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Abstract: Due to high false alarm rate and low positioning accuracy of compact high-frequency
surface wave radar in moving vessel detection, false plot-to-track association often occurs during
moving vessel tracking, thus leading to track fragmentation and false tracking. In order to address
this problem, a plot quality evaluation method is proposed and applied to plot-to-track association.
Firstly, the differences in spatial correlation of echo spectrum amplitudes and position among moving
vessels, clutters, and noise on a range-Doppler map are analyzed, and a plot quality index integrating
multi-directional gradient, local variance, and plot position probability is developed. Then, the
plots labeled as low quality are removed to reduce both the negative impact of false alarms on
plot-to-track association and the computational burden. Eventually, both plot quality index and
kinematic parameters are used to calculate the association cost and determine the plot-track pairs
during the plot-to-track association procedure. Experimental results with field data demonstrate that
the proposed plot quality index can effectively distinguish moving vessel and other plots. Compared
with both the nearest neighbor data association method and the joint probability data association
method, the association accuracy of the proposed method is greatly improved and, thus, the tracking
continuity is enhanced in dense clutter scenarios.

Keywords: compact high-frequency surface wave radar; moving vessel tracking; plot-to-track
association; plot quality evaluation

1. Introduction

As an over-the-horizon tool for sea surface moving vessel detection, high-frequency
surface wave radar (HFSWR) has advantages of wide observation area, all-weather opera-
tion, low cost, etc. [1-3]. HFSWR systems for moving vessel detection usually employ a
high transmit power and a receiving antenna array with a large aperture size to guarantee
long detection range and high positioning accuracy. However, it is difficult for its site selec-
tion, deployment, and maintenance [4,5]. Thus, its applications, especially for civilian use,
are limited. In contrast, compact HFSWR systems using miniaturized transmitter, receiver,
and antennas are becoming a development trend due to their flexibility in deployment,
maintenance, and application [6,7].

Compact HFSWR is a wide beam system with a low transmit power [8], the moving
vessel echoes are usually weak and submerged into strong clutters and background noise.
To improve the detection probability of moving vessels with weak echoes, a lower detection
threshold is usually set in constant false alarm rate (CFAR) detectors; thus, a large number
of false alarms will be produced, which raises challenges to subsequent moving vessel
tracking procedure in three aspects. Firstly, false plots have similar kinematic parameters to
those of real moving vessel plots, whereby incorrect plot-to-track association often occurs
and leads to track fragmentation and false tracking. Secondly, if many false tracks are

Remote Sens. 2023, 15, 138. https:/ /doi.org/10.3390/rs15010138

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs15010138
https://doi.org/10.3390/rs15010138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8381-6483
https://orcid.org/0000-0002-3264-8560
https://orcid.org/0000-0001-9622-5041
https://doi.org/10.3390/rs15010138
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010138?type=check_update&version=2

Remote Sens. 2023, 15, 138

2 of 20

formed, it is difficult for radar to detect potential threats. Thirdly, excessive plots will
increase the computational burden of moving vessel tracking algorithms. Therefore, it is
necessary and important to reduce the negative impact of false plots on moving vessel
tracking performance for compact HFSWR systems.

The nearest neighbor data association (NNDA) algorithm [9] is commonly used for
plot-to-track association. However, it is not efficient in dense clutter scenarios. In order
to improve the accuracy of plot-to-track association under dense clutter conditions, three
types of methods have been developed. One is multi-feature based plot-to-track association
methods [10-12]. This kind of methods employs many moving vessel features such as
echo spectrum amplitude, signal-to-noise ratio (SNR), radar cross section (RCS), etc. along
with the kinematic parameters (range, Doppler velocity, azimuth) to calculate the similarity
between candidate plots and the moving vessel track. However, some features such as
echo spectrum amplitude, RCS, and SNR are time-varying and not stable to characterize
moving vessels. The second type is neural network based moving vessel recognition
methods [13-15], where neural networks are used to classify moving vessel and false plots.
These methods usually require a large amount of labeled data to train the neural network
model and, thus, have not been widely used for HFSWR so far due to limited number
of data samples. The third type of methods includes the probabilistic data association
(PDA) algorithm [16], joint probabilistic data association (JPDA) algorithm [17], and other
methods designed for dense clutter situations. The computational complexity of these
methods is high and, thus, limits their field applications.

The CFAR-based moving vessel detection algorithms [18,19] rely on the echo spectrum
amplitude, and they are not capable of effectively distinguishing moving vessels with
weak echoes from clutters and noise under dense clutter environments. It is noted that the
spatial correlation of echo spectrum amplitudes and position of plots on a range-Doppler
(R-D) map can also be employed to characterize moving vessels, clutters, and noise. Based
on this consideration, a plot quality index calculated using multi-directional gradient,
local variance, and plot position probability on an R-D map is proposed to determine the
possibility that a plot originates from a moving vessel or clutters and noise. Then the
plot quality index is combined with kinematic parameters to enhance the discrimination
capability in the plot-to-track association procedure. Experiments with field data collected
by a compact HFSWR verify the good performance of the proposed methods in identifying
moving vessels and improving plot-to-track association accuracy. The remainder of this
article is organized as follows. Preliminaries including moving vessel detection, feature
analysis of moving vessels, clutters, and noise, and moving vessel tracking are introduced
in Section 2. In Section 3, the proposed plot quality evaluation method and plot-to-track
association method are presented in detail. Plot quality evaluation and moving vessel
tracking experiments with field data are described in Section 4. Experimental results are
discussed in Section 5 and conclusions are drawn in Section 6.

