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Abstract: Empirical algorithms have become the mainstream of significant wave height (SWH)
retrieval from synthetic aperture radar (SAR). But the plentiful features from multi-polarizations
make the selection of input for the empirical model a problem. Therefore, the XGBoost models are
developed and evaluated for SWH retrieval from polarimetric Gaofen-3 wave mode imagettes using
the SAR features of different polarization combinations, and then the importance of each feature
on the models is further discussed. The results show that the reliability of SWH retrieval models is
independently confirmed based on the collocations of the SAR-buoy and SAR-altimeter. Moreover,
the combined-polarization models achieve better performance than single-polarizations. In addition,
the importance of different features to the different polarization models for SWH inversion is not
the same. For example, the normalized radar cross section (NRCS), cutoff wavelength (λc), and
incident angle (θ) have more decisive contributions to the models than other features, while peak
wavelength (λp) and the peak direction (ϕ) have almost no contribution. Besides, NRCS of cross-
polarization has a more substantial effect, and the λc of hybrid polarization has a stronger one than
other polarization models.

Keywords: SWH retrieval; XGBoost; Gaofen-3 SAR wave mode; polarization; feature importance analysis

1. Introduction

Ocean waves form a complex random surface field that constantly changes under the
influence of local winds and other environmental factors. Ocean waves can be described
by wave spectrum or some statistical parameters. Significant wave height (SWH) is one of
the most important statistical parameters of ocean waves, which is defined as the mean
value of the maximum one-third of wave height. As well, it is approximately equivalent to
the four times the square root of the integral of the measured wave spectrum in practical
definition [1]. Spaceborne synthetic aperture radar (SAR) has been developed into the
most powerful instrument for observing SWH from space at a fine spatial scale under all
weather conditions [2]. In the traditional theoretical algorithms, the ocean wave spectrum
is first retrieved from the SAR and then the SWH is computed via spectral integration. But
these algorithms are complicated and have limited accuracies as the complex nonlinear
distortion induced by the radial wave motions can cause image smearing and a loss of
spectral energy [3]. Following the Seasat in 1978, dozens of satellites carrying SAR sensors
have been launched and put into operation, providing tens of thousands of accessible SAR
images. This promotes the development and mainstreaming of the data-driven empirical
SWH inversion method.

Several empirical models have been developed to directly retrieve SWH from SAR im-
ages without explicitly retrieving the 2-D ocean wave spectrum. At the earliest, the CWAVE
algorithm was proposed to retrieve SWH from C-band SAR data, such as ERS-2 SAR [4],
Envisat ASAR [5], Sentinel-1 SAR [6], and RADARSAT-2 SAR [1]. The CWAVE model is

Remote Sens. 2023, 15, 149. https://doi.org/10.3390/rs15010149 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15010149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15010149
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010149?type=check_update&version=1


Remote Sens. 2023, 15, 149 2 of 27

established based on linear regression or neural network, using 22 SAR features, including
the normalized radar cross section (NRCS), the image variance (cvar), and 20 orthogonal
components of the image spectrum (i.e., CWAVE spectral parameters, denoted as S1, . . . ,
S20). Besides, the strong correlation between SWH and azimuth cutoff wavelength (λc) in
all sea states has been proved [7,8], and the linearly empirical dependency of the SWH on
λc has been established [9–11]. In the λc-based models, the peak wavelength (λp) and peak
wave direction (ϕ) are often taken into account [9–12]. In addition to the features mentioned
above, Stopa et al. [6] also considered incidence angle (θ), image skewness (skew), and
image kurtosis (kurt) in the neural network model for SWH retrieval. Currently, machine
learning and deep learning have become mainstream methods for SAR SWH estimation
because they are able to consider various SAR features and approximate nonlinear behavior
without prior knowledge of the interrelationships between features [12–17].

In the early research, only the single-polarization (mostly vertical-vertical, VV) SAR
features were exploited. The effects of polarized information on the empirical retrieval of
SWH have been noticed recently. For example, Ren et al. established λc-based empirical
models under different polarizations from RADARSAT-2 fine quad-polarization (HH
(horizontal-horizontal), HV (horizontal-vertical), VH (vertical-horizontal), and VV) SAR
images [9]. Collins et al. investigated the effect of polarization on the performance of
the CWAVE models for SWH retrieval, by comparing the accuracy of SWH estimates
at different polarizations of HH, HV, VH, VV, RH (right-circular-horizontal), RV (right-
circular-vertical), RR (right-circular–right-circular), and RL (right-circular–left-circular) [1].
Wang et al. [18] explored the influence of introducing VH NRCS into the quadratic model
constructed by VV features, and found that its introduction improved the performance of
the model in high sea state. Then, the combinations of different polarizations have been
considered to achieve higher performance of the SWH retrieval [19,20]. However, plentiful
features will be considered if various polarizations are used. But the selection criteria of
polarizations and SAR features are not clear when determining the model input parameter
set, and it is unknown how each feature affects the performance of SWH inversion model.

Stepwise regression [21] and elastic net [22] methods have been applied to select signif-
icant terms in polynomial SWH inversion models, but only for the CWAVE features under
VV polarization [1,4]. It is challenging for most machine learning models to determine
the optimal feature set from plenty of polarized SAR features. As an improved algorithm
based on the gradient boosting decision tree, Extreme Gradient Boosting (XGBoost) [23]
is capable of obtaining the feature scores intelligently to reveal the importance of each
feature on the training model [24], which provides experimental conditions for SAR feature
contribution analysis. Thus, in this paper, we develop and validate the XGBoost models
for SWH retrieval under different polarization combinations from Gaofen-3 SAR wave
mode data, and we further discuss the importance of each SAR feature to different polar-
ization models. The paper is organized as follows. We describe materials and methods in
Section 2. Section 3 introduces establishment and validation of the XGBoost models under
different polarizations. And Section 4 discusses the importance of each feature. The main
conclusions are given in Section 5.

2. Materials and Methods
2.1. Gaofen-3 SAR Data

The Chinese Gaofen-3 satellite carrying a C-band SAR sensor has been in orbit since
August 2016. Gaofen-3 SAR can operate in 12 imaging modes, of which wave mode is
dedicated to ocean wave detection. In wave mode, Gaofen-3 SAR collects small SAR
images (called imagettes) with an approximate coverage of 5 km × 5 km every 50 km
along the flight direction with a nominal spatial resolution of 4 m over the open ocean. It
provides quad-polarimetric (HH + HV + VH + VV) capability. In this paper, the Level-1A
single-look complex (SLC) wave mode imagettes from 2016 to 2020 are collected. The
SAR scenes contaminated by non-wave phenomena are rejected based on the following
procedure: (1) The power-saturated data are rejected by checking the ‘echoSaturation’ value
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given in the Gaofen-3 SAR product annotation file; (2) The imagettes contaminated by ice
and land/island are excluded; (3) The homogeneity is checked according to the method
proposed in Schulz-Stellenfleth [25]. The rejection percentage by the quality controls is
approximately 30%, and finally, approximately 11,200 Gaofen-3 SAR imagettes are selected
in this study (Figure 1).
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Figure 1. Map of the Gaofen-3 wave mode acquisitions for the year of 2016 to 2020 in data density for
2◦ × 2◦ bins.

