; and global average pooling before
the fusion of the feature maps. The fused feature maps were inputted into a 256-channel
1 × 1 convolution layer to obtain high-level feature maps, and these maps were inputted
into the decoder. In the decoding part, the low-level feature map obtained from Xception
was first downscaled using a 1 × 1 convolution; it was then fused with the high-level
feature map up-sampled via four-fold bilinear interpolation. Finally, a 3 × 3 convolution
operation was performed and then restored to the original map size via four-fold bilinear
interpolation to obtain the segmentation prediction map. In this study, the activation
functions used in DeepLabV3+ were all ReLU functions.

3.3.2. PSPNet

PSPNet is a pyramid scene parsing network originally proposed by Zhao et al. [29];
it is a widely cited semantic segmentation network. This network is characterized by
the inclusion of a pyramid pooling module (PPM) and atrous convolution, which can
fully exploit the global scene to aggregate contextual information between different label
categories [30].

The details of the PSPNet model structure could be seen in ref [29]. To maintain the
weight of global features, the UAV image sample set was first inputted into a ResNet50
skeleton network [43] to extract feature maps; the PPM then module divided the feature
layer into 1 × 1, 2 × 2, 3 × 3, and 6 × 6 regions, and it performed averaging pooling
operations for each in order to extract multi-scale features. Next, the multi-scale features
were fed into a 512-channel 1 × 1 convolutional layer for parallel processing; this reduced
the depth of the multi-scale feature map to one-fourth that of the original. Finally, the
original feature map was fused with the compressed multi-scale feature map; a 3 × 3
convolution was then performed to output the classification result map.

3.3.3. U-Net

The U-Net network model was proposed by Ronneberger et al. in 2015. It is an
improved end-to-end network model structure based on the FCN framework, follows the
encoder–decoder structure, and exploits the characteristics of jump networks; this allows
it to fuse high-level semantic information with shallow-level features, making full use of
contextual and detailed information to obtain a more accurate feature map [27]. The model
primarily consists of two components: feature extraction (i.e., down-sampling) and an
up-sampling component. These form a symmetric U-shaped structure, and the model is
therefore called the U-Net network.

The details of the U-Net model structure could be seen in ref [27]. The left-hand side
is the feature extraction component; we inputted here the UAV image sample set and
extracted feature information via convolution and pooling operations. The right-hand side
shows the up-sampling component, where the network restores the feature map of the
image to the original image dimension via up-sampling. After each up-sampling step, the
feature maps of the same dimension (previously down-sampled) are fused, and the missing
edge information generated by the pooling operation is continuously recovered. The U-Net
feature extraction network in this study consisted of five down-sampling blocks, each
comprising two 3 × 3 convolutional layers and one 2 × 2 pooling layer. The up-sampling
network also included five up-sampling blocks with identical structures. Each up-sampling
block consisted of two 3 × 3 convolutional layers and one 2 × 2 deconvolutional layer;
each up-sampling doubled the image size and halved the number of channels.

3.4. Accuracy Assessment Metrics and Strategies

To quantitatively examine the extraction results and evaluate the advantages and
disadvantages of each classification method, we used confusion matrices and the overall
accuracy (OA) score to evaluate the classification results. The confusion matrix calculates
and compares the location and classification of each surface real image element with the
corresponding location and classification image element in the classified image. When
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calculating the confusion matrix, different classification accuracy metrics were calculated
further, including the OA, kappa coefficient, user accuracy (UA), and producer accuracy
(PA).

The OA reflects the relationship between the number of correctly classified elements
and the total number of elements in the classification results; it was used to evaluate the
precision of the classification results from a global perspective. The kappa coefficient can
be used to evaluate the consistency and credibility of multi-classification results for remote
sensing images. UA refers to the ratio between the total number of pixels correctly classified
into a certain class and the total number of pixels classified into that class by the classifier
(i.e., the ratio between classification results and user-defined objects). PA expresses the
ratio between the number of image elements in the whole image correctly classified into
a certain class by the classifier and the total number of true references of that class. The
indicators were calculated as follows:

OA =
∑r

i=1 Xii

Nall
× 100%, (1)

kappa =
N ∑r

i=1 Xii − ∑r
i=1(Xi+X+i)

N2 − ∑r
i=1(Xi+X+i)

, (2)

UA =
Xii
X+i

× 100%, (3)

PA =
Xii
Xi+

× 100%, (4)

where Xii is the number of correctly classified samples, Xi+ is the number of real samples
in category i, X+i is the number of samples predicted to be in category i, Nall is the total
number of samples, and r is the total number of categories.