2. Preliminaries
2.1. Moving Vessel Detection

Compact HFSWR transmits electromagnetic waves to monitor sea surface moving
vessels and the backscattered echoes are received by a linear antenna array. The received
signal x(t) is a mixture of the moving vessel signal s(f), clutter ¢(t), and noise n(t) in the
time domain, which can be modeled as

x(t) = s(t) +-e(t) (). M)
The moving vessel signal can be defined in terms of its movement parameters as
S(t) = Ase_jznfote—]?n(—%_k%)’ (2)

where fy, A, As, and ry denote the radar working frequency, radar wavelength, echo
amplitude, and the distance between the moving vessel and radar at the signal transmission
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time instant, respectively. v is the moving vessel radial velocity and 2v/A is the Doppler
frequency of the moving vessel echo.

The clutter consists of various components and cannot be described by a unified
mathematical model. Sea clutter is the dominant factor to moving vessel detection and can
be modeled by

L
o(t) = Z{A+(l)e]'2n:f+(l)t _i_A—(Z)ejan*(l)t}, 3)
=1

where [ represents the number of clutter occurrences. f* and f~ denote positive and
negative Doppler frequencies, A™(I) and A~ (I) are their corresponding echo amplitudes.
The values of f* and f~ can be calculated by £0.102,/f.

The background noise includes external noise and system noise and is generally mod-
eled using the zero-mean Gaussian distribution with a power spectral density defined by

ke T,
Py(w) = - 210fm/10, (4)

where kg = 1.38 x 10723 J/K is Boltzmann constant, Ty = 290 K is absolute temperature,
and F,m denotes the median value of external noise. Then, noise can be modeled in the
time domain as

dw

n(t) =/Bej“’t-ef€("“’) Pa(w)ﬂ, (5)

where B represents the signal bandwidth, ¢(r, w) denotes the random phase uniformly
distributed in [0, 277].

With the echo signals, Doppler velocity and range estimations can be achieved using
fast Fourier transform twice and an R-D map is obtained. It is a two-dimensional ampli-
tude spectrum and can be divided into many cells according to the range and Doppler
velocity resolutions. Since the Doppler frequency, range, and echo spectrum amplitudes of
the moving vessels, clutters, and noise are different, the plots generated by them appear
with different position and morphological characteristics on the R-D map. Moving vessel
detection is to determine which resolution cells contain moving vessel information relying
on their echo spectrum amplitudes. Subsequently, a direction of arrival estimation algo-
rithm [20], such as multiple signal classification (MUSIC) or digital beam-forming (DBF),
is used to estimate the azimuth of detected moving vessels, and moving vessel plots are
produced. A moving vessel plot is usually represented by a state vector Py = [vy, 7i, 6T,
where k indicates the moment the moving vessel is detected, vy represents the Doppler
velocity of the moving vessel, 7, denotes the range between the moving vessel and the
radar, and 6y is the azimuth of the moving vessel relative to the radar.

Range (km)

-20 =10 0 10 20
Doppler Velocity (m/s)

Figure 1. Moving vessels and clutters in an R-D map obtained from a compact HFSWR.

However, the backscattered echoes received by a compact HFSWR are a mixture of
moving vessel echoes, background noise and various clutters such as sea clutter, ground
clutter, ionospheric clutter, etc. [21-24], as shown in Figure 1. Some false alarms from
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clutters or noise are often mistakenly regarded as moving vessel plots, so the detected plot
set of compact HFSWR usually contains a large number of false plots, which negatively
affects moving vessel tracking algorithms.

2.2. Feature Analysis of Moving Vessels, Clutters, and Noise

It can be observed from Figure 1 that moving vessels and clutters have different
features on an R-D map. The change of color depth indicates the transition of echo spectrum
amplitudes. In this R-D map, moving vessels appear as isolated polygons with echo
spectrum amplitudes decreased from centroids to peripheries. Ground and sea clutters
spread within certain Doppler velocity bands along range dimension. Ionospheric clutter is
strip-shaped along Doppler velocity dimension and widened to a certain extent along range
dimension [25]. Background noise exists in the form of isolated points or local fluctuations
on the R-D map. The difference in the features of moving vessels, various clutters, and
noise in spatial correlation of echo spectrum amplitudes and position can be used for plot
classification. Here, the spatial correlation characterizes the distribution of echo spectrum
amplitudes of an area on an R-D map. The position means where a plot is obtained from
an R-D map.

2.3. Moving Vessel Tracking

A moving vessel tracking algorithm, consisting of track initiation, track maintenance,
and track termination, is applied to the obtained plot data sequence to produce moving
vessel tracks. Track maintenance is an iterative process of state prediction, plot-to-track
association, and state estimation, which are described as follows.

(1) The motion and measurement models

The converted measurement Kalman filter (CMKF) [26] is used for state prediction
and estimation in this paper, which is based on a motion model and a measurement model.

