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Abstract: Sembilang National Park, one of the best and largest mangrove areas in Indonesia, is very
vulnerable to disturbance by community activities. Changes in the dynamic condition of mangrove
forests in Sembilang National Park must be quickly and easily accompanied by mangrove monitoring
efforts. One way to monitor mangrove forests is to use remote sensing technology. Recently, machine-
learning classification techniques have been widely used to classify mangrove forests. This study aims
to investigate the ability of decision tree (DT) and random forest (RF) machine-learning algorithms
to determine the mangrove forest distribution in Sembilang National Park. The satellite data used
are Landsat-7 ETM+ acquired on 30 June 2002 and Landsat-8 OLI acquired on 9 September 2019, as
well as supporting data such as SPOT 6/7 image acquired in 2020–2021, MERIT DEM and an existing
mangrove map. The pre-processing includes radiometric and atmospheric corrections performed
using the semi-automatic classification plugin contained in Quantum GIS. We applied decision
tree and random forest algorithms to classify the mangrove forest. In the DT algorithm, threshold
analysis is carried out to obtain the most optimal threshold value in distinguishing mangrove and
non-mangrove objects. Here, the use of DT and RF algorithms involves several important parameters,
namely, the normalized difference moisture index (NDMI), normalized difference soil index (NDSI),
near-infrared (NIR) band, and digital elevation model (DEM) data. The results of DT and RF
classification from Landsat-7 ETM+ and Landsat-8 OLI images show similarities regarding mangrove
spatial distribution. The DT classification algorithm with the parameter combination NDMI + NDSI +
DEM is very effective in classifying Landsat-7 ETM+ image, while the parameter combination NDMI
+ NIR is very effective in classifying Landsat-8 OLI image. The RF classification algorithm with the
parameter Image (6 bands), the number of trees = 100, the number of variables predictor (mtry) is
square root (√k ), and the minimum number of node sizes = 6, provides the highest overall accuracy
for Landsat-7 ETM+ image, while combining Image (7 bands) + NDMI + NDSI + DEM parameters
with the number of trees = 100, mtry = all variables (k), and the minimum node size = 6 provides
the highest overall accuracy for Landsat-8 OLI image. The overall classification accuracy is higher
when using the RF algorithm (99.12%) instead of DT (92.82%) for the Landsat-7 ETM+ image, but
it is slightly higher when using the DT algorithm (98.34%) instead of the RF algorithm (97.79%) for
the Landsat-8 OLI image. The overall RF classification algorithm outperforms DT because all RF
classification model parameters provide a higher producer accuracy in mapping mangrove forests.
This development of the classification method should support the monitoring and rehabilitation
programs of mangroves more quickly and easily, particularly in Indonesia.

Keywords: Sembilang National Park (Indonesia); mangroves; machine learning; satellites images;
geoprocessing; rehabilitation program of mangroves
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1. Introduction

Mangroves are us [1]. This phrase provides an understanding of how important man-
grove forests are in maintaining the balance of nature. Mangrove forests are unique and
productive ecosystems in coastal areas, particularly in tropical and sub-tropical areas that
play an important role in the surrounding ecosystem and provide coastal ecosystem services
and social functions to coastal communities [2–5]. Efforts to conserve mangrove forests are
increasing, one of which is in Indonesia [6]. Mangrove forests in Indonesia make a substantial
contribution to climate change mitigation efforts [7] and are a major topic of environmental
development [8].

Indonesia is known as the largest home to the world’s mangrove communities [9].
Mangrove forests in Indonesia are among the world’s largest, accounting for approximately
18%–23% and approximately 59.8% of the total mangrove area on Earth [4,10,11] and in
Southeast Asia [12,13], respectively. Mangrove forests provide many benefits, including the
ability to store carbon stocks, prevent disasters, erosion, and seawater intrusion, maintain a
stable coastline, reduce tsunami waves by 50%–60%, and provide spawning and breeding
grounds for marine biota as well as a source of food for plankton [14–17].