The size of the whole-view test image was large, and it was difficult to evaluate it
pixel-by-pixel; therefore, we adopted a random method for accuracy evaluation. One
thousand sample points were randomly selected in a 10,000 m2 test area actually surveyed
via UAV orthophotos; these were taken as a reference, and the feature types of the sample
points were visually inspected and recorded as image interpretation accuracy verification
samples. Within the 1000 sample points, the percentages of feature types known by visual
identification were as follows: PV1 (25%); PV2 (4%); NPV1 (9%); NPV2 (4%); BS1 (50%);
and BS2 (8%), which could be representative of the area.

4. Results
4.1. Comparison of Semantic Segmentation Network Results

Using a semi-automatic annotation method combining object-oriented techniques and
manual correction (Section 3.2), the vegetation estimation results of the UAV images were
obtained; samples are shown in Figure 5. It can be seen that DeepLabV3+, PSPNet, and
U-Net all performed well in terms of estimation results.

An accuracy comparison of deep learning semantic segmentations using DeepLabV3+,
PSPNet, and U-Net is shown in Table 2. From the quantitative accuracy analysis, DeepLabV3+
was found to be the best among the three methods, with an OA of up to 91.9% and a kappa
coefficient of 0.87 (2% and 0.03, respectively, higher than PSPnet and 3.6% and 0.06, respec-
tively, higher than U-Net). DeepLabV3+’s unique null space convolutional pooling pyramid
increases the receptive field; thus, it can more effectively utilize the feature information of
vegetation and improve the model estimation performance.



Remote Sens. 2023, 15, 105 11 of 21Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 27 
 

 

 

Figure 5. Region A (September) estimation results under different semantic segmentation models. 

(a) Original images; (b) Estimation results by DeepLabV3+; (c) Estimation results by PSPNet; (d) 

Estimation results by U-Net. 

An accuracy comparison of deep learning semantic segmentations using 

DeepLabV3+, PSPNet, and U-Net is shown in Table 2. From the quantitative accuracy 

analysis, DeepLabV3+ was found to be the best among the three methods, with an OA of 

up to 91.9% and a kappa coefficient of 0.87 (2% and 0.03, respectively, higher than PSPnet 

and 3.6% and 0.06, respectively, higher than U-Net). DeepLabV3+'s unique null space con-

volutional pooling pyramid increases the receptive field; thus, it can more effectively uti-

lize the feature information of vegetation and improve the model estimation performance. 

The accuracy of feature classification varies between network models. The class of 

features classified with the highest precision was BS1, with both PA and UA exceeding 

90–95%. The next was PV1, with both PA and UA exceeding 90%. As for NPV1, the effect 

of each model was reduced, and DeepLabV3+ had a higher PA (78.3%) than PSPNet and 

U-Net. All three models achieved lower accuracies for PV2, NPV2, and BS2 estimations 

under shadow conditions; these may be attributable to insufficient training samples (ow-

ing to the small number of these types of features in the study area). Nevertheless, 

DeepLabV3+ still obtained a high PA for shaded PV2, NPV2, and BS2 estimations (60%, 

64.5%, and 78.2%, respectively). 

The comparison shows that the three types of semantic segmentation networks 

achieved relatively low estimation accuracies for PV2, NPV2, and BS2 under shadow con-

ditions; this is attributable to the fact that fewer actual objects of this type are present in 

the study area and that fewer samples are available for training. In the case of a small 

number of training samples, DeepLabV3+ obtained higher mapping accuracies of 60%, 

64.5%, and 78.2% for PV2, NPV2, and BS2 estimations under shadow conditions, respec-

tively. 