In general, vessels move at a constant velocity on the sea surface; the moving vessel
motion model can be defined in a Cartesian coordinate system as

sk = Asp_1 + wi_1, (6)

where s, =[xk, Ux,, Yk, Uy, | T denotes the true moving vessel state vector at time k, x, yy;
and vy, vy, are the moving vessel’s position and velocity components along the x-axis
and y-axis, respectively. wy_; denotes the process noise with zero mean and a covariance
matrix Gi_1. A is the state transition matrix defined as

SO RN
o= OO

0
0
.y )
1

o o o

where T denotes the sampling time interval.
The measurement model is defined in the Cartesian coordinate as

§k - MSk + ’1](/ (8)

where §; = [fk, Ox,s Jir 5yk] T denotes the measured moving vessel state vector at time k, ¥y,
Vi and Oy, Oy, are the measured position and velocity components along the x-axis and
y-axis, respectively. 7, represents the measurement noise with zero-mean and a covariance
matrix Ry. The measurement matrix M is an identity matrix defined as

0
©)

o O O
S O = O
S = O O
=]
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(2) State prediction
Denote track; = {Pl, Py, ..., PN} as a track being maintained with N plots at time k.
T
The predicted state 8, _; = [fk|k—1/ Oy 1r Trfk—1 zﬁyk“ﬁl] at time k can be calculated using

the estimated state 8;_1 = [£4_1,0x, |, Jk—1, ﬁykfl]T at time k—1 by
Skik—1 = ASj_1. (10)
The corresponding state prediction error covariance matrix Ej is calculated as
E. = AE, AT+ Gy, (11)

where Ej_1 is the state estimation error covariance matrix at time k—1.
Since radar measures moving vessels in a polar coordinate system, the predicted
T
state is converted from §;;_; in the Cartesian coordinate to PE = {vg, rg, 6}?} in the polar
coordinate for subsequent plot-to-track association by

k=101 TYklk=1%g51
02 2
\/xk\k—1+yk\k—1

P_ /a2 2 12
"e =/ Fkk=1 T Vi1 (12)

P _ yAk\k—l)
Gk = arctan()ek‘kq .

7

P _
U =

(3) Plot-to-track association

In a preset association gate at time k, a measured plo; P = [of, 1, 0] T with the
highest similarity to the predicted state PE = {Z)E, rf , 9}: } is selected to associate with

the current track. The measured state vector PI" = [vkm, e, 9}(“] Tis then converted to the
Cartesian coordinate to obtain the corresponding measured state 5, = [fk, Oxpr Pir z7yk]T
according to
Xy = ritcos O,
P = rtsin6",
Oy, = (% — %1)/T,
Oy, = (k= Jx—1)/T.

(13)

(4) State estimation

The estimated state §;, = [fk, Oxr Ok z?yk]T at time k and the state estimation error
covariance matrix Ej are updated by

K = BMT (MEMT +R,) ),
8k = Sjk—1 + Ky (gk - Mék\k—l)/ (14)

E; = B, — KtME,,

where K is the Kalman gain at time k. The estimated state §; is used to update the
current track.

The above procedure, including state prediction, plot-to-track association, and state
estimation, is iteratively executed with subsequent new plot data to update the track
continuously until it is terminated.

3. Methodology

In this section, the proposed plot quality evaluation and plot-to-track association
methods are presented in detail. The plot quality evaluation method, including plot feature
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extraction module, feature normalization module, plot quality index calculation module,
and plot quality level determination module, is introduced in Section 3.1. The obtained
plot quality index is then employed as an auxiliary feature to produce the plot-to-track
association method, which is described in Section 3.2.

3.1. Plot Quality Evaluation

Considering different features of moving vessels, clutters, and noise analyzed in
Section 2.2, a plot quality evaluation method based on spatial correlation of echo spectrum
amplitudes and position of plots is proposed to indicate the possibility of plots originating
from moving vessels, clutters, and noise.

3.1.1. Plot Feature Extraction

In general, only kinematic parameters including range, azimuth, and Doppler velocity
are used to characterize a plot measured by HFSWR. These kinematic parameters have
limited capability in distinguishing plots of moving vessels, clutters, or noise [27]. It is
noted that besides these kinematic parameters, their feature differences in plots from an R-D
map can also be used to improve the moving vessel detection performance. Based on this
consideration, the multi-directional gradient, local variance, and plot position probability
obtained from an R-D map are combined to evaluate the plot quality. These features are
respectively described as follows.

*  Multi-directional gradient

Sea clutter, ground clutter, and ionospheric clutter usually occupy large and continu-
ous areas on an R-D map, and their echo spectrum amplitudes vary gradually along the
dimension of range or Doppler velocity [28]. In contrast, the plots from moving vessels
usually appear like isolated points or clusters, and their gradients of echo spectrum ampli-
tudes decrease gradually in eight directions around the peak points. The plots from noise
also appear in the form of isolated points or clusters, but their echo spectrum amplitudes
are relatively low without obvious gradient descent along all directions. Therefore, the
multi-directional gradient variations can be used to distinguish different plots.

The schematic diagram for calculating multi-directional gradient is illustrated in
Figure 2.

Range (km)
(0]

T
DO —>
|
N

Doppler Velocity (m/s)

Figure 2. Schematic diagram of multi-directional gradient calculation.

Figure 2 shows a 3 x 3 cells configuration. Suppose the center cell (labeled as '0’) is the
one to be detected, if its echo spectrum amplitude exceeds the detection threshold derived
from the CFAR algorithm and is determined as a peak point [29,30], one gradient value is
calculated for each of its eight neighbor cells (labeled as '1’'—'8’) as

Ap — A;

Grad; = a1
0

(i=1,2,..,8), (15)

where Grad; denotes the gradient value for the ith direction, Ay is the echo spectrum
amplitude of the center cell, and A; is the echo spectrum amplitude of the neighbor cell in
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the ith direction. Since the center cell is determined as a peak point, its magnitude is higher
than those of the other eight cells, the value of each Grad; is thus always positive.