The maximum sensitivities to wave slopes have been noticed when using linear
polarizations, and the polarimetric orientation modulation effects on ocean waves have
been exploited [19,26–28]. Moreover, the possibility of ocean wave parameters inversion
from compact polarization images has been demonstrated with RADARSAT data [1,29].
Therefore, in addition to conventionally processed SAR images at HH, HV, VH, and VV
provided by Gaofen-3 wave mode, 45◦ linear polarization with a polarization orientation
angle of 45◦ and compact polarizations known as RH, RV, RR, and RL are explored in
this paper. According to Equations (3)–(6) in Collins et al. [1] and Equation (8) in Zhang
et al. [28], we simulate the images at 45◦ linear polarization and compact polarizations from
quad-polarization Gaofen-3 wave mode imagettes. In order to fully capture the nonlinearity
of the imaging mechanism and the ocean wave response, we extract 28 SAR features for
each polarization mentioned above.

The normalized radar cross section (NRCS) of SAR imagettes is directly related to
ocean winds and thus can represent wave energy information of short wave roughness [19].
The Gaofen-3 NRCS values can be obtained from the following formula:

œ0 = 10log10〈DN〉−K (1)

in which σ0 is the NRCS in dB, <DN> denotes the mean value, DN = Is × (qv/32767)2

denotes the image intensity, Is = I2 + Q2 with I (Q) being the value of real (imaginary)
channel for the single-look complex SAR image, qv is the maximum qualified value stored
in the product annotation file according to the polarizations, K is the calibration constant
also stored in the product annotation file according to the polarization. However, the
radiometric calibration of Gaofen-3 was proved to be inaccurate by comparing Gaofen-3
SAR images against Radarsat-2 and Sentinel-1 SAR data over land [30]. Only a tiny portion
of the official Gaofen-3 wave mode products provide the K values. Therefore, we apply
the numerical weather prediction (NWP)-based ocean calibration method developed by
Wang et al. [31] to estimate the values of K. The effectiveness of recalibration on SWH
estimation using polarimetric Gaofen-3 wave mode SAR imagettes has been proved, and
the recalibration constant values have been given in [20]. Figure 2 displays a typical
example of all nine polarization NRCSs of Gaofen-3 imagettes, which is acquired on 7
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February 2017, at 18:17 UTC. The images shown in Figure 2 are normalized by the min-max
method, from which a clear wavy structure can be seen.
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Figure 2. Case of Gaofen-3 SAR wave mode imagette acquired on 7 February 2017, at UTC 18:17:16.
Image of normalized backscattering for (a) HH, (b) HV, (c) VH, (d) VV, (e) 45◦ linearly, (f) RH, (g) RV,
(h) RR and (i) RL polarizations.

The normalized image variance (cvar) contains information on the sea state of longer
waves, which is commonly used for SWH retrieval in empirical algorithms. It is defined as
the variance of the Gaofen-3 image normalized by the mean intensity:

cvar = var
(

DN−〈DN〉
〈DN〉

)
(2)

Besides, the higher-order features are considered by skewness (skew) and kurtosis
(kurt) of the radar cross-section in this study:

skew =
1
n

n

∑
i=1

(
œ0

i − œ0
)3

/s3 (3)

kurt =
1
n

n

∑
i=1

(
œ0

i − œ0
)4

/s4 (4)

where s is the standard deviation of σ0.
Over the ocean, according to the SAR-ocean imaging mechanism of velocity bunching,

the surface wave motions may distort the phase history of the backscattered signal leading
to a nonlinear transformation between the local wave and the SAR image. As a result, the
small wave components propagating near the azimuth direction may be blurred, which
leads to a cutoff value. And the waves with wavelengths below the cutoff cannot be
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resolved by SAR. Theoretically, the azimuth cutoff wavelength (λc) is determined by the
orbital velocity of ocean waves over the integration time along with the range-to-velocity
ratio (β) of the SAR platform. Hence, we choose λc normalized by β as another important
feature. The λc can be estimated by fitting a Gaussian function to the inter-correlation of
the SAR cross-spectrum (real part) [32]. The Gaussian fit function is stated as follows:

C(x) = exp(−( ßx
˘c
)2) (5)

where x denotes the spatial distance in the azimuth direction. However, the distortion of
ocean waves also varies with respect to the peak wavelength (λp) and the peak direction (ϕ,
defined relative to the range direction of the satellite) of the wave system [6]. Therefore, λp
and ϕ, which are computed from the cross-spectrum of SAR imagettes, are considered in
our analysis.

It is proved that the introduction of the 20 CWAVE spectral parameters (denoted as
S1, . . . , S20) in empirical models leads to an even better performance of SWH retrieval.
The CWAVE spectral parameters are obtained by integrating the orthogonal spectral com-
ponents, which are calculated by mapping the SAR image modulation spectrum onto an
orthogonal basis set of 20-nondimensional parameters. The orthogonal basis set is de-
scribed in detail in the appendix of Schulz-Stellenfleth et al. [4]. In this paper, the CWAVE
spectral parameters extracted from different polarimetric SAR imagettes are also applied in
the XGBoost model for SWH inversion. Taking the VV polarization imagette in Figure 2 as
an example, the 20 orthogonal spectral components are shown in Figure 3.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 28 
 

 

 

Figure 3. 20 orthogonal spectral components of the VV case in Figure 2d. 

In addition, the incidence angle (θ) of the Gaofen-3 wave mode could be switched 

from 20° to 50°. It is an important feature that should be considered in building XGBoost 

models for SAR SWH retrieval. 

2.2. Reference SWH 

To maximize the number of colocations, we use SWH data from the fifth-generation 

ECMWF Atmospheric Reanalysis (ERA5) [33]. ERA5 data incorporate as many observa-

tions as possible into model estimates using advanced modeling techniques and state-of-

the-art data assimilation systems, and provide new best estimates of the state of the at-

mosphere, ocean waves, and land surfaces. This dataset contains a number of ocean-wave 

variables at a regular lat-lon grid of 0.5 degrees hourly, in which the significant height of 

combined wind waves and swell, i.e., SWH, is focused here. The consistency between 

ERA5 SWH and buoy SWH observations was validated in our previous study [20]. Each 

Gaofen-3 imagette is collocated with the time/space interpolated SWH from ERA5 yield-

ing approximately 11200 matched-up cells, and the collocated ERA5 SWHs roughly range 

from 0.3 to 8 m. All matchups are randomly grouped into three sets: training (60%), vali-

dation (20%), and test (20%). Both training and validation data are used to develop the 

models. The training set tunes the parameters (weights and biases) of the model while the 

validation set cross-validates and determines the hyperparameters. The importance anal-

ysis of Gaofen-3 SAR features for SWH estimate in different polarizations is also discussed 

based on the SAR-ERA5 data. 

In addition, the SWH observations from buoys and altimeter are collected for inde-

pendent verification in this study. Standard meteorological data of the 233 moored buoys 

in the waters operated by the National Data Buoy Center (NDBC) are collected. All the 

buoys are located more than 50 km from land and over 150 m deep. The quality of the 

NDBC SWH observations is very high, with an accuracy of approximately 0.2 m [34]. The 

SWH observations from Saral/AltiKa altimetry mission are selected as an additional data 

source for independent verification. The AltiKa radar altimeter was launched in 2013, on 

the Saral mission, a cooperative project between the Indian Space Research Organization 

(ISRO) and the French space agency Centre National d’Etudes Spatiale (CNES). AltiKa is 

operated at Ka-band, leading to several improvements in the performances for significant 

wave height (SWH) measurements [35]. The Gaofen-3 SAR imagettes are collocated re-

spectively with the NDBC buoy and Saral altimeter SWH observations using the criteria 

of time separation within 1 h and spatial separation less than 100 km, yielding the 

Figure 3. 20 orthogonal spectral components of the VV case in Figure 2d.