Table 2. Accuracy of the results under different semantic segmentation networks. 

Figure 5. Region A (September) estimation results under different semantic segmentation mod-
els. (a) Original images; (b) Estimation results by DeepLabV3+; (c) Estimation results by PSPNet;
(d) Estimation results by U-Net.

Table 2. Accuracy of the results under different semantic segmentation networks.

Classification
Category

DeepLabV3+ PSPNet U-Net
Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

PV1 95.2 92.6 94.8 94.1 94.8 89.1
PV2 60.0 92.3 72.5 70.7 32.5 81.3

NPV1 78.3 82.3 61.4 87.9 53.0 89.8
NPV2 64.5 66.7 58.0 39.1 61.3 44.2

BS1 98.7 96.1 98.8 95.5 99.2 91.6
BS2 78.2 80.3 66.7 77.6 71.8 86.2

Overall accuracy
(%) 91.9 89.9 88.3

Kappa
coefficient 0.87 0.84 0.81

The accuracy of feature classification varies between network models. The class of
features classified with the highest precision was BS1, with both PA and UA exceeding
90–95%. The next was PV1, with both PA and UA exceeding 90%. As for NPV1, the effect
of each model was reduced, and DeepLabV3+ had a higher PA (78.3%) than PSPNet and
U-Net. All three models achieved lower accuracies for PV2, NPV2, and BS2 estimations
under shadow conditions; these may be attributable to insufficient training samples (owing
to the small number of these types of features in the study area). Nevertheless, DeepLabV3+
still obtained a high PA for shaded PV2, NPV2, and BS2 estimations (60%, 64.5%, and 78.2%,
respectively).
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The comparison shows that the three types of semantic segmentation networks
achieved relatively low estimation accuracies for PV2, NPV2, and BS2 under shadow
conditions; this is attributable to the fact that fewer actual objects of this type are present in
the study area and that fewer samples are available for training. In the case of a small num-
ber of training samples, DeepLabV3+ obtained higher mapping accuracies of 60%, 64.5%,
and 78.2% for PV2, NPV2, and BS2 estimations under shadow conditions, respectively.

A comparison of the details of the semantic segmentation results for U-Net, PSPNet,
and DeepLabV3+ deep learning is shown in Figure 6. The results showed that DeepLabV3+
outperformed PSPNet and U-Net; not only did it better retain the detailed information
for various types of objects and obtained the subsumed feature edges, but it could also
accurately estimate the sandy land classes (in particular, it could distinguish between
PV2 and NPV2 under shading), reduce the confusion between NPV1 and NPV2, and
render the overall estimation more comprehensive. The PSPNet segmentation effect was
slightly inferior to DeepLabV3+, with NPV1 misclassified as PV2. U-Net performed poorly
in this region, with a large number of misclassified features under shadows and poor
differentiation between similar features.
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(a) Original images; (b) Label masks; (c) Estimation results by DeepLabV3+; (d) Estimation results by
PSPNet; (e) Estimation results by U-Net.

It can be seen that the DeepLabV3+ deep learning semantic segmentation network
had the strongest applicability and practicality in the estimation of PV and NPV from UAV
images. The features were well-distinguished, the objects could be estimated completely
with minimal fragmentation, and most of the objects had clear edges that were generally
consistent with the field situation of the study area.
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4.2. Comparison of the Results Using Typical Machine Learning Methods

To further verify the advantages of DeepLabV3+, we compared its classification results
(Figure 7) and accuracy against those of three machine learning classification algorithms:
RF, SVM, and KNN (Table 3). Each accuracy index for DeepLabV3+ exceeded those of RF,
SVM, and KNN, with an OA of up to 91.9% and a kappa coefficient of up to 0.87 (1.5% and
0.02, respectively, higher than RF; 1.6% and 0.02, respectively, higher than SVM; and 4.2%
and 0.06, respectively, higher than SVM). The accuracy of RF (OA = 90.4%, kappa = 0.85)
exceeded that of the SVM and KNN methods.
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Table 3. Comparison of deep learning and machine learning methods for object classification accuracy
at all locations.