It is noticed that the plots originated from clutters or noise may also have large
gradient values along several directions. However, the gradient changes of the moving
vessel plots generally have larger values in more directions. Thus, a gradient threshold U
and a threshold V for the number of directions along which the gradient values exceed
the threshold U are set to identify moving vessel plots according to the following rules:
the number of Grad; that exceeds U is calculated as the feature value of multi-directional
gradient and denoted as Xjs. The higher Xy is, the more likely the plot belongs to a moving
vessel. If X) is lower than V, the corresponding plot is regarded as a false plot.

e  Local variance

The moving vessel plots located at the edge of clutters usually have smaller gradient
values due to clutter, they cannot be easily identified based only on the multi-directional
gradient feature. It is observed that ground clutter, sea clutter, and ionospheric clutter all
have strong spatial correlation in echo spectrum amplitudes which are relatively high and
evenly distributed in certain concentrated areas and have small local variances. The echo
spectrum amplitudes of false plots from noise are low and also have small local variances.
Different from clutters and noise, the moving vessel plots are isolated points on an R-D
map, the echo spectrum amplitudes of them are relatively high and, thus, usually have
weak spatial correlation and large local variance. As local variance reflects the variability
of echo spectrum amplitudes in a certain area of a plot, it is employed as another feature
for plot quality evaluation.

In order to calculate the local variance, a reference window surrounding a plot needs
to be set. Figure 3 illustrates the variation characteristics of echo spectrum amplitudes of sea
clutter, ground clutter, noise, and moving vessel plots on an R-D map. It can be seen that the
echo spectrum amplitudes of sea clutter and ground clutter usually span three resolution
cells along Doppler velocity dimension. As illustrated in the enlarged view, the echo
spectrum amplitudes of a moving vessel span about nine resolution cells. The reference
window should cover the area corresponding to the echo spectra of a moving vessel but
should not be set too large to reduce the computational burden. With the aforementioned
factors into consideration, a reference window with a size of 5 x 3 is used to calculate the
local variance in this article.

An enlarged view

Range (km)
3
.

a
g
=

=7 -6 -5 -4 -3 -2 -1 0 1
Doppler Velocity (m/s)

Figure 3. Reference window size determination for calculating local variance.

Four reference windows of moving vessel, ground clutter, sea clutter, and background
noise, denoted as W1, Wy, W3, and Wy, are illustrated in Figure 3. It can be seen that the
dispersion degree of echo spectrum amplitudes of the moving vessel is larger than that of
clutter and background noise. Therefore, the local variance of echo spectrum amplitudes of
a moving vessel is usually larger than that of false plots.
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The local variance Xy is calculated as
1 & 2
Xy =) (Aj—n)", (16)
j=1

where 71 represents the number of cells contained in the reference window, A; is the echo

spectrum amplitude of the jt cell, and y is the average echo spectrum amplitude of all the
cells within the reference window.

e  Plot position probability

Since not all echo spectrum amplitudes of clutters are normally distributed, the multi-
directional gradient and local variance of some false plots located in clutter regions are
similar to those of moving vessel plots, they may be misclassified as moving vessels. It is
noticed that an R-D map can be divided into different regions [31] according to different
characteristics of clutters, noise, and moving vessels, as illustrated in Figure 4. Rg is near the
first-order peaks, Rg is near zero Doppler frequency, Rg contains the cells at far range with
little echo. It is observed that both sea clutter and ground clutter extend 3-5 resolution cells
along Doppler velocity dimension. Most moving vessels appear in the regions between
sea clutter and ground clutter, and the rest of an R-D map is generally considered as
background noise region. In Figure 4, Rt, Rg, Rg, and Rp denote regions of moving vessels,
sea clutter, ground clutter, and background noise, respectively. In these four regions, the
probability that a real moving vessel may appear is Probr, > Probrg > Probr. > Probg,.
Plots located in different regions should have different weights in evaluating plot quality.
Thus, the plot position probability, which refers to the probability that a plot locates in a
certain area, is used as another feature and denoted as Xp. For example, if a plot is located
in the moving vessel region Rt, Xp is equal to Probg,.

Range (km)

-15 -10 -5 0 5 10 15
Doppler Velocity (m/s)

Figure 4. Different regions in an R-D map.
It is worth pointing out that the ionospheric clutter is not considered in this research.

3.1.2. Feature Normalization

The value ranges of multi-directional gradient, local variance, and plot position prob-
ability are quite different. In order to comprehensively fuse these features together, the
min-max normalization is employed to normalize each feature value to [0,1], which can be
expressed as

X - Xmin
Xmax - ijn’
where X represents the original value of a certain feature, including the multi-directional
gradient, local variance, and plot position probability. Xmin and Xmax denote the minimum
and maximum values of one feature for all plots in an R-D map, and Xpor is the normalized
value of this feature.

Xnor = (17)
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3.1.3. Plot Quality Index Calculation

The normalized feature values of multi-directional gradient, local variance, and plot
position probability are denoted as Sy, Sy, and Sp, respectively. These three values are
calculated for each measured plot P}*. Each plot in an R-D map is assigned a plot quality
index calculated by its (S, Sy, Sp). Due to their different contribution in plot quality
evaluation, they are weighted and integrated to comprehensively assess the plot quality.
Denote ayy, ay, ap as the corresponding weights of multi-directional gradient, local variance,

and plot position probability, the final plot quality index Q is formulated as
Q = amSm +aySy +apSp, (18)

where ay; + ay + ap = 1. The larger the Q is, the more likely a plot originates from a
real moving vessel.