One of the largest potentials of mangrove ecosystems in Indonesia is in Sembilang
National Park, Banyuasin Regency, South Sumatra Province. Mangrove forests grow well in
this region because Sembilang National Park is located in the Banyuasin Peninsula [13], and
its position is relatively protected from large ocean waves. Although they have excellent
growth potential, mangrove forests are inseparable from various things that can disturb
their sustainability. For centuries, the main problems experienced by vegetation in coastal
areas globally are the conversion of habitat to aquaculture, agriculture, tourism, forest
over-exploitation, industrial, upstream dams, dredging, and urban development [3,4,7].
The degradation of mangrove forests in South Sumatra Province is due to land use conver-
sion for coconut and oil palm plantations, fishponds, ports and settlements [17]. One of
the disturbances occurring in Sembilang National Park is related to illegal logging [18,19],
as shown in Figure 1. Additionally, forest fires in Sumatra Island in 1997 also had a con-
siderable impact on the existence of Sembilang National Park. Therefore, the Government
of Indonesia has issued laws and regulations relating to the prevention and control of
forest fires to support the mangrove forest rehabilitation program in Sembilang National
Park [13,20]. However, these efforts must be supported by monitoring the mangrove forest
and its surrounding environment.
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Fast and accurate mangrove mapping can help in effectively managing and monitoring
mangrove forests [21]. Given the high distribution of mangrove forests, monitoring is not
possible using conventional methods because it requires a very large effort regarding en-
ergy, time, and cost [21]. Conventional methods are generally conducted using estimation
methods performed by experts and terrestrial measurements [22]. The combination of
remote sensing technology and the geographical information system (GIS) is very effec-
tively used in environmental modeling, particularly in supporting resource management,
environmental risk assessment, and the prediction and analysis of the impact of global
environmental changes [23]. This technology can provide convenience in the process of
identifying mangrove forest objects [24,25].

Several studies have used remote sensing data to monitor changes in mangrove
forests [25–28]. Kuenzer et al. (2011) [5] explained that the pixel spectrum in mangrove
objects is influenced by the pixel fraction of leaves, stems, branches, mud, and water surfaces.
Zhang et al. (2017) [21] added that a mangrove spectral value comprises a combination of
information related to vegetation and wetland conditions that characterize mangrove habitats.
On the basis of the spectral response from remote sensing imagery, near-infrared (NIR) and
shortwave infrared (SWIR) bands are very optimally used to identify mangrove forests
because mangrove vegetation characteristics reflect strongly on NIR waves, and mangrove
wetland habitat conditions absorb energy from SWIR waves [29,30]. Xiao et al. (2021) [31]
noted that SWIR, NIR, and red bands, are very effective in separating mangrove objects from
other vegetation. The reflectance level of the SWIR band is lower in mangrove forests than
in terrestrial forests [21]. Additionally, several vegetation indices can be used to determine
the condition of vegetation land cover [32], including the normalized difference moisture
index (NDMI) and the normalized difference soil index (NDSI). NDMI can calculate the
water content of vegetation by optimizing the presence of NIR and SWIR bands [21,33–35],
while NDSI focuses on determining soil condition information (non-mangrove) [36,37].
However, these two vegetation indices have never been combined to identify mangrove
forests. A novelty of this study is trying to optimize the combination of NDMI and NDSI
parameters to separate mangrove and non-mangrove objects. Using digital elevation model
(DEM) data can also help in determining the location of mangrove forests, which are
generally found at elevations of less than 10 m [21,26]. This ancillary data is an important
variable because it has a diverse distribution of values and may be highly correlated with
the ecological environment of a mangrove forest [26,38]. The selection of parameters from
visible, NIR, and SWIR bands, as well as DEM, aims to make it easy for applying in another
image that previously needed to be adjusted to the threshold value according to the image
data used, and also the location of the mangrove habitat.

The development of image classification techniques is increasing rapidly along with
the many choices of classification algorithms with several advantages and weaknesses.
Pixel-based classification method performance is quite reliable in separating objects based
on spectral values, but salt and pepper effects are often found in the classification re-
sults [39,40]. Although the object-based classification method has advantages and can
cover the weaknesses of pixel-based classification, some obstacles remain, including those
related to the available software options, which are still too complicated, and many chal-
lenges remain, particularly in processing very big data [41]. Recently, the use of machine-
learning-based classification algorithms to classify mangrove forests has also developed.
The support vector machine (SVM) algorithm can be used to map mangrove forests, and
it produces an acceptable level of accuracy [13,42,43]. Additionally, the use of the de-
cision tree (DT) algorithm can produce high accuracy in distinguishing mangrove and
non-mangrove objects [21,26,44]. Random forest (RF) is a machine-learning algorithm that
can considerably increase the accuracy of pattern recognition [45]. SVM requires relatively
longer computations than the decision tree, while random forest is able to handle training
data samples in large quantities faster, and can reduce the misclassification of mangrove
forests very well [42,46]. Jamaluddin et al. (2022) [25] used the RF algorithm to monitor
mangrove degradation in East Luwu, Indonesia, with very high accuracy (greater than
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90%). Mondal et al. (2019) [47] used two machine-learning algorithms (DT and RF) to map
mangroves in West Africa.