Classification
Category

DeepLabV3+ RF SVM KNN
Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

PV1 95.2 92.6 93.2 97.1 93.6 93.2 90.8 93.1
PV2 60.0 92.3 72.5 85.9 72.5 93.5 52.5 95.5

NPV1 78.3 82.3 73.5 81.3 74.7 64.5 63.9 65.4
NPV2 64.5 66.7 64.5 48.8 58.1 58.0 58.1 47.4

BS1 98.7 96.1 99.0 95.3 96.7 97.2 98.1 94.4
BS2 78.2 80.3 61.5 66.7 75.6 77.6 62.8 64.5

Overall accuracy
(%) 91.9 90.4 90.3 87.7

Kappa coefficient 0.87 0.85 0.85 0.81

The above results further demonstrate the advantages of DeepLabV3+ for estimating
PV and NPV in sandy land environments. The estimation effect of object-oriented machine
learning was inferior to that of DeepLabV3+ deep learning, possibly due to its failure to
take into account deeper semantic information of the target, although it considered the
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spectral characteristics, texture characteristics, optical vegetation indices, and geometric
characteristics of the image.

All indicators of the estimation accuracy of DeepLabV3+ exceeded those of RF, and
the above results further reflect the advantages of the semantic segmentation network in
the estimation of sandy PV and NPV. The estimation efficiency of object-oriented machine
learning was inferior to that of deep learning DeepLabV3+ because it failed to consider
the deeper semantic information of the target, although it considered the spectral features,
texture features, optical vegetation indices, and geometric features of the image.

The accuracy of feature classification also varies between methods. The most accurately
classified feature class was bare soil (BS1), with both PA and UA exceeding 94–95% for each
classifier. This was followed by photosynthetic vegetation (PV1), with both PA and UA
exceeding 90% for each classifier; meanwhile, for unshaded non-photosynthetic vegetation
(NPV1), each network model was generally effective, although DeepLabV3+ had a higher
PA (78.3%) than RF, SVM, and KNN.

The comparison shows that DeepLabV3+, RF, SVM, and KNN all achieve lower
estimation accuracies for PV2, NPV2, and BS2 under shadow conditions; this is due to
the fact that there are fewer actual objects of this type in the study area and therefore
fewer samples available for training. In the case of a small number of training samples,
DeepLabV3+ obtained a high mapping accuracy for the estimation of PV2, NPV2, and BS2
under shadow conditions, comparable to the RF classification results.

A detailed comparison of the semantic segmentation results for DeepLabV3+, RF,
SVM, and KNN is shown in Figure 8. The results show that DeepLabV3+ outperforms
RF, SVM, and KNN; it not only better retains the detailed information for various types of
object and obtains the subsumed feature edges, but also accurately estimates the sandy land
classes (in particular, it can distinguish between PV2 and NPV2 under shading conditions),
reduces the confusion between NPV1 and NPV2, and renders the overall estimation more
comprehensive. The RF and SVM segmentation results are slightly lower than those of
KNN; all methods perform poorly in this region, with a large number of misclassified
objects under shadow conditions and poor differentiation between similar objects.
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It can be seen that the DeepLabV3+ network has the strongest applicability and the
optimal practical estimation effect for PV and NPV. The features were well-distinguished,
the objects could be estimated completely with less fragmentation, most of the objects had
clear edges, and the overall effect was more consistent with the field situation in the study
area. The unsatisfactory accuracy of the model in certain cases was attributable to the lack
of relevant samples; in these cases, the model failed to learn enough semantic information.

The total classification accuracies of PV, NPV, and BS obtained by different deep
learning semantic segmentation methods were compared (Table 4). Compared with the
PSPNet and U-Net classification methods, the OAs for DeepLabV3+ classification were
improved by 2.6% and 2.2%, respectively, and the kappa coefficients were improved by
0.05 and 0.05, respectively. The PAs of PV, NPV, and BS feature classification reached 93.8%,
78.1%, and 97.6%, respectively, and the UAs reached 96.1%, 81.7%, and 95.7%, respectively.

Table 4. Classification accuracy of PV, NPV, and BS under different classification algorithms.