3.1.4. Plot Quality Level Determination

The quality indexes of all plots from each R-D map are calculated. To visualize the
evaluation results and distinguish plots with different quality indexes, each plot in an R-D
map is classified into one of the four quality levels according to its plot quality index. In
this article, the K-Means clustering algorithm [32,33] is applied to the obtained plot quality
indexes to produce four plot quality levels, named as Level 1 (high quality)-Level 4 (low
quality). Higher level means better quality.

The proposed plot quality evaluation method is applied to the detected plots on an
R-D map, each plot gets a quality index. On the one hand, some plots with lower quality
indexes can be discarded to reduce the computational burden of subsequent moving vessel
tracking algorithms. On the other hand, the plot quality index can be used as auxiliary
information to improve the accuracy of plot-to-track association.

3.2. Plot Quality Aided Plot-to-Track Association in Dense Clutter

In order to improve the plot-to-track association accuracy, the plot quality index is
combined with kinematic parameters to produce more comprehensive plot features, and
a plot quality aided plot-to-track association method is proposed. It consists of three key
steps, including unreasonable plots elimination, minimum association cost calculation, and
associated plot selection. These key steps are described as follows.

3.2.1. Unreasonable Plots Elimination

In order to reduce the interference of false plots in plot-to-track association as well as
the computational burden, the plots with unreasonable range and Doppler velocity can be
filtered out before moving vessel tracking. Firstly, the effective detection range of compact
HFSWR is usually between 15 km and 150 km due to its low transmit power and “range
blind zone”; the plots with ranges outside this scope should be removed. Secondly, the
vessel speed is generally less than 30 kn (15.43 m/s), the plots whose Doppler velocity
exceeds 15.43 m/s are discarded. In addition, the plots with quality index less than a
threshold Qin are also eliminated.

3.2.2. Calculation of Minimum Association Cost

During the plot-to-track association procedure, an association gate is formed to include
potential measured plots. For any measured plot P, ; = [0, 1,71, 9@1]T that falls into
the association gate at time k + 1, the association cost between it and tracky is calculated by

c=1—(co+cr+cq), (19)
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where ¢y, ¢;, and cg represent the similarity between P}(“H and the predicted state PE " of
track; in Doppler velocity, range, and azimuth, respectively, which are calculated by

Cp = Wy X exp(—|v£+1 - vrkn+1|2/c75),

Cr = Wy X exp(—|1’£+1 — rﬁ_ﬂz/(ﬁz), (20)
co = wy X exp(—|6F,; — 6111 [%/07),

where 0y, 0y, and 0y denote the standard deviations calculated using the data from all
collected tracks within the coverage area of the radar, they are used to represent the
average measurement errors of different kinematic parameters of the radar system. Once
determined, they are applied for all tracks. It should be noted that the standard deviation
g would be large for vessels detected at a distance. However, limited by the amount
of field moving vessel data, 0y cannot be set adaptively according to the moving vessel
range. When more moving vessel data are available, an adaptive setting method for
these parameters should be investigated. w,, w,, and wy represent their corresponding
association weights and satisfy

Wy +wy +wg =1, (21)

where the values of wy, w,, and wy are set according to the radar measurement resolu-
tions of Doppler velocity, range, and azimuth, respectively. It should be pointed out that
the accurate Doppler velocity estimated by HFSWR is employed here to calculate the
association cost.

The larger the values of cy, ¢r, and cy are, the smaller the association cost c is, and the
higher the probability that the measured plot belongs to tracky is. Assume there are M
measured plots in the association gate at time k + 1, an association cost set {c1, ¢y, ...,cm }
between each measured plot and the current track can be calculated by Equation (5), and
then the minimum association cost cyin = min{cy, ¢y, ..., cpr} can be obtained.

3.2.3. Selection of the Associated Plot

As the kinematic parameters of false plots may be similar to those of moving vessel
plots, the plot nearest to the predicted moving vessel state is not necessarily derived
from a real moving vessel. An illustrative example is shown in Figure 5. The predicted

moving vessel state of tracky obtained at time k is PI]: 41 the association gate centered at

Pl€+1 includes five measured plots {P{", (1), P, 1(2), ..., P, ;(5) } at time k + 1. Suppose
P (1), P, (3), PRy (4), and P, (5) are plots from clutters, and the plot quality indexes
of them are denoted as Q1, Q3, Q4, and Qs, respectively, and they will be small. P7\ | (2)
is the measured plot of tracky at time k + 1, its plot quality index is Q; and will be large.
If the NNDA algorithm that only uses kinematic parameters is applied for plot-to-track
association, the association cost of P\ ; (1) takes the minimum value; thus, it will be
associated with tracky, leading to incorrect association. It can be seen that the association
cost of P, (2) to tracky is comparable to that of P} ; (1), but Q2 is much larger than Q; if
the plot quality index is introduced into plot-to-track association, Py, ; (2) will be selected
for association.
I i
30
_mge  °PLO

track, %——“ . e P’ (3

association gate P, (5

Figure 5. Schematic diagram of plot-to-track association procedure.

Thus, in order to reduce the plot-to-track association errors caused by the interference
of false plots, the plot quality index is employed as an auxiliary feature to increase the
probability of selecting the true moving vessel plot in plot-to-track association. The plot
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quality index is incorporated into the minimum association cost-based NNDA method to
determine the most likely associated plot. The proposed plot-to-track association method
for a certain track track; can be described as follows.

Step 1: The association costs {c1, c2, ..., cpm} between all M candidate plots {P{, ; (1),
P 1(2),.., P (M)} in the association gate at time k + 1 and the predicted moving vessel
state PE 4 are calculated, and the minimum association cost ¢pin = min{cy, ¢y, ..., cp} is
obtained.