In addition, the incidence angle (θ) of the Gaofen-3 wave mode could be switched
from 20◦ to 50◦. It is an important feature that should be considered in building XGBoost
models for SAR SWH retrieval.

2.2. Reference SWH

To maximize the number of colocations, we use SWH data from the fifth-generation
ECMWF Atmospheric Reanalysis (ERA5) [33]. ERA5 data incorporate as many observations
as possible into model estimates using advanced modeling techniques and state-of-the-art
data assimilation systems, and provide new best estimates of the state of the atmosphere,
ocean waves, and land surfaces. This dataset contains a number of ocean-wave variables
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at a regular lat-lon grid of 0.5 degrees hourly, in which the significant height of combined
wind waves and swell, i.e., SWH, is focused here. The consistency between ERA5 SWH and
buoy SWH observations was validated in our previous study [20]. Each Gaofen-3 imagette
is collocated with the time/space interpolated SWH from ERA5 yielding approximately
11,200 matched-up cells, and the collocated ERA5 SWHs roughly range from 0.3 to 8 m.
All matchups are randomly grouped into three sets: training (60%), validation (20%),
and test (20%). Both training and validation data are used to develop the models. The
training set tunes the parameters (weights and biases) of the model while the validation set
cross-validates and determines the hyperparameters. The importance analysis of Gaofen-3
SAR features for SWH estimate in different polarizations is also discussed based on the
SAR-ERA5 data.

In addition, the SWH observations from buoys and altimeter are collected for inde-
pendent verification in this study. Standard meteorological data of the 233 moored buoys
in the waters operated by the National Data Buoy Center (NDBC) are collected. All the
buoys are located more than 50 km from land and over 150 m deep. The quality of the
NDBC SWH observations is very high, with an accuracy of approximately 0.2 m [34]. The
SWH observations from Saral/AltiKa altimetry mission are selected as an additional data
source for independent verification. The AltiKa radar altimeter was launched in 2013, on
the Saral mission, a cooperative project between the Indian Space Research Organization
(ISRO) and the French space agency Centre National d’Etudes Spatiale (CNES). AltiKa is
operated at Ka-band, leading to several improvements in the performances for significant
wave height (SWH) measurements [35]. The Gaofen-3 SAR imagettes are collocated re-
spectively with the NDBC buoy and Saral altimeter SWH observations using the criteria of
time separation within 1 h and spatial separation less than 100 km, yielding the matchups
shown in Figure 4. This procedure yields only 43 SAR-buoy matching points, of which
the buoy SWHs are mainly distributed in 2–3 m (Figure 5a). The collocation with Saral
yields 757 points, of which the Saral SWHs are between 0.4–8 m (Figure 5b). To ensure
an independent verification, the SAR-buoy and SAR-altimeter data are never seen by the
models when tuning.
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2.3. Extreme Gradient Boosting (XGBoost) Model

The XGBoost is an improved algorithm based on gradient-boosting decision trees. It
can construct boosted trees efficiently and operate in parallel. Thus, the XGBoost is adopted
in this study for the polarimetric Gaofen-3 SAR SWH retrieval. And the XGBoost model
can be expressed as:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (i = 1, 2, . . . n) (6)

where F is the set of decision trees, and n is the number of datasets. The core of the
algorithm is to find the optimal parameters according to the principle of minimizing the
objective function. The objective function can be written as:

Obj = L + Ω (7)

where, L is a differentiable convex loss function that measures the difference between

the prediction ŷi and the target yi: L =
n
∑

i=1
(yi−ŷi)

2. The model complexity function term

Ω penalizes the complexity of the regression model. The additional regularization term
helps to smooth the final learned weights to avoid over-fitting. In XGBoost, the second-
order Taylor expansion of the objective function is carried out to find the parameters that
minimize the objective function quickly. Therefore, the model complexity is well controlled
while the model accuracy is ensured.

XGBoost obtains importance scores of features intelligently by the boosted tree con-
struction, and the features that are used the most when boosting trees make key deci-
sions and have the highest score [36]. The algorithm calculates the importance by “gain”,
“weight”, or “cover” [37]. “Gain” refers to the average value of information gain opti-
mization brought by a feature when the node is split. “Weight” is the number of times
a feature is used to split the data across all trees. The “cover” is the relative value of a
feature observation. In this study, the feature importance is set by “gain”. According to
Breiman et al. [38], the features that can significantly improve the estimated squared error
are selected at each leaf node for a decision tree. For a particular feature, its importance is
the sum of such squared improved performance over all nodes. The importance of a feature
depends on whether the prediction performance changes considerably when such a feature
is replaced with random noise. In addition, the hyperparameters of the XGBoost model are
determined by minimizing the RMSE of SWH derived from Gaofen-3 SAR compared with
ERA5 SWH with respect to the validation dataset, and the optimal hyperparameters for
XGBoost in this paper are listed in Table 1.
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Table 1. Optimal hyperparameter for XGBoost in this paper.

Hyperparameter Value

Number of estimators 200
max_depth 50

learning_rate 0.05
reg_lambda 1
reg_alpha 0

min_child_weight 1
gamma 0

subsample 1

3. Results

Wang et al. [19] compared SWH derived from single-, dual- and quad-polarized deep
convolutional neural networks, and found that exploitation of SAR quad-polarimetry (HH
+ HV + VH + VV) information would improve SAR wave height retrievals under high sea
conditions. Inspired by this, in order to utilize the polarimetry information provided by
Gaofen-3 wave mode imagettes, we also consider six combined-polarization modes: HH
+ HV, VV + VH, RH + RV, RL + HV, Quad (HH + HV + VH + VV) and All (HH + HV +
VH + VV + 45◦ + RH + RV + RR + RL) in addition to the nine single-polarization modes
mentioned in Section 2.1. The XGBoost models under 15 polarization modes are established
based on the collocated data set of 12,000 Gaofen-3 imagettes matched with SWH from
ERA5 in this section. The prediction accuracies of SWH are independently assessed by the
SWH observations from the NDBC buoys and Saral/AltiKa altimetry mission.

Figure 6 shows the color-coded correlation coefficient matrices for the features of
different polarization XGBoost models. We found that many of the features are highly
correlated, especially for the combined-polarization models. Therefore, we employ recur-
sive feature elimination (RFE) [39] to clarify the role of each feature on the SWH retrieval
and to remove redundant ones effectively. Based on the “feature_importances” toolkit of
XGBoost, the feature that ranks the last in importance is eliminated in each iteration, and the
remaining features will create subsets to build the SWH estimation model again [40]. The
XGBoost regression model is retrained with each subset, and the model performance is also
calculated with RMSE of the inversion SWH compared with ERA5 SWH from test datasets.
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Figure 6. Color-coded correlation coefficient matrices for the features in different polarization models
of (a) HH, (b) HV, (c) VV, (d) VH, (e) 45◦ linearly, (f) RH, (g) RV, (h) RR, (i) RL, (j) HH + HV, (k) VV +
VH, (l) RH + RV, (m) RL + HV, (n) Quad, (o) All.
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The corresponding relationship between the number of remaining features and the
performance of 15 XGBoost models are given in different colors in Figure 7a. We normalize
the number of remaining features of all the models to the range of 0–1 to facilitate the
comparison between different polarizations. With the same fraction of remaining features,
there is little difference in the performances of the models under nine single-polarization
modes (HH, HV, VH, VV, 45◦ linearly, RH, RV, RR, and RL). The best performance appears
in a 45◦ linearly polarized model with the lowest RMSE. The combined-polarizations
have lower RMSEs than the single-polarizations (about 3 cm lower on average), except
for RH + RV. This indicates that the increase of polarization information may improve
performance, but it is not inevitable. For a specific polarization mode, the SWH estimation
performance improves with the increasing of the number of remaining features. However,
the improvement is not apparent and even oscillates when the fraction of remaining features
exceeds 0.4, which means that many input features are redundant or even lead to worse
model performance.
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Figure 7. The performance of XGBoost models for SWH retrieval using different input features under
15 polarizations compared with ERA5 SWH. (a) The relationship of the fraction of remaining features
and RMSEs of the SWH derived from XGBoost under 15 polarization modes, with different colors
representing different polarizations. (b) Performance of XGBoost models based on the optimal feature
sets (red) and the best feature sets (black) under 15 polarization modes (different symbols).