Classification
Category

DeepLabV3+ PSPNet U-Net RF SVM KNN

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy Producer

Accuracy
User

Accuracy
Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

PV 93.8 96.1 93.8 92.9 92.4 95.1 91.8 97.1 92.1 94.7 86.2 94.0
NPV 78.1 81.7 64.0 70.2 60.5 75.0 71.1 69.8 72.8 65.3 63.1 60.5

BS 97.7 95.7 95.9 94.9 97.9 93.3 96.1 93.9 94.9 95.7 94.9 92.0

Overall
accuracy (%) 94.3 91.7 92.1 92.0 91.6 88.8

Kappa
coefficient 0.90 0.85 0.85 0.85 0.85 0.79

The OAs of RF, SVM, and KNN were 92.0%, 91.6%, and 88.8%, respectively; the PAs
of PV, NPV, and BS classification for RF reached 91.8%, 71%, and 96.1%, respectively; and
the UAs reached 97.1%, 69.8%, and 93.9%, respectively. KNN classification was poor; for
PV, NPV, and BS, its PAs were 86.3%, 63.2%, and 94.9%, respectively, and its UAs reached
94.0%, 60.5%, and 92.0%, respectively.

DeepLabV3+ obtained the highest accuracy in the PV/NPV estimation process on
sandy land, higher than the other two types of semantic segmentation networks and the
three types of typical machine learning algorithms.

4.3. Model Generalizability Verification

The DeepLabV3+ semantic segmentation model has been shown to be more suitable
for estimating PV/NPV in desert areas. However, another advantage of the deep learning
semantic segmentation method is that it can automatically and highly accurately estimate
vegetation from UAV remote sensing images of different regions using the established
model. In this study, we took the optimal network model, DeepLabV3+, established for the
Region A comparison experiment and selected:

i. Regions B, C, and D in September as alternative location sample areas in the same
period;

ii. Area A in July as an alternative period sample region at the same location;
iii. Regions B, C, and D in July as both alternative location and period sample ar-

eas. With these, the classification accuracy was verified to validate the migration
capabilities of the DeepLabV3+ model.

Figure 9 and Table 5 show that the DeepLabV3+ model can be seen to obtain better
results in all three case class generality tests, with overall accuracies of up to 93–95% and
kappa coefficients of up to 0.88–0.92. For PV and BS land classes, the DeepLabV3+ model
achieved a higher estimation accuracy in all three case classes, with PAs of up to 95–99%.
For the NPV land class, the DeepLabV3+ model estimated PAs of 80% in different areas
but the same month; this exceeded the estimation accuracy for different locations across
different periods, which achieved a PA of 72%. Therefore, the optimal network model,
the DeepLabV3+ model, established using the Region A comparison experiment can very
effectively estimate (i) different location sample areas in the same period, (ii) different
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period sample areas at the same location, and (iii) different location sample areas across
different periods. DeepLabV3+ proved to be suitable for the estimation of PV/NPV in
desert areas.
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Figure 9. Comparison of PV–NPV estimation results by region for July and September, indicating
model migration capability(The data from September Region A were selected to train the model,
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capabilities of the model).

Table 5. PV/NPV estimation accuracy of the DeepLabV3+ model migrated to September and July for
each region.

Date Type
Region A Region B Region C Region D

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

September

PV 93.8 96.1 99.06 94.9 91.4 98.6 98.7 95.8
NPV 78.1 81.7 79.79 92.0 78.3 75.5 77.9 79.8

BS 97.7 95.7 97.57 95.4 98.3 95.4 97.2 98.4
Overall

accuracy (%) 94.3 94.7 94.1 95.9

Kappa
coefficient 0.9 0.91 0.89 0.92

July

PV 92.8 96.2 93.5 96.5 90.3 97.2 94.2 96.4
NPV 66.7 81.7 68.3 72.7 72.0 76.6 68.3 83.6

BS 98.9 94.7 98.2 96.0 98.7 94.5 98.7 95.2
Overall

accuracy (%) 94.2 94.3 93.9 94.8

Kappa
coefficient 0.89 0.89 0.88 0.90
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5. Discussion
5.1. Classification of Shaded Objects

Due to lighting and atmospheric scattering (amongst other reasons), large numbers
of shadows are often present in UAV images [35]. Particularly for our study area, which
is located in sandy land, the weather is generally sunny. It is necessary to investigate the
optimal method when estimating PV–NPV coverage under shadow when light exists.