Step 2: The difference between the association cost ¢; of the i candidate plot and the
minimum association cost cyin is denoted as Diff; and calculated by

Diffi = ¢ — Cmin (1=1,2,..., M). (22)

Step 3: A threshold ¢ is set, if Diff; < ¢, the i candidate plot is determined as a
preliminarily associated plot, then a preliminarily associated plot set {P}", ; (1), P} ;(2), ...,
PR (f)} (1 < f < M) is obtained.

Step 4: The plot with the highest quality index in the preliminarily associated plot set
is selected as the associated plot.

Step 5: The selected associated plot is fused with the predicted moving vessel state
PE 4 to obtain the estimated moving vessel state at time k 4 1, then the current track
is updated.

The flowchart of the proposed plot-to-track association method is shown in Figure 6.

unreasonable plots
P elimination
detector tracker ¢

’ track initiation ‘
moving vessel detection *

track maintenance
initial plot set

’ state prediction ‘
plot feature extraction *

calculation of minimum
association cost

v

selection of the associated

feature normalization

plot quality index plot
calculation ¢
¢ ’ state estimation ‘
plot quality level
determination +

’ track termination ‘

plot set with
quality index ¢

track set

Figure 6. The flowchart of the proposed plot-to-track association method.

4. Results of Experiments

To verify the performance of the proposed plot-to-track association method, moving
vessel tracking experiments were carried out with field data of compact HFSWR using both
the NNDA method and the proposed method, respectively. The automatic identification
system (AIS) data were used as ground truth for the tracking results, the tracking time on
moving vessels, which means the duration a moving vessel has been successfully tracked
without fragmentation, was used as the evaluation index.

The experimental data were collected by a newly developed compact over-the-horizon
radar for maritime surveillance (CORMS) system located at the shore of Bohai Bay in China.
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The system parameters of CORMS are listed in Table 1. A total of 266 frames of data were
collected from 11:04 a.m. to 3:29 p.m. on January 18, 2019.

Table 1. The system parameters of CORMS.

Specification Value
Transmitting waveform FMICW
Receiving antenna number 8
Working frequency (MHz) 4.7
Coherent integration time (s) 262.144
Data rate (frame/min) 1

Four thresholds U, V, €, and Qmin can be statistically calculated using field measure-
ments. A track association method is applied to both radar and AIS tracks to find the
associated track pairs. Then the plots measured by radar with matched AIS correspon-
dences are identified as from real moving vessels. The data from these plot pairs are used
to determine the thresholds.

(1) Determination of U and V.

The gradients along eight directions of each selected moving vessel plot are calculated
using Equation (15), and the mean value of the gradients from all moving vessel plots is
used to set U. Then the number of directions in which the corresponding gradient exceeds
U, denoted as Xy, for each real moving vessel plot is calculated. The mean value of Xyss
obtained from all the moving vessel plots is set as the threshold V.

(2) Determination of e.

For each identified real moving vessel track, the minimum association costs during
plot-to-track association at each time instant are calculated using Equation (19). Then a
dataset containing the minimum association costs from all real moving vessel tracks can be
obtained. The standard deviation of this dataset is calculated and used to set e.

(3) Determination of Qmin.

The radar plots that can not be associated with any moving vessel track are identified
as false plots. The plot quality index Q of real moving vessel plots and false plots are
calculated using Equation (18). Then the histograms of Q for moving vessel and false plots
are respectively obtained and fitted using probability density fitting. The abscissa value
corresponding to the intersection of two fitting curves is determined as Qmin-

(4) Determination of (ag, ay, ap) and (wy, wy, wy).

The two groups of weights (ay, ay, ap) and (wy, wy, wy) are determined using the or-
thogonal experiment method [34] with different weight combinations under the constraint
that the summation of all weights should be equal to one.

It should be pointed out that the above thresholds and weights only need to be set
once for a radar system and can be used for all plots detected by this radar. Whether
the corresponding parameters are applicable for other radar systems or not needs to be
further investigated.

The parameters involved in the proposed method are listed in Table 2.

Table 2. The parameters set for the proposed method in the experiment.

Parameter Value
u 0.025
14 4
€ 0.2
Qmin 0.15
(an, ay, ap) (0.2,0.4,0.4)

(wo, Wy, o) (0.7,0.2,0.1)
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4.1. Plot Quality Evaluation and Results Analysis

The effectiveness of the proposed plot quality evaluation method is evaluated first.
Figure 7 shows the plot quality evaluation results for an R-D map obtained at 1:59 p.m.; the
detected plots are divided into four levels according to their plot quality indexes. It can be
visually seen that the plots in Level 1 have strong scattering intensity with high SNR, while
the plots in Level 2 have lower scattering intensity. The plots in Level 3 look like weak
moving vessels and some of them are located at the edge of clutters. The plots in Level 4
seem to be noise or clutter plots.

200
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*  Levell | "“\“MW‘ \
*  Level2 f ey 195
| O Level3 S ! Ll Ik
1 +  Level4 | Wi I 1 190
| TR LR T
|
! 1.0 i i bt )
|
i

¥
i

-25 -20 -15 -10 -5 0 5 10 15 20 25
Doppler Velocity (m/s)

Figure 7. Plot quality evaluation results.

Next, the CMKF and the proposed plot-to-track association methods were applied to
the plot data sequence collected from 11:04 a.m. to 3:29 p.m. to produce moving vessel
tracks. The obtained tracks are associated with corresponding AIS tracks using the method
proposed in [35].