Therefore, the input features of each polarization model should be redetermined to
remain the essential features and remove redundant features as possible. Here, we select
features from high to low according to the importance ranking provided by XGBoost, so
we only need to determine the required number of input features. For this, we propose
two options: (1) Best number of feature set: the number of features that make the model
performance achieve the best performance (RMSEmin); (2) Optimal number of feature set:
the minimum number of features that is used when the model performance is not much
worse than from the best performance (RMSE ≤ RMSEmin + 0.01 m). Figure 7b shows the
RMSEs of models using the best feature sets (black symbols) and the optimal feature sets
(red symbols).

Obviously, for most polarization models, the fractions of the best feature sets are
between 0.8 and 1, while the fractions of the optimal feature sets are below 0.5, indicating
that for the optimal feature sets, we lose few accuracies but halve the features. The optimal
features used in different polarization models are documented in Table A1. Moreover,
the RMSEs of SWH derived from 15 polarization models using different input features,
containing all the features extracted from SAR imagettes, the best feature sets, and the
optimal feature sets are listed in Table 2. Among the single-polarization models constructed
using the optimal feature sets, the 45◦ linear polarization model achieves the lowest RMSE
(0.329 m) with the fewest features (only 10). While for the combined-polarizations, it is
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clear that HH + HV and VV + VH exhibit excellent performance, achieving low RMSEs of
0.300 m and 0.308 m using the optimal feature sets (25 and 18 features, respectively). The
VV + VH model performs better and uses fewer features than single-polarization models
with the best feature sets. This suggests that with a comparable number of inputs, the
combination of co-polarized and cross-polarized SAR features may perform better for SWH
estimation than that using either co-polarized or cross-polarized ones alone. This is also
true for RL + HV (co-polarization + cross-polarization) model, but its performance is not as
good as that of the HH + HV and VV + VH models. The RH + RV model does not have
such an advantage. In addition, the accuracies of the Quad and All polarization models
are not much different from those of the HH + HV and VV + VH models, but more input
features are used.

Table 2. The number of inputs and the performance of 15 polarization models for SWH retrieval
using different input combinations, including all features extracted from SAR imagettes, the best
feature sets, and the optimal feature sets.

Polarization
All Features Best Feature Sets Optimal Feature Sets

Number RMSE (m) Number RMSE (m) Number RMSE (m)

HH 28 0.332 27 0.330 12 0.337
HV 28 0.339 23 0.333 11 0.343
VH 28 0.342 21 0.336 14 0.345
VV 28 0.344 21 0.340 15 0.344
45◦ 28 0.328 19 0.323 10 0.329
RH 28 0.340 21 0.337 11 0.342
RV 28 0.335 26 0.334 16 0.338
RR 28 0.338 23 0.332 14 0.338
RL 28 0.336 19 0.332 15 0.338

HH + HV 55 0.301 44 0.295 25 0.300
VV + VH 55 0.309 28 0.299 18 0.308
RH + RV 55 0.344 20 0.336 17 0.337
RL + HV 55 0.307 52 0.306 22 0.315

Quad 109 0.297 44 0.293 32 0.302
All 244 0.297 148 0.294 58 0.301

One can see from Figures 8 and 9 that, for all the polarization modes, reasonably good
SWH estimates could be achieved via the XGBoost model using optimal feature sets under
moderate sea conditions (roughly 1–4 m), where the mean lines almost overlap the one
to one straight line and the residuals are close to zero. This probably results from two
reasons: (1) all polarizations work well at moderate sea states; (2) the data are primarily
distributed in moderate seas. However, overestimation/underestimation could be found
under low/high sea conditions. Among the single-polarizations, the cross-polarizations
(HV, VH, and RR) show slightly smaller underestimation in high wave regime than the
co-polarizations (HH, VV, and RL). However, the 45◦ linear polarization achieves the best
estimate in both low and high sea conditions. In addition, under low sea conditions, the
mean bias of HV/VH polarization is slightly larger than that of HH/VV polarization
probably due to the low signal-to-noise ratio of the cross-polarization SAR images. But
the variance of bias is larger under the co-polarizations, which is mainly caused by several
scenes with poor quality under the co-polarizations (such as the anomalously overestimated
points appearing in the low sea states shown in Figure 8d). The combined-polarization
modes such as HH + HV, VV + VH, RL + HV, and Quad (HH + HV + VH + VV) and
All (HH + HV + VH + VV + 45◦ + RH + RV + RR + RL) achieve better performance by
combining the advantages of co-polarization and cross-polarization. RH + RV performs
poorly at high sea states. And we can see that the Quad mode has a slight advantage over
HH + HV or VV + VH at high sea conditions, but All polarization does not perform even
better, indicating that the performance of SWH estimation saturates with the increasing of
polarization information.
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Figure 8. Plots of Gaofen-3 SWH retrievals from the XGBoost model using optimal feature sets versus
ERA5 SWH for the 15 polarization modes of (a) HH, (b) HV, (c) VV, (d) VH, (e) 45◦ linearly, (f) RH,
(g) RV, (h) RR, (i) RL, (j) HH + HV, (k) VV + VH, (l) RH + RV, (m) RL + HV, (n) Quad, (o) All. The
solid red lines join the mean values from SAR estimates in each 0.1 m bin of ERA5 SWH. Colors
denote the data numbers within 0.1 m × 0.1 m bins.
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Figure 9. Comparison of SWH residuals against ERA5 SWH, with error bars presenting the standard
deviation. The Gaofen-3 SAR SWH estimates were obtained from the XGBoost model under the
15 polarization modes of (a) HH, HV, VH, VV, 45◦; (b) RH, RV, RR, RL; and (c) HH + HV, VV + VH,
RH + RV, RL + HV, Quad, All. (d) Histogram of ERA5 SWH in bin size of 1 m, where the data count
is labeled in black text.

Figure 10 presents the comparison of Gaofen-3 SWH from XGBoost models using
optimal feature sets against the measurements from NDBC buoys and Saral altimeter for
15 polarization modes. Combined-polarizations have prominent advantages for SAR SWH
estimation compared with the single-polarizations. And HH + HV polarization is still the
best performer. For most polarization models, SAR-buoy comparison has a smaller RMSE
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than SAR-altimeter because the buoys tend to be located in waters with more moderate sea
states. Taking HH + HV as an example, we achieve a good agreement against the altimeter
SWH, presenting 0.334 m RMSE, 0.95 correlation coefficient, and 1.94% SI, which is close
to the current state-of-the-art model for SWH retrieval from Gaofen-3 wave mode with
0.32 m RMSE [19]. However, the latter uses a convolutional network deep learning model
with two-dimensional cross-spectrum input, which has a more complex model structure
and and lower efficiency. The RMSE of the worst-performing model is also less than 0.5 m,
indicating that the XGBoost model is reliable when applied to Gaofen-3 wave mode SAR
imagettes for SWH inversion.
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Figure 10. Plots of Gaofen-3 SWH retrievals from XGBoost models using optimal feature sets versus
SWH measurements from buoys (red) and Saral (blue) for the 15 polarization modes of (a) HH, (b)
HV, (c) VV, (d) VH, (e) 45◦ linearly, (f) RH, (g) RV, (h) RR, (i) RL, (j) HH + HV, (k) VV + VH, (l) RH +
RV, (m) RL + HV, (n) Quad, (o) All.