The location of Sembilang National Park, adjacent to a peat swamp forest [13,48] and oil
palm plantations, creates a challenge in classifying mangrove and non-mangrove objects using
remote sensing satellite data. Several different objects have the same spectral characteristics,
which often confuses their recognition [49]. This confusion causes the misclassification of man-
grove and non-mangrove objects, such that the level of classification accuracy is reduced. The
objects of oil palm plantations, peat swamp forests, and other land vegetation that should
be classified in the non-mangrove class are actually considered mangroves. Therefore, we
need a knowledge-based classification approach by integrating remote sensing technology
and the GIS, as well as ancillary data through the concept of developing a simple DT learn-
ing to separate mangrove objects from non-mangrove objects by minimizing the presence
of mixed pixels. The knowledge-based classification approach through the development
of rules is increasingly interesting because it can accommodate various data sources [50].
Several studies have developed a DT learning algorithm to identify mangrove forests using
Landsat TM, ETM+, and OLI images, and produce high accuracy [21,24,26,51].

This study aims to investigate the ability of DT and RF algorithms in identifying the
distribution of mangrove forests in Sembilang National Park, Banyuasin Regency, South
Sumatra Province, Indonesia. A previous study (Mondal et al. 2019) was limited to running
the algorithms available in the cloud computing platform with the classification input using
a spectral band of satellite image and the Normalized Difference Vegetation Index (NDVI),
but not involving the use of physical parameter (DEM). Therefore, the present study will
try to develop a classification algorithm involving several important parameters (multiple
spectral indices and DEM) to obtain the optimal classification model. Additionally, an in-
creasingly simple DT learning algorithm can help in quickly and easily mapping mangrove
forests. The DT concept can provide an understanding of the classification process per-
formed through the developed classification rules and minimize human intervention [26].
Some of the benefits and weaknesses of the two machine-learning algorithms will be in-
vestigated and analyzed in depth. The developed method should produce information on
mangrove distribution with high accuracy and can support mangrove management and
the national mangrove rehabilitation program in Indonesia.

2. Materials and Methods
2.1. Study Area

The study area is located in Sembilang National Park, Banyuasin, South Sumatra
Province, Indonesia, with the coordinates of 104◦19′–104◦45′E and 1◦42′–2◦10′S, and is
bordered by Musi Banyuasin Regency to the west and south, Muarojambi and Tanjung
Jabung Timur Regencies to the north, and Bangka Strait to the east (Figure 2). Sembilang
National Park is the best and largest mangrove area on the island of Sumatra (western part
of Indonesia) [9,52] and the Indo–Malayan region [53–55]. Mangrove ecosystem is the main
and most dominant ecosystem in Sembilang National Park, which is able to absorb carbon
very well through the photosynthesis process [56]. Mongabay (2018) [57] reports that the
function of mangrove forest as a spawning ground and a source of fish food is strongly felt
by fishermen around in Sembilang National Park, so that many fishermen catch fish around
the mangrove forest location. In addition, the mangrove forest in Sembilang National
Park is also the main habitat for about 44 bird species including migrants from Siberia.
Other benefits that are felt from the existence of mangrove forests in Sembilang National Park
include being able to prevent coastal abrasion and protect coastal communities from property
damage due to storms [58]. The condition of mangrove forests in Sembilang National Park
is also very dynamic and changes annually [13]. Several groups of mangrove genera can be
found at this location, including Avicennia, Rhizopora, Bruguierra, Sonneratia, Ceriops, and
Xylocarpus, in which Avicennia and Rhizopora are the dominant genera throughout almost
all of Sembilang National Park [9,13,59]. Additionally, many species of Nypa fruticans and
shrubs are present [9]. Sembilang National Park undergoes two seasons a year, namely, a
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rainy season with an average rainfall of 2.723 mm/year [60] and a dry season. Several large
rivers are found in the Sembilang National Park region that function as a means of water
transportation along the coastline. The tidal type at the study site is diurnal: one high tide
and one low tide occur daily [61].
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2.2. Satellite Data