In order to quantitatively analyze the plot quality evaluation results, five moving
vessels with matching AIS data are selected for further analysis. Figure 8 displays the
plots of targets 1-5 and the corresponding AIS plots on an R-D map obtained at 1:59 p.m.
Figure 9a—e depicts the tracks of targets 1-5 and their AIS tracks in geographic coordinate
system, it is confirmed that they are derived from real moving vessels. The solid red dots
indicate the radar location.

Twenty consecutive R-D maps during the common period of the five tracks, i.e.,
1:59 p.m.—2:18 p.m. were selected, and ten false plots without being associated with any
track in each R-D map were chosen for analysis. Figure 9f illustrates all the selected false
plots in geographic coordinate system.

The plot quality indexes for both moving vessel and false plots were calculated and
compared, the results are illustrated in Figures 10-12.

The variation trends of plot quality index for five moving vessels are shown in
Figure 10. It can be seen that the quality indexes of moving vessel plots are generally
greater than 0.4. Only a few of them are less than 0.3 due to their weak echoes caused by
RCS fluctuations. It should be noticed that the plot quality indexes of different moving
vessels are similar; thus, they cannot be used to distinguish different moving vessels.

The plot quality indexes of all selected false plots are shown in Figure 11. It can be
observed that the quality indexes of most false plots are around 0.2, only a few of them are
greater than 0.3.

The average plot quality indexes of these five moving vessels and all false plots are
shown in Figure 12, where the red asterisks are the average plot quality indexes for each
moving vessel in twenty consecutive frames, and the blue horizontal line represents the
average plot quality index of all false plots. As can be seen, the average plot quality indexes
of the five moving vessels are much larger than that of the false plots.
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Figure 8. The plots of five selected moving vessels on an R-D map. (a) Plots detected by the radar.
(b) Corresponding AIS plots.
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Figure 9. Tracks of five selected moving vessels and the selected false plots in geographic coordinate

system. (a) Target 1. (b) Target 2. (c) Target 3. (d) Target 4. (e) Target 5. (f) False plots. The solid red
dots indicate the radar location.
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Figure 10. The variation trends of plot quality index for five moving vessels.
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Figure 11. The plot quality indexes of the selected false plots.
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Figure 12. Comparison of the average plot quality indexes between moving vessel and false plots.

It can be concluded from above experimental results that the plot quality indexes of
moving vessel plots are higher than those of false plots. Therefore, the plot quality index
can be used to distinguish moving vessel and false plots.

4.2. Analysis of Tracking Performance

The NNDA and proposed plot-to-track association methods were respectively com-
bined with the CMKEF tracking method and applied for moving vessel tracking. Two
fragmented tracks obtained by the NNDA method, labeled as T1 and T2, were selected for
analysis. Both of them are heading towards the radar and have matching AIS data. The
comparisons of tracking results are shown in Figures 13 and 14. The blue and green tracks
denote the tracking results obtained by the NNDA and proposed plot-to-track association
methods, respectively. The red tracks are corresponding AIS tracks. The black solid circles
represent the plots at the starting points.
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Figure 13. Tracking results comparison of T1. Point A indicates the position where the track breaks.
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Figure 14. Tracking results comparison of T2. Point B and point C indicate the positions where the
track breaks and restarts, respectively.

(1) Tracking results analysis of T1

As can be seen from Figure 13, the moving vessel track obtained by the NNDA method
breaks at point A (1:07 p.m.). It was found that the Doppler velocity of this moving vessel
at 1:04 p.m. is 8.04 m/s, which coincides with the Doppler velocities corresponding to
first-order sea clutter. The track is associated with a false plot generated by sea clutter at
1:04 p.m., causing track fragmentation. The moving vessel track obtained by the proposed
plot-to-track association method can be associated with a moving vessel plot at 1:04 p.m.
and updated correctly. The tracking time on moving vessels increases by 17 min. Analysis
of candidate plots in the association gate at 1:04 p.m. shows that the association cost of
a clutter plot selected by the NNDA method and a moving vessel plot selected by the
proposed method are 0.21 and 0.38, and the corresponding quality indexes are 0.18 and
0.40, respectively, i.e., their association costs are similar, but the quality index of the moving
vessel plot is higher. It verifies that in dense clutter scenarios, the proposed plot-to-track
association method can effectively distinguish moving vessel and clutter plots and improve
the plot-to-track association accuracy.

(2) Tracking results analysis of T2

It can be observed from Figure 14, the moving vessel track obtained by the NNDA
method breaks at point B (1:59 p.m.) and restarts at point C (2:02 p.m.). The reason for track
fragmentation is that the track is disturbed by a false plot at 1:56 p.m., and there are no
consequent measured plots associated with it. As a result, the track is updated by predicted
states in several consecutive frames and then is terminated. However, the moving vessel
track obtained by the proposed plot-to-track association method is correctly associated
with the moving vessel plot at 1:56 p.m. and the track is updated subsequently.

The quality indexes of the associated plots selected by the NNDA and proposed
methods are 0.17 and 0.56, and the association cost of them are 0.21 and 0.25, respectively.
Their association costs are similar, but the quality index of the moving vessel plot selected
by the proposed method is much higher. It can be concluded that the the associated plot
selected by the NNDA method may be a noise plot that leads to the plot-to-track association
error. On the contrary, the proposed plot-to-track association method can join the two track
segments obtained by the NNDA method successfully.

It is worth pointing out that the proposed plot quality index can also be combined
with other plot-to-track association methods to improve their association accuracy. Since
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the JPDA method achieves good performance in multi-target tracking scenarios, the pro-
posed plot quality index is introduced into the JPDA method to calculate the association
probability of candidate plots within the association gate.