4. Discussion

The construction of the de-redundant XGBoost model is implemented in Section 3, and
it achieves good SWH estimation precision. However, the effects of each feature on SWH
estimation in different polarization models are still unknown. Therefore, in this section, we
carry out the importance analysis focusing on the extracted SAR features from Gaofen-3
SAR data.

4.1. The Importance of NRCS

The importance of NRCS to SWH retrieval using the XGBoost model under different
polarization modes is explored. Figure 11a presents the importance ranking of NRCS
provided by XGBoost models under single-polarizations. The ranking is normalized to a 0–1
range, and the feature with a smaller ranking value is more important. The dotted line in the
figure represents the normalized numbers of optimal feature sets determined in Section 3.
Besides, additional models are trained with the same architecture and hyperparameters
but with NRCS removed to assess the dependence of performance of the models on NRCS.
Here, relative RMSE, defined as the ratio of the change in RMSE due to the NRCS removal
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to the RMSE using all the features, is adopted to represent its influence on the accuracy
of the models. Obviously, the feature positively affects the SWH inversion if the relative
RMSE is greater than 0, and the greater the absolute value, the greater the effect on the
model accuracy. The relative RMSE values of NRCS for SWH inversion under the single-
polarization models are shown in Figure 11b.
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Figure 11. The importance of NRCS to SWH retrieval from single-polarization models. (a) The
importance ranking of NRCS provided by XGBoost models normalized to 0–1. The dotted line
represents the optimal feature sets under different polarizations. (b) The effect of removing NRCS
on the SWH estimation from different polarized models. Different markers in various colors rep-
resent NRCSs of different polarizations. (c) The correlation between NRCS and ERA5 SWH under
different polarizations.

In the single-polarization models, the NRCS obtains a high-importance ranking from
XGBoost. As an important contribution term, it is selected into the optimal feature sets.
NRCS shows a significant positive effect on model accuracy at all single-polarizations.
In addition, the importance of NRCS in different polarizations is different. In the cross-
polarization channels (HV, VH, and RR), the NRCSs have higher rankings and make more
significant positive contributions to the model than in the co-polarizations (HH, VV, and RL)
and hybrid-polarizations (45◦ linely, RH and RV). This is consistent with the correlations
between NRCS and ERA5 SWH under different polarizations presented in Figure 11c.

The cases for the combined-polarizations are shown in Figure 12. There are at least two
NRCSs of different polarizations in the input of each model, but not all NRCSs are necessary
for SWH retrieval from the XGBoost model. Among the three dual-polarization models of
HH + HV, VV + VH, and RL + HV, which combine co-polarization and cross-polarization,
the cross-polarized NRCS ranks so high that it is selected by the optimal feature set and has
a significant impact on the SWH inversion accuracy. In contrast, the co-polarized NRCS
is not selected due to the low importance ranking, and it does have little impact on the
accuracy. In the RH + RV model, the RH NRCS has a higher importance ranking but a
negative effect on the model accuracy. However, with RH NRCS removed, the performance
of the model using the optimal feature set deteriorates, indicating that there are redundant
items that interact with RH NRCS resulting in a negative effect on the model. Moreover,
for Quad (HH + HV + VH + VV) and All (HH + HV + VH + VV + 45◦ + RH + RV + RR +
RL) polarizations, the rankings of cross-polarized NRCSs are still at the forefront so that
they can be selected by the optimal feature sets. The cross-polarized NRCSs have more
excellent effects on the accuracy of the SWH inversion than the one of other polarizations.
However, we noticed that although HV NRCS has a high ranking in the Quad model,
its removal improves the performance, which may be due to the negative effects of the
nonlinearity between HV NRCS and other input features (such as S2_VV). On the other
hand, for Quad or All polarization modes, removing NRCS of only one certain polarization
has little effect on the model, mainly because there are too many inputs for the models
(109 and 245, respectively). But the model performance drops significantly with all NRCSs
removed, demonstrating that the mathematical interaction between NRCSs of different
polarizations has an apparently positive effect on SWH estimation.
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Figure 12. The importance of NRCS to SWH retrieval from combined-polarization models. (a) The
importance ranking of NRCSs provided by XGBoost models, normalized to the range of 0–1. (b) The
effect of removing NRCS on the SWH estimation from different polarized models. The red penta-
grams represent the relative RMSE corresponding to the removal of NRCS-terms in the combined-
polarization models.

To determine the effect of sea state on the importance of NRCS to SWH retrieval
using the XGBoost model under different polarizations, the collected Gaofen-3 wave mode
imagettes are divided into three groups according to the sea state: low (<1 m), medium
(1–4 m), and high (>4 m). The relative RMSEs of the polarized models caused by removing
NRCS-terms in different sea states are presented in Figure 13a. For the models containing
cross-polarization information, the NRCS-terms have a great effect on their accuracies in
high sea conditions, which is consistent with the strong correlation between cross-polarized
NRCS and ERA5 SWH at high sea states, as shown in Figure 13b. But at low sea states, the
cross-polarized NRCSs have lower correlations with SWH, probably due to the facts that
the VH and HV products are more impacted by noise (the signal is too weak) at low wind.
Although the co-polarized NRCSs have higher correlations at low sea states, they have little
effects on the performance of the single-polarization models, which is mainly because of
the several images with poor quality in co-polarization. For the Quad and All models, the
effects of the NRCS-terms on the model accuracies are in the leading position at both low
and high sea states, indicating that the combination of co-polarized and cross-polarized
NRCSs improves the SWH inversion in extremely low and high sea conditions.
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Figure 13. (a) The effects of removing NRCS-terms on the model performance of different polariza-
tions under different sea states. (b) The correlation between NRCS of different polarizations and
SWH under different sea states.
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4.2. The Importance of Cvar

As shown in the Figure 14a, the ranking of cvar in single-polarization models is lower
than that of NRCS. As well, the cvar is only remained by the optimal feature set in cross-
polarization (HV, VH, and RR) models, while it is removed as redundancies in other models.
However, the removal of cvar has little or even a negative effect on the accuracy of the SWH
inversion from the cross-polarization models, as shown in Figure 14b. Paradoxically, the
correlation between cvar and SWH, shown in Figure 14c, is not low. We believe there are
terms in each polarization model that either act repetitively with cvar or have nonlinear
effects with cvar, which may negatively affect the model. Taking HV polarization as an
example (both the correlation and the importance ranking are high, but the contribution of
cvar to the model is negative), S14 has repeated effects with cvar. Moreover, the performance
of the model is better when S1 and cvar are removed than when both are included in input
parameter set. And it becomes best when only S1 or cvar is included, indicating that the
nonlinearity between the two terms degrades the SWH estimation accuracy.
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Figure 14. The importance of cvar to SWH retrieval from single-polarization models. (a) The impor-
tance ranking of cvar provided by XGBoost models normalized to 0–1. The dotted line represents
the optimal feature sets under different polarizations. (b) The effect of removing cvar on the SWH
estimation from different polarized models. Different markers in various colors represent cvar of
different polarizations. (c) The correlation between cvar and ERA5 SWH under different polarizations.