The satellite data used in this study are Landsat 7 ETM+ image acquired on 30 June
2002, and Landsat 8 OLI image acquired on 9 September 2019, with path 124 and row 061
obtained from the United States Geological Survey (USGS) website at https://earthexplorer.
usgs.gov (accessed on 3 February 2022). The selection of the date of the image data is based
on the minimum cloud cover condition, especially at the study location. In June and
September, Indonesia enters the dry season so that in these months the cloud cover is
relatively less than the wet season. Besides, it is also intended to see the spatial changes of
mangroves and the surroundings in a period of 17 years. In 2002, the land cover conditions
around mangrove forests were relatively homogeneous, but in 2019 it look more heteroge-
neous where the oil palm plantation objects began to be found which pose challenges in
developing a classification model for mangrove and non-mangrove forests. Based on the
tidal prediction data, it also shows that on these dates the condition of the waters at the
study location is at low tide. Additionally, we used SPOT 6/7 images recorded in 2020–2021
obtained from the National Research and Innovation Agency. SPOT 6/7 images are used
to assist in determining the training sample and ground truth points. A flow chart of this
study is shown in Figure 3.

Additionally, we used an administrative boundary map of 1:50,000, an existing mangrove
map, and DEM data. The regional administrative boundary map was obtained from the
Geospatial Information Agency. Existing mangrove maps were obtained from the Ministry
of Forestry and Environment. The DEM data used is the multi-error removed improved
terrain (MERIT DEM) developed by Yamazaki et al. (2017) [62]. Then, we resampled
the spatial resolution of DEM data from 90 m to 30 m using ArcMap 10.4. The MERIT
DEM data were retrieved from the Yamazaki Lab website at http://hydro.iis.u-tokyo.
ac.jp/~yamadai/MERIT_DEM (accessed on 21 February 2022). Threshold DEM values
for mangrove areas (below 10 m) were based on Liu et al. (2008) [26] and Zhang et al.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM
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(2017) [21] and modified to suit the condition of the mangrove area in the study location
(<12 m).
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2.3. Method

Overall, the methodology in this study, including pre-processing, spectral indices
calculation, spectral analysis and determining the threshold, developing DT and RF algo-
rithms, and accuracy assessment, is shown in Figure 3.

2.3.1. Pre-Processing

Initial data processing includes radiometric and atmospheric corrections performed
using the semi-automatic classification plugin contained in the open-source Quantum GIS
software developed by Congedo (2016, 2021) [63,64]. Radiometric correction addresses the
worsening of image quality due to reflection errors or other factors that are very useful for
multi-temporal and multi-sensor data analysis [65,66]. The radiometric correction process
is performed by converting the digital number of an image into a reflectance value [67].
Atmospheric correction is a fundamental pre-analysis stage in any quantitative analysis
that aims to eliminate atmospheric effects [68,69]. The Atmospheric correction method
used is Dark of Substraction (DOS), which is a simple atmospheric correction [63].

2.3.2. Spectral Indices

After the pre-processing stage is performed, the next stage is the calculation of the
spectral indices to facilitate the initial identification of mangrove and non-mangrove objects.
In this study, two spectral indices were used, the (1) NDMI and (2) the NDSI with the
following equations:

NDMI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(1)
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where ρNIR is the reflectance value of the NIR band for Landsat 7 ETM+ and OLI, while
ρSWIR is the reflectance value of the SWIR1 band (1.547–1.748 µm) for Landsat 7 ETM+ and
SWIR2 (2.100–2.300 µm) for Landsat 8 OLI.

NDSI =
ρSWIR1 − ρNIR
ρSWIR1 + ρNIR

(2)

where ρSWIR is the reflectance value of the SWIR1 band for Landsat 7 ETM+ and Landsat 8
OLI, while ρNIR is the reflectance value of the NIR band for Landsat 7 ETM+ and OLI.