Plot-to-track association tests based on the JPDA method with and without plot quality
index were also conducted on the two fragmented tracks T1 and T2, and the obtained
tracking results are shown in Figure 15.

w
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Figure 15. Comparison of tracking results obtained by JPDA and proposed methods. (a) Comparison
of tracking results for T1. Point A indicates the position where the track breaks. (b) Comparison
of tracking results for T2. Point B and point C indicate the positions where the track breaks and
restarts, respectively.

It can be seen that the tracks obtained by the JPDA method are smoother than those
obtained by the NNDA method. However, due to the low positioning accuracy of compact
HFSWR and the interference of clutter and noise, track fragmentations also occur when the
original JPDA method is applied. Similar to the tracking results obtained by the NNDA
method, the track T1 breaks at point A, and track T2 breaks at point B when the JPDA
method is employed. After introducing the plot quality index, the fragmented tracks are
extended or connected to produce longer tracks.

Considering that the JPDA method has high computational complexity and requires
prior information on moving vessel quantity, it is not selected as the preferred method here.

4.3. Analysis of Computational Complexity

To analyze the computational complexity of the proposed method, two hundred Monte
Carlo experiments were performed for the plot-to-track association procedure. The results
show that the average running time of the proposed method is only increased by 0.21s
compared with that of the NNDA method, which is much less than the radar data rate of 1
frame/min and meets the engineering requirements for real-time moving vessel tracking.

In addition, the plot quality index can be used to filter out some false plots as described
in Section 3.2.1. Statistical analysis shows that about 32.6% plots with lower quality indexes
in each R-D map were filtered out, which effectively reduces the data processing burden of
tracking algorithms.

4.4. Analysis of Parameter Sensitivity

Both plot quality evaluation and plot-to-track association performance depend on
the settings of the four thresholds U, V, €, Qmin and two groups of weights (ay, ay, ap),
(wy, wy, wy). Once these parameters are determined, small deviations from the determined
parameter values will have little influence on plot quality evaluation and plot-to-track
association performance.

5. Discussion
From the above analysis, it can be summarized that:
(i) The working environment of compact HFSWR is extremely complex and a great

number of false plots may be produced, which will cause plot-to-track association
errors for moving vessel tracking. The proposed plot quality evaluation method can
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effectively evaluate the quality of plots according to their quality indexes, which can
be used to filter out some false plots and provide assistant information for resolving
the plot-to-track association ambiguity.

(ii) The plot quality evaluation method based on spatial correlation of echo spectrum
amplitudes and plot position probability may not accurately classify moving vessel
plots and false plots. However, the proposed plot quality index can indicate the
possibility that a plot derives from a real moving vessel. The higher the plot quality
index is, the more likely the plot comes from a real moving vessel.

(iii) Experimental results show that the proposed plot quality evaluation method can
reasonably calculate the quality indexes of most plots. However, it is worth noting
that the extracted features of false plots may be similar to those of moving vessel plots
since some clutter appears in the form of blocks, so the evaluation results of these
plots may be inaccurate.

(iv) The NNDA method only uses kinematic parameters to calculate the similarities be-
tween measured plots and moving vessel tracks. In dense clutter scenarios, it often
causes false tracking and track fragmentation due to plot-to-track association errors.
The proposed plot-to-track association method introduces the plot quality index as
auxiliary information to collaboratively determine the associated plot. Experimental
results show that this method can effectively increase tracking time on moving vessels
and improve tracking continuity.

(v) During the moving vessel tracking experiments, the authors found that the proposed
plot-to-track association method has better tracking performance in dense clutter
scenarios, but false tracking caused by the interference of adjacent moving vessels
may occur in multi-target tracking scenarios. Because the plot quality indexes of
different moving vessel plots may be similar, as shown in Figure 10, it is difficult to
accurately distinguish the source of moving vessel plots by their quality indexes and
kinematic parameters when multiple moving vessels are close to each other. Therefore,
the optimal assignment of plot-track pairs in multi-target tracking scenarios needs to
be further investigated.

6. Conclusions

To improve the plot-to-track association accuracy and enhance the moving vessel
tracking performance of compact HFSWR, a plot quality aided plot-to-track association
method for dense clutter scenarios is developed. The main contributions of this article are
in two folds. Firstly, according to the spatial correlation of echo spectrum amplitudes and
position of different plots on an R-D map, a plot quality evaluation method is proposed.
The plot quality index calculated by this method can be applied to roughly distinguish
moving vessel plots and false plots originating from clutters or noise, and some false plots
can be filtered out. Secondly, the plot quality index can be used as auxiliary information
to improve the plot-to-track association accuracy. Experimental results show that the
proposed method reduces the data processing burden of tracking algorithms, improves the
accuracy of plot-to-track association, and increases the continuity of moving vessel tracking
in dense clutter scenarios. Thus, it can be applied to compact HFSWR systems to enhance
tracking performance.
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Abbreviations

The following abbreviations are used in this manuscript:

HFSWR  high-frequency surface wave radar

CFAR constant false alarm rate

NNDA  nearest neighbor data association
SNR signal-to-noise ratio

RCS radar cross section

PDA probabilistic data association
JPDA joint probabilistic data association
R-D range-Doppler

MUSIC  multiple signal classification

DBF digital beam-forming

CMKF converted measurement Kalman filter
AIS automatic identification system

CORMS  compact over-the-horizon radar for maritime surveillance
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