From Figure 15a, it can be seen that the importance ranking of different polarized
cvar is not the same in different combined-polarization models. In the models containing
cross-polarization information (HH + HV, VV + VH, RL + HV, Quad, and All), the cvars of
cross-polarizations are all ranked high and are selected as the optimal features, while other
polarized cvars are mostly rejected. However, as shown in Figure 15b, even cross-polarized
cvars have little effect on SWH inversion performance. The performance of the model does
not change much when removing all cvar-terms in the input parameters. The contradictions
similar to the single-polarization models occur in the combined-polarizations. This is also
probably because of the repetitive and nonlinear effects between cvar and other features.

4.3. The Importance of Skew and Kurt

Figures 16 and 17 demonstrate the importance of skew and kurt to the SWH inversion
from single-polarization models. The importance ranking of skew provided by XGBoost is
higher than that of kurt under a certain polarization. Only two models (HH and RR) do not
select skew as the optimal feature parameter, while only two models (RV and RL) select kurt.
Both skew and kurt have little effects on the inversion accuracy of SWH, with kurt playing
a negative role in more models. Interestingly, the correlation of skew with SWH is almost
opposite to that of kurt under every polarization, though the absolute value of the latter
is slightly smaller. Actually, the correlations of both features with SWH are not small, but
the complex mathematical interaction (repeatability or nonlinearity) between the features
limits the importance of the two for the SWH inversion from different polarization models.
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Figure 15. The importance of cvar to SWH retrieval from combined-polarization models. (a) The im-
portance ranking of cvar provided by XGBoost models, normalized to the range of 0–1. (b) The effect of
removing cvar on the SWH estimation from different polarized models. The red pentagrams represent
the relative RMSE corresponding to the removal of cvar-terms in the combined-polarization models.
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Figure 16. The importance of skew to SWH retrieval from single-polarization models. (a) The
importance ranking of skew provided by XGBoost models normalized to 0–1. The dotted line
represents the optimal feature sets under different polarizations. (b) The effect of removing skew on the
SWH estimation from different polarized models. Different markers in various colors represent skew of
different polarizations. (c) The correlation between skew and ERA5 SWH under different polarizations.
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Figure 17. The importance of kurt to SWH retrieval from single-polarization models. (a) The impor-
tance ranking of kurt provided by XGBoost models normalized to 0–1. The dotted line represents
the optimal feature sets under different polarizations. (b) The effect of removing kurt on the SWH
estimation from different polarized models. Different markers in various colors represent kurt of
different polarizations. (c) The correlation between kurt and ERA5 SWH under different polarizations.

For the combined-polarizations, as shown in Figures 18 and 19, the influence of the
complex mathematical relationship between different features on the importance of skew
and kurt to SWH inversion is more pronounced. In the HH + HV and VV + VH models, the
optimal feature sets select all skew-terms and co-polarized kurts. However, all the skew- and



Remote Sens. 2023, 15, 149 17 of 27

kurt-terms negatively affect the SWH inversion accuracy. In the RH + RV model, only RV
skew is selected to be a significant term, but the removal of RV kurt causes a more obvious
impact on SWH retrieval. In the RL + HV model, all the skew- and kurt-terms are selected
by the optimal feature set, but the effect of skew is smaller than that of kurt. And the model
accuracy is better when both kurt-terms are removed though the HV kurt has a positive
impact on the SWH estimation accuracy. This demonstrates a nonlinear effect between the
RL- and HV-kurt, which reduces the accuracy of the SWH estimation. As for the Quad and
All models, the rankings of skew and kurt are different, but neither has significant effects on
SWH retrieval.
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Figure 18. The importance of skew to SWH retrieval from combined-polarization models. (a) The
importance ranking of skew provided by XGBoost models, normalized to the range of 0–1. (b) The
effect of removing skew on the SWH estimation from different polarized models. The red penta-
grams represent the relative RMSE corresponding to the removal of skew-terms in the combined-
polarization models.
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Figure 19. The importance of kurt to SWH retrieval from combined-polarization models. (a) The im-
portance ranking of kurt provided by XGBoost models, normalized to the range of 0–1. (b) The effect of
removing kurt on the SWH estimation from different polarized models. The red pentagrams represent
the relative RMSE corresponding to the removal of kurt-terms in the combined-polarization models.

4.4. The Importance of λc/β

Figure 20 demonstrates the high importance of λc/β to SWH estimation in single-
polarizations. The λc/β is selected as an important contribution term being one of the
optimal features in each polarization due to the high ranking from XGBoost. The λc/β is
highly correlated with SWH and it significantly affects the inversion accuracy of most single-
polarization models. However, the importance of the λc/β varies in different polarization
models. The λc/β performs similarly weaker with lower correlation and lower importance
for SWH estimation in the HV and VH polarization models. Especially for the VH model,
it makes a negative effect on the model. The importance ranking of λc/β-term is extremely
high in the polarizations except for HV and VH. But only in the 45◦ linearly, RV, and RL
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polarizations, the positive effect of the cutoff wavelength on the SWH estimation reaches
its maximum.
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Figure 20. The importance of λc/β to SWH retrieval from single-polarization models. (a) The impor-
tance ranking of λc/β provided by XGBoost models normalized to 0–1. The dotted line represents the
optimal feature sets under different polarizations. (b) The effect of removing λc/β on the SWH estima-
tion from different polarized models. Different markers in various colors represent λc/β of different
polarizations. (c) The correlation between λc/β and ERA5 SWH under different polarizations.

The importance of λc/β to SWH retrieval under combined-polarizations is shown in
Figure 21. In the HH + HV, VV + VH, and RL + HV models, the co-polarized λc/β ranks high,
and the cross-polarized λc/β ranks low. And their λc/β-terms are selected by the optimal
feature sets except for the HV λc/β in the RL + HV model. However, the performance of
these three models is almost unchanged or even significantly improved after removing
the λc/β-terms. In another dual-polarization model, RH + RV, the λc/β-terms rank high.
There is a significant positive effect of RH λc/β and a negative effect of RV λc/β. Overall,
the performance of the model after removing both RH and RV λc/β is still significantly
degraded. Only HV λc/β is rejected by the optimal feature set in the Quad model, and
both HV- and VH-polarized λc/β are rejected in the All model. The effects of these rejects
on the model performance are also confirmed to be small or negative. It is clear that
most λc/β-terms negatively affect the model accuracy under the combined-polarizations
including HV or VH. This may be caused by the nonlinearity between the λc/β-terms and
the HV or VH features.
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Figure 21. The importance of λc/β to SWH retrieval from combined-polarization models. (a) The
importance ranking of λc/β provided by XGBoost models, normalized to the range of 0–1. (b) The
effect of removing λc/β on the SWH estimation from different polarized models. The red penta-
grams represent the relative RMSE corresponding to the removal of λc/β-terms in the combined-
polarization models.
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4.5. The Importance of λp and ϕ

It can be seen from Figures 22–25 that both λp and ϕ are of low importance to SWH
inversion under all the polarizations. Both features are not selected by the optimal feature
sets due to their low importance rankings provided by XGBoost. In addition, the two
have almost no effect on the accuracy of SWH inversion, which is consistent to their low
correlations with ERA5 SWH. We notice that for the VH model, although the ranking of λp
and its correlation with SWH is very low, it still has a little positive effect on the inversion
accuracy of SWH, which indicates that the nonlinear effects between features will not
only cause negative effects on the model but may also cause positive effects. Therefore,
λp and ϕ are considered to be not very necessary for constructing an empirical model to
retrieve SWH.
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Figure 22. The importance of λp to SWH retrieval from single-polarization models. (a) The importance
ranking of λp provided by XGBoost models normalized to 0–1. The dotted line represents the optimal
feature sets under different polarizations. (b) The effect of removing λp on the SWH estimation from
different polarized models. Different markers in various colors represent λp of different polarizations.
(c) The correlation between λp and ERA5 SWH under different polarizations.
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CWAVE spectral parameters is explored, and the relative RMSE is shown in Figure 26. 