2.3.3. Decision Tree Algorithm

Decision trees have been widely used for land cover classification, particularly with re-
mote sensing technology approaches [70], and are often used to integrate multi-source data,
such as optical imagery and SAR [71–73]. Several previous studies have also developed
a DT algorithm to identify the presence of mangrove forests [21,26]. The DT is defined
as a machine-learning-based analysis technique comprising several classes of modeling
algorithms using a tree structure, in which each node shows a test on attributes, the branch
represents the test results, and the leaf node shows the target classes [26,74,75]. In practice,
the DT concept is often translated using classification rules [38], as shown in Figure 4. The
DT does not depend on specific assumptions about variable distribution, or it can be said
that the relationship between variables is independent [21,26]. Three stages are used to
build the classification rules according to Hodgson et al. (2003) [76], including: (1) generat-
ing and perfecting knowledge and rules from experts; (2) extracting variables and rules
using cognitive methods; and (3) automatically generating rules from observed data.
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The concept of the DT algorithm is stated with classification rules as a statement “IF
<condition> THEN <action>”. For example, the classification rule of the DT algorithm in
Figure 4 can be written as follows:

(1) IF: (A1 > 10) and (A3 ≤ 30) THEN class = c
(2) IF: (A1 ≤ 10) and (A2 ≤ 20) and (A4 > 40) THEN class = b

The initial stages of the DT classification process in this study are spectral analysis
and threshold determination. The analysis was performed by first conducting training data
by drawing transect lines randomly in the mangrove area and proportionally distributed
in the study area. The determination of transect lines was based on available field data,
existing mangrove maps, SPOT 6/7 images, and Google Earth. The collected training data
amounted to 1341 points. Furthermore, collected training data are used in training the
DT, namely, determining attributes and thresholds at each node [26]. The transect line is
drawn to determine the spectral profile in each pixel so that it can be compared with the
spectral values in other pixels [77]. The transect line method has also been used by Madden
(2011) [78] to determine the spectral profile of shallow marine habitats. The number of
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pixels refers to a completely homogeneous sample of mangroves. The threshold value
refers to the minimum and maximum values for each parameter. The next stage is overlay
between Landsat image bands starting from visible bands (blue, green, and red), NIR bands,
and SWIR bands, as well as spectral indices (NDMI and NDSI) with transect lines that have
been drawn to extract spectral values along the transect line. Then, the extraction results of
spectral values in each band and spectral indices are overlaid with the existing mangrove
map to obtain the optimal threshold value in distinguishing mangrove and non-mangrove
objects. Existing mangrove map is produced through visual interpretation and field survey
conducted by GIS experts at the Ministry of Environment and Forestry and assisted by
several stakeholders. In addition to obtaining the optimal threshold value for mangrove
objects, the use of existing mangrove map can also minimize the presence of mixed pixels.
In short, the implementation of the DT algorithm by partitioning all target classes is based
on the threshold value of the image spectral value, NDMI, NDSI, and elevation values that
have been obtained previously. Additionally, it is supported by visual interpretation using
high-resolution image data and expert knowledge in the study area.

2.3.4. Random Forest Algorithm

The random forest algorithm is growing and has been widely used in land use/land
cover classification, particularly for mangrove forests [79]. The RF is a machine-learning
algorithm that can substantially improve pattern recognition accuracy [45]. RF has been
successfully applied in ecological research [80,81]. Each DT provides calculations on
the most dominant class unit to classify certain classes according to the training data
input [82,83]. The combination of information from satellite data and field data is used as a
basis for preparing training data that will subsequently become input in the classification
model [84]. The training data process and RF classification in this study were performed
using the Vigra tool contained in the open-source software SAGA 7.6.2 [85,86], with a total
amount of training data of 1135 pixels for Landsat-7 ETM+ and 1285 pixels for Landsat-
8 OLI. For the initial stage, we performed tuning on several parameters, including the
number of trees, the number of predictor variables (mtry), and minimum node size to obtain
optimal mangrove and non-mangrove classification models. This study used the number
of trees of as much as 100, 500, and 1000 [87–89], mtry = √k (square root) and mtry = k
(all variables) [45,86], and a minimum node size of 6. The application of the RF algorithm
in previous studies with the parameters of the number of trees = 1000, mtry = all, and
minimum node size = 6 produces an overall accuracy of 79.333% with a kappa statistic of
0.774 in mapping the distribution of coffee plantations [86]. The combination of parameter
settings in the dataset produces 31 classification models for Landsat-7 ETM+ and Landsat-8
OLI images, which will later be investigated to obtain the best classification model and
have high accuracy. The dataset used in the RF classification algorithm is derived from
a combination of Landsat-7 ETM+ and Landsat-8 OLI image spectral values and NDMI,
NDSI, and DEM data, as shown in Table 1.