There are few UAV-based studies that discuss the effects of shadows on their classi-
fication results. De Sá et al. [43] found that shadows greatly reduced the model accuracy
of detecting Acacia species under sunny conditions, while images collected under dif-
fuse light conditions caused by clouds showed a significant improvement in classification
accuracy because of the reduction in cast shadows. Moreover, Zhang et al. [13] found
that cloudy conditions also reduce the separability of spectrally similar classes. However,
Ishida et al. [44] proposed that incorporating shadows into the training samples improved
classification performance. It is clear that no consistent conclusion was obtained about the
effect of shadow on classification when using UAV images [12,36].

The above remote sensing image processes for shadows are unsuitable for high-
resolution UAV image shadow processing. Shadowed areas show dark images, owing to
the lack of direct solar light and low spectral values in all bands. However, the difference
in the reflection of light scattered by various types of features allows the images to capture
the types of features in shadow regions to some extent.

In this study, we applied object-oriented and deep learning methods to high-spatial-
resolution UAV images to classify their features into six types: unshaded photosyn-
thetic and non-photosynthetic vegetation (PV1, NPV1), shaded photosynthetic and non-
photosynthetic vegetation (PV2, NPV2), and bare soil with and without shading (BS2, BS1).
The results show that DeepLabV3+, PSPNet, and U-Net all have good estimation results.
Not only do they retain the detailed information of all types of features and obtain clearer
image feature edges, they also accurately estimate PV and NPV under shadow conditions,
reducing the influence of shadows on NPV classification. The shadowed PV/NPV-BS
image elements still reflect the spectral and textural characteristics specific to each feature
type. Therefore, by exploiting these characteristics, PV/NPV estimation in shaded areas
is achieved by adopting a direct reclassification method for shaded objects, and a high
classification accuracy is obtained.

5.2. Advantages and Disadvantages of Object-Oriented Deep Learning Semantic Segmentation;
Its Prospects

Numerous scholars estimate vegetation cover in study areas based on UAV images [45].
Typical previous machine learning algorithms (e.g., RF, SVM, and KNN), when combined
with object orientation for vegetation classification and estimation, usually rely on complex
feature parameter estimation technologies; hence, the models constructed are only suitable
for a specific research area, and the obtained parameters have poor migration capabilities.
Wang et al. [46] propose a new method to classify woody vegetation as well as herbaceous
vegetation and calculate their FVC based on the high-resolution orthomosaic generated
from UAV images by the machine learning algorithm of classification and regression tree
(CART). Yue et al. [47] evaluate the use of broadband remote sensing, the triangular space
method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS
of cropland in which SM-CRM changes dramatically.

DeepLabV3+, PSPNet, and U-Net, the deep learning semantic segmentation algo-
rithms adopted in this study, apply relatively mature computer vision technologies and
rules. Whether deep learning methods may improve accuracy when applied to the es-
timation of photosynthetic and non-photosynthetic vegetation in desert areas requires
further research to verify. In contrast, deep learning semantic segmentation algorithms au-
tomatically estimate the deep features most relevant to the target task by running iterative
convolutions according to a loss function, without requiring human input. However, the
establishment of an image segmentation model requires a large amount of labeled data for
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early training; in particular, when the study area is large and the types of ground objects
are complex, the manual annotation workload is too large [48]. Therefore, CNN-based
semantic segmentation models will increase the technical and computational complexity to
some extent [49].