For the single-polarization models, the removal of spectral parameters makes the model 

Figure 23. The importance of ϕ to SWH retrieval from single-polarization models. (a) The importance
ranking of ϕ provided by XGBoost models normalized to 0–1. The dotted line represents the optimal
feature sets under different polarizations. (b) The effect of removing ϕ on the SWH estimation from
different polarized models. Different markers in various colors represent ϕ of different polarizations.
(c) The correlation between ϕ and ERA5 SWH under different polarizations.
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Figure 24. The importance of λp to SWH retrieval from combined-polarization models. (a) The im-
portance ranking of λp provided by XGBoost models, normalized to the range of 0–1. (b) The effect of
removing λp on the SWH estimation from different polarized models. The red pentagrams represent
the relative RMSE corresponding to the removal of λp-terms in the combined-polarization models.
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Figure 25. The importance of ϕ to SWH retrieval from combined-polarization models. (a) The
importance ranking of ϕ provided by XGBoost models, normalized to the range of 0–1. (b) The effect
of removing ϕ on the SWH estimation from different polarized models. The red pentagrams represent
the relative RMSE corresponding to the removal of ϕ-terms in the combined-polarization models.

4.6. The Importance of CWAVE Spectral Parameters

The performance change of each model for SWH retrieval is caused by removing 20
CWAVE spectral parameters is explored, and the relative RMSE is shown in Figure 26. For
the single-polarization models, the removal of spectral parameters makes the model perfor-
mance drop significantly. The influence of spectral parameters on the cross-polarization
models is obviously smaller than that of the co-polarization and hybrid-polarization mod-
els. For the combined-polarization models, the influence of the cross-polarized spectral
parameters on the model performance is relatively small. And it is worth noting that in
the VV + VH model, the removal of the VH spectral parameters makes the model perform
better. In addition, the performance degradation of the combined-polarization models with
all spectral parameters removed is serious. That is to say, there is indeed some additional
significant information in the spectral parameters, which is helpful for SWH estimation.

The 20 spectral parameters have different effects on the performance of the models.
We take the two spectral parameters S1 and S19 (with different rankings) as examples
to analyze the importance of a single spectral parameter to the SWH inversion. We can
see from Figures 27 and 28 that in the single-polarization models, S1 is more important
for SWH inversion than S19. The former is selected into the optimal feature set in all
single-polarization models, while the latter is not. Besides, S1 also has a more significant
impact on model accuracy than S19. This is mainly because the correlation of the former
with ERA5 SWH is significantly greater than that of the latter. The spectral parameter S1
correlates higher with ERA5 SWH in HV and VH polarizations, but it not only obtains a
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relatively low importance ranking but also has little effect on the model accuracy and even
has a noticeable negative effect. This negative effect in HV may be caused by the nonlinear
interaction between S1 and other features (such as cvar, which is already described in the
section of the importance of cvar). In addition, the S1 shows a slightly larger effect on the
SWH inversion in the hybrid-polarizations (45◦ linearly, RH, and RV) models than in other
polarization models. This trend is also reflected by S19, but does not always hold for the
other spectral parameters (the results are not reported here).
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Figure 26. The importance of 20 CWAVE spectral parameters to SWH retrieval from (a) single-
polarization models, and (b) combined-polarization models.
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Figure 27. The importance of S1 to SWH retrieval from single-polarization models. (a) The importance
ranking of S1 provided by XGBoost models normalized to 0–1. The dotted line represents the optimal
feature sets under different polarizations. (b) The effect of removing S1 on the SWH estimation from
different polarized models. Different markers in various colors represent S1 of different polarizations.
(c) The correlation between S1 and ERA5 SWH under different polarizations.
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Figure 28. The importance of S19 to SWH retrieval from single-polarization models. (a) The impor-
tance ranking of S19 provided by XGBoost models normalized to 0–1. The dotted line represents
the optimal feature sets under different polarizations. (b) The effect of removing S19 on the SWH
estimation from different polarized models. Different markers in various colors represent S19 of
different polarizations. (c) The correlation between S19 and ERA5 SWH under different polarizations.
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As shown in Figures 29 and 30, both S1 and S19 exhibit different importance for SWH
inversion in the combined-polarization models from that in the single-polarization models.
Although the importance ranking provided by XGBoost for S1 is much higher than that
for S19, both features have little effect on the SWH inversion accuracy of the combined-
polarization models. In particular, S1 is selected as a member of the optimal feature sets
for all four dual-polarization models, but none of its effects on model accuracy is positive.
Taking VV + VH as an example, we re-explore the contribution of S1 to the accuracy of the
model using the optimal feature set. The relative RMSE of the model using the optimal
feature set reaches 0.013 when the S1-term is removed, i.e., the S1-term has a considerable
positive impact on the model accuracy after removing redundant features. In addition, in
the Quad and All polarization models, only the HH polarized S1 is rejected by optimal
feature sets, but all S19-terms are rejected. However, the impact of S1 and S19 on the model
accuracy is similar.
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Figure 29. The importance of S1 to SWH retrieval from combined-polarization models. (a) The
importance ranking of S1 provided by XGBoost models, normalized to the range of 0–1. (b) The effect
of removing S1 on the SWH estimation from different polarized models. The red pentagrams represent
the relative RMSE corresponding to the removal of S1-terms in the combined-polarization models.
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portance ranking of S19 provided by XGBoost models, normalized to the range of 0–1. (b) The effect of
removing S19 on the SWH estimation from different polarized models. The red pentagrams represent
the relative RMSE corresponding to the removal of S19-terms in the combined-polarization models.

4.7. The Importance of θ

As shown in Figure 31, the importance of θ to the SWH inversion is relatively large
under all the polarizations. It can be seen from Figure 31a, the rankings of θ under different
polarizations are similar. It ranks slightly higher in RH polarization and slightly lower in
VH polarization. The θ is selected into the optimal feature sets as an important feature in
single- and combined- polarization models due to its high ranking. As shown in Figure 31b,
the θ significantly affects the SWH estimation accuracy under all the polarizations, but
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the effects differ between different models. The effect on RR model is the largest in the
single-polarization models, and that of RH + RV model is the largest in the combined-
polarization models. However, this effect is more pronounced for the single-polarization
model, probably because of the fewer input features of the single-polarization models.
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In summary, the importance of 28 features to the SWH inversion from polarimetric
Gaofen-3 wave mode imagettes using XGBoost model is different. The NRCS, λc/β, S1,
and θ not only receive a high importance ranking, but also obviously and positively affect
the performance of SWH inversion. In contrast, the cvar, skew, kurt, λp, ϕ, and S19 are of
little importance to the model. The low contributions of cvar and skew mainly result from
repeatability or nonlinearity with other features. In addition, for a certain feature, their
importance to the SWH inversion model is different under different polarizations. For
example, NRCS has a greater impact on SWH inversion under cross-polarizations (HV, VH,
and RR), while the cutoff wavelength has a weaker effect under HV and VH polarizations.
Furthermore, removing all the 20 CWAVE spectral parameters has smaller effect in cross-
polarizations than in other polarizations, whereas this difference is not evident when only
a single spectral parameter is removed. The reason for the different importance of 28 SAR
features to SWH estimation is not only the correlation between features and SWH but
also the complex interaction between features. The negative effect on the model accuracy
caused by the interaction between features is more likely to occur in VV + VH polarization.