Table 1. Dataset used in the random forest classification.

Dataset Number of Bands
(Landsat-7 ETM+)

Number of Bands
(Landsat-8 OLI)

Image 6 (Blue, Green, Red, NIR, SWIR-1, and
SWIR-2)

7 (Coastal/Aerosol, Blue, Green, Red,
NIR, SWIR-1, and SWIR-2)

Image + NDMI 7 8
Image + NDMI + NDSI 8 9

Image + NDMI + NDSI + DEM 9 10
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The classification process using the RF algorithm is illustrated in Figure 5.
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3. Results

This study focuses on using Landsat satellite imagery to identify mangrove distribu-
tion more quickly and easily in order to support the monitoring and rehabilitation program
of mangroves in Indonesia on a medium scale (1:100,000). The available SPOT 6/7 images
are only used to assist in determining the training sample and ground truth points. In addi-
tion, the SPOT 6/7 image data does not fully cover one study location only around 50% of
the study area.

3.1. Decision Tree Algorithm for Identifying Mangrove Forests

Two rules and knowledge-based classification were applied in the DT algorithm to
distinguish between mangrove and non-mangrove objects based on Landsat-7 ETM+ and
Landsat-8 OLI images. The development of the DT algorithm begins by recognizing the
spectral character of both Landsat images used (bands 1–7, except for the thermal band),
NDMI, and NDSI. The spectral profile of each parameter is shown in Figure 6. The NIR band
had the highest reflection compared to other bands. Additionally, the SWIR-1 and SWIR-2
bands also show relatively high reflectance but not as high as the NIR band (Figure 6A,B).
The effective NIR band reflectance value range for identifying mangrove forest objects was
0.20–0.30 with an average value of 0.25 (Landsat 7 ETM+) and 0.26–0.35 with an average
value of 0.28 (Landsat-8 OLI). The effective SWIR-1 band spectral reflectance value range
for mangrove forest identification was 0.05–0.10 with an average value of 0.07 (Landsat-7
ETM+) and 0.05–0.12 with an average value of 0.08 (Landsat-8 OLI), while the range of the
reflectance value of the effective SWIR-2 band for mangrove identification was between
0.03 and 0.05 with an average value of 0.03 (Landsat-7 ETM+) and 0.02–0.05 with an average
value of 0.03 (Landsat-8 OLI). The spectral reflectance of visible bands (blue, green, and
red) shows a lower value than those of the NIR and SWIR bands.

The identification of mangrove forests was still difficult if we only used several bands
from the Landsat image. In addition, the possibility of mixed-pixel pixels existed in which
pixels from mangrove and non-mangrove objects were mixed. Therefore, the NDMI and
NDSI spectral indices derived from Equations (1) and (2) must be used. Figure 6C,D show
the NDMI spectral profiles of the Landsat-7 ETM+ image between 0.51 and 0.60 with an
average value of 0.55 and the Landsat-8 OLI image between 0.75 and 0.9 with an average
value of 0.80. The spectral value on NDSI ranges from (−0.65) to (−0.475) with an average
value of −0.55 for Landsat-7 ETM+ image, while the NDSI spectral values for Landsat-8
OLI image ranges from (−0.7) to (−0.525) with an average value of −0.56 (Figure 6E,F).
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Figure 6. Characteristics of the mangrove object spectral value. (A) Spectral Bands of Landsat–7 ETM+
(B) Spectral Bands of Landsat–8 OLI (C) Normalized difference moisture index (NDMI) of Landsat–7
ETM+ (D) Normalized difference moisture index (NDMI) of Landsat–8 OLI (E) Normalized difference
soil index (NDSI) of Landsat–7 ETM+ (F) Normalized difference soil index (NDSI) of Landsat–8 OLI.