The desert area PV/NPV estimation and classification proposed in this study applies
the deep learning method for a small area, flat terrain, simple ground objects, and a stan-
dard computer. Using object-oriented technology and the multi-scale segmentation of UAV
tag images, this study first applied the random forest classification method (combined with
manual correction) to construct a preliminary tag dataset, which simplified the redundant
and labor-intensive manual labeling process. The deep learning method was then used to
further conduct sample training, feature extraction, and model construction. Finally, the
built model was automatically estimated from PV/NPV. From the perspective of applica-
tions, the DeepLabV3+, PSPNet, and U-Net models all achieved good estimation accuracies
(overall accuracy > 90%, Table 4) by using the deep learning semantic segmentation algo-
rithm to mark a small number of images and save time. In particular, DeepLabV3+ achieved
the highest overall accuracy (94.3%). Ayhan et al. also confirmed that DeepLabV3+ had a
significantly higher accuracy than other methods to classify three vegetation land covers,
which were tree, shrub, and grass, using only three-band-color (RGB) images [50]. Our
results further developed the work carried out by Ayhan. In recent years, a series of studies
have shown that deep learning methods of convolutional neural networks (CNNs) can help
to efficiently capture spatial patterns of the area, enabling the extraction of a wide range
of vegetation features from remotely sensed images. Yang et al. [51] proposed an efficient
convolutional neural network (CNN) architecture to learn important features related to rice
yield from images remotely detected at a low altitude. Egli et al. [52] proposed a novel CNN
based on low-cost UAV RGB images using a tree species classification method, achieving
92% validation results based on spatially and temporally independent data.

Moreover, after testing, the model established by DeepLabV3+ also achieved good
accuracy when estimating ground objects of the same type (overall accuracy > 94%, Table 5).
This occurs because DeepLabV3+ introduces void convolution, which can increase the
receptive field without changing the size of the feature map; as a result, each convolution
output contains a wider range of information. In addition, DeepLabV3+ spatial pyramid
pooling (ASPP) captures multi-scale information to optimize extraction results.

In fact, DeepLabV3+, PSPNet, and U-Net each have their own limitations in terms
of classification. The classification algorithm should be selected according to the spectral
features, texture features, and required accuracy given the remote sensing images, com-
puter configuration, and time investment. Under the premise of ensuring accuracy, the
classification efficiency is maximally improved, the classification process is simplified, and
the classification efficiency is improved.

To summarize, this paper demonstrates that deep learning semantic segmentation
combined with object-oriented learning represents a rapid method for estimating and
monitoring PV/NPV vegetation. In this study, considering the computer performance,
728 image label data training models generated by object-oriented combined with manual
correction are investigated, and the results basically reach the requirement of classification
accuracy in the area. In later stages we will increase the number of labels to check if
the accuracy of ground object estimation can be improved or not. The PV/NPV varies
considerably in different seasons. Subsequent studies will identify PV/NPV by combining
multi-temporal and multi-height UAV image data to provide technical support and a
theoretical basis for the application of UAV remote sensing technology in the research on
and protection of desert areas. The focus of this study was to verify the applicability of the
model. In the future, we will expand the scope of the research to study different types of
ground objects and to consider forest, grassland, farmland, and other types of land.
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6. Conclusions

This study adopts aerial UAV photography as the data source, considers the classi-
fication of ground objects under shadows, and introduces object-oriented classification
(supplemented with manual correction) to make data labels during the early stages of
classification; this effectively simplifies the labeling process and improves the feasibility of
deep learning semantic segmentation for desert region class estimation tasks. Furthermore,
the feasibility and efficiency of combining three different deep learning semantic segmenta-
tion models (U-Net, PSPNet, and DeepLapV3+) with object-oriented technology for the
estimation of PV/NPV coverage are discussed. The main results are as follows:

1. The application of deep learning semantic segmentation models combined with object-
oriented techniques simplifies the PV–NPV estimation process of UAV visible images
without reducing the classification accuracy.

2. The accuracy of the DeepLapV3+ model is higher than that of the U-Net and PSPNet
models.

3. The estimation experiments for different time periods of the same ground class confirm
that this method has better generalization ability.

4. Compared with three typical machine learning methods, RF, SVM, and KNN, the
DeepLabV3+ method can achieve accurate and fast automatic PV–NPV estimation.

In summary, deep learning semantic segmentation is a cost-effective scheme suitable
for vegetation systems in desert or similar areas; we hope that this study can provide a
useful technical reference for land-use planning and land resource management.
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