5. Conclusions

The XGBoost models are established based on the collocated data set of approximately
12,000 Gaofen-3 wave mode SAR imagettes matched with the SWH from ERA5 reanalysis
to retrieve SWH using features of different polarizations in this study. The optimal feature
set is determined for each model as the performance of the model no longer improves
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when the fraction of input features exceeds 0.4. Cross-polarization exhibits a non-negligible
observational advantage at high sea states. The combined-polarization modes such as HH +
HV, VV + VH, and Quad (HH + HV+ VH + VV) and All (HH + HV + VH + VV + 45◦ + RH
+ RV + RR + RL) achieve better performance of SWH retrieval than single-polarizations by
combining the advantages of co-polarization and cross-polarization. Then the prediction
accuracies of the models are independently assessed based on the collocations of SAR-buoy
and SAR-altimeter. All the models are confirmed to provide a reliable estimation of SWH.
The HH + HV model achieves the best performance with an RMSE of 0.334 m compared to
the altimeter, which could be compared with the existing advanced research.

On this basis, the importance of each feature to different polarization models is further
discussed. It can be found that the importance of 28 SAR features to the SWH inversion from
XGBoost model is not the same. The NRCS, λc/β, and θ have more decisive contributions,
while λp and ϕ have almost no contribution. Moreover, the NRCS has a more substantial
effect under cross-polarization, while the λc/β is weaker under HV and VH polarizations.
In addition to the correlation between features and SWH, the nonlinearity and repeatability
caused by the complex interaction between the features can affect the influence of the
features on the SWH estimation accuracy.

Author Contributions: Conceptualization, C.F. and Q.Y.; methodology, T.S.; software, T.S.; validation,
Y.W., J.M. and J.Z.; writing—original draft preparation, Q.Y.; writing—review and editing, C.F.;
funding acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (NSFC), grant
number 61931025, by the Key Program of Joint Fund of the National Natural Science Foundation of
China and Shandong Province under Grant U2006207, and by the Fund of Technology Innovation
Center for Ocean Telemetry, Ministry of Natural Resources under Grant 2022003.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Chinese National Satellite Ocean Application
Service (NSOAS) for providing the Gaofen-3 SAR wave mode data via the website of https://
osdds.nsoas.org.cn/ (accessed on 25 October 2022, registration required). The authors would also
like to thank the American National Oceanic and Atmospheric Administration (NOAA) NDBC for
providing the buoy data, thank AVISO for providing the Jason-3 altimeter data, and thank ECMWF
for providing the ERA5 wind and wave reanalysis data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The optimal features used in different polarization models.

Polarization Features Selected in Optimal Model (Ranked from Highest to Lowest
Importance)

HH λc_HH, S1_HH, S6_HH, S16_HH, θ, σ0_HH, S10_HH, S8_HH, S11_HH, S13_HH, S18_HH,
S2_HH

HV S3_HV , S6_HV , S10_HV , σ0_HV , S1_HV , θ, λc_HV, skew_HV, cvar_HV, S8_HV , S11_HV

VH S3_VH, S6_VH, σ0_VH, skew_VH, λc_VH, S1_VH, S10_VH, θ, cvar_VH, S16_VH, S11_VH,
S5_VH, S13_VH, S8_VH

VV λc_VV, S6_VV , S1_VV , S16_VV , S13_VV , θ, S11_VV , S18_VV , S2_VV , S8_VV , S9_VV ,
S10_VV , σ0_VV , S12_VV , skew_VV

https://osdds.nsoas.org.cn/
https://osdds.nsoas.org.cn/
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Table A1. Cont.

Polarization Features Selected in Optimal Model (Ranked from Highest to Lowest
Importance)

45◦linearly λc_45, S6_45, S1_45, S16_45, θ, S11_45, σ0_45, skew_45, S2_45, S18_45

RH λc_RH, S1_RH, S6_RH, θ, S16_RH, S11_RH, S10_RH, σ0_RH, S2_RH, skew_RH, S18_RH

RV λc_RV, S1_RV , S6_RV , S16_RV , θ, S11_RV , S18_RV , S10_RV , S2_RV , S8_RV , S9_RV ,
S13_RV , skew_RV, S12_RV , kurt_RV, σ0_RV

RR λc_RR, S6_RR, S1_RR, σ0_RR, θ, S11_RR, S13_RR, S10_RR, S2_RR, S16_RR, S8_RR,
cvar_RR, S9_RR, S18_RR

RL λc_RL, S1_RL, S6_RL, S16_RL, θ, S11_RL, skew_RL, S10_RL, S2_RL, S18_RL, S9_RL,
S8_RL, S13_RL, kurt_RL, σ0_RL

HH + HV
S3_HV , S6_HV , σ0_HV , λc_HH, S1_HV , S6_HH, cvar_HV, skew_HV, S16_HH, θ, S10_HV ,
S1_HH, skew_HH, S10_HH, S16_HV , kurt_HH, S8_HV , S11_HH, S11_HV , S8_HH, S9_HV ,

S4_HH, cvar_HH, λc_HV, S2_HH

VV + VH S3_VH, λc_VV, S6_VH, σ0_VH, S6_VV , S1_VH, S1_VV , S16_VV , skew_VH, θ, S11_VV ,
λc_VH, S4_VV , cvar_VH, skew_VH, S10_VV , kurt_VV, S10_VH

RH + RV λc_RV, S1_RV , S16_RH, λc_RH, S6_RV , S6_RH, S1_RH, S16_RV , S18_RV , S10_RV , θ,
S2_RV , S9_RV , σ0_RH, skew_RV, S11_RV , S8_RV

RL + HV λc_RL, S6_HV , skew_HV, S3_HV , σ0_HV , S1_HV , S6_RL, S16_RL, cvar_HV, S1_RL, θ,
kurt_HV, S16_HV , skew_RL, S11_HV , S11_RL, S13_HV , S10_HV , kurt_RL, S8_HV

Quad

S3_HV , σ0_VH, λc_VV, S6_VH, S3_VH, S6_HV , S1_VH, λc_HH, S1_VV , cvar_VH, S6_VV ,
S16_VV , cvar_HV, σ0_HV , S1_HV , S16_HH, skew_HV, θ, skew_VH, S6_HH, S10_HV ,

cvar_VV, S11_VV , S16_HV , S8_VV , S10_HH, skew_VV, kurt_VV, σ0_VV , λc_VH,
S13_HV , S7_VV

All

λc_RV, λc_45, λc_RR, S6_HV , S6_VH, σ0_VH, S6_RH, S16_RV , skew_HV, λc_RL, S1_VH,
S1_RV , λc_HH, S1_HV , σ0_HV , S16_RL, λc_RH, S1_45, S1_VV , S1_RL, skew_VH,

cvar_HV, cvar_VH, S1_RH, S16_RH, S1_RR, S14_RL, S11_RV , λc_VV, S6_HH, σ0_RR,
S16_HH, S2_RH, kurt_45, S13_RH, S6_VV , cvar_RV, S6_RL, cvar_RR, θ, S13_VV , S11_VV ,

S11_HV , S13_RV , skew_RV, S11_45, cvar_RL, S8_RR, cvar_45, S18_RR, S16_45, S6_45,
S2_VV , skew_VV, S18_VV , S11_RL, skew_RR, S4_HH, S18_RV , S8_RV , S11_RR, σ0_RL,

S8_RL, S4_RL, S3_RL, S4_RR, S9_RL, S10_RH, cvar_VV, S9_RV
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