Furthermore, the previously obtained threshold values were used to make the clas-
sification rule, as shown in Figure 7. The initial approach to classifying mangroves and
non-mangroves in the Landsat-7 ETM+ image (classification rule-1) (Figure 7A) was to
use the NDMI parameter, in which the threshold value ranged from 0.51 to 0.60 for the
mangrove class, and outside this value range was considered a non-mangrove class. The
next approach was using the NDSI parameter, in which a threshold value between (−0.65)
and (−0.48) was for the mangrove class, and values outside this range were considered
non-mangrove classes. The last approach was to use DEM parameter in which the presence
of mangrove forest objects in the study area was dominant at an elevation of 0–12 m. The
classification results of each parameter from the Landsat-7 ETM+ image are shown in
Figure 8A–C.
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Figure 8. Decision tree classification results of the Landsat-7 ETM+ image for parameters (A) NDMI,
(B) NDMI + NDSI, and (C) NDMI + NDSI + DEM.

Mangrove identification results of the Landsat-7 ETM+ image using the NDMI pa-
rameter showed a very good distribution, but class anomalies were still found. Many
mangrove and non-mangrove pixels were mixed (land vegetation and aquatic objects)
(Figure 8A). An attempt to minimize this condition was made by using a combination of
NDMI + NDSI parameters, but this approach was only effective in separating mangrove
pixels from land vegetation object pixels, and many mangrove class anomalies were still
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found in aquatic objects (Figure 8B). Therefore, we used the combination of NDMI + NDSI
+ DEM parameters that is very effective in minimizing (even eliminating) mangrove pixels
mixed with pixels of aquatic objects (Figure 8C).

A listing of the thresholds for all metrics of Landsat-7 ETM+ and Landsat-8 OLI for
classifying mangrove and non-mangrove is shown in Table 2. The approach to classifying
mangroves and non-mangroves in Landsat-8 OLI image (classification rule-2) (Figure 7B)
slightly differed from classification rule-1, namely, by adding the spectral value parameter
of the NIR band. The initial classification stage was to use the NDMI parameter with a
threshold value ranging from 0.75 to 0.90 for the mangrove class, and outside this value
range was considered a non-mangrove class. The next parameter was to use the NIR band
with a threshold value of 0.267–0.35 and NDSI with a threshold value of (−0.7)–(−0.525).
The last parameter used was DEM with the same threshold value as classification rule-1,
namely, 0–12 m. Threshold values outside the specified value range were considered
non-mangrove classes. The classification results of each parameter used from Landsat-8
OLI image are shown in Figure 9A–D. Using the NDMI parameter to identify mangroves
in the Landsat-8 OLI image shows a very good distribution of mangroves (Figure 9A), but
some mangrove and non-mangrove pixels were still mixed, particularly on land vegetation
objects (one of which is oil palm plantations). This condition was minimized by combining
the NDMI parameter with the NIR band (Figure 9B). The classification results show the
distribution of mangroves was not as good when using a combination of NDMI + NIR
parameters instead of the NDMI parameter, but it can minimize the mixed pixels that
occur quite well. Then, the remaining pixels mixed between mangrove and non-mangrove
objects were minimized using a combination of other parameters, namely, NDMI + NIR +
NDSI (Figure 9C) and NDMI + NIR + NDSI + DEM (Figure 9D), but the results were not
substantial and tend to reduce the main pixels of mangrove objects.

Table 2. The thresholds for all metrics of Landsat-7 ETM+ and Landsat-8 OLI.

Parameters
Mangrove Threshold Non-Mangrove Threshold

Landsat-7 ETM+ Landsat-8 OLI Landsat-7 ETM+ Landsat-8 OLI

NDMI 0.51–0.60 0.75–0.90 <0.51 and >0.60 <0.75 and >0.90

NIR - 0.267–0.35 - <0.267 and >0.35

NDSI (−0.65)–(−0.475) (−0.7)–(−0.525) <(−0.65) and >(−0.475) <(−0.7) and >(−0.525)

DEM 0–12 0–12 ≤0 and ≥12 ≤0 and ≥12
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The classification accuracy using the DT algorithm of all models generated in the
Landsat-ETM+ and Landsat-8 OLI images are shown in Tables 3 and 4, respectively. The
classification model accuracy of the NDMI + NDSI + DEM parameters of the Landsat-7
ETM+ image provided the highest overall accuracy (92.82%) and kappa statistic value (0.834).
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Table 3. DT classification accuracy of all models of Landsat-7 ETM+.

Models OA (%) Kappa Mangrove PA
(%)

Non-Mangrove
PA (%)

Mangrove UA
(%)

Non-Mangrove
UA (%)

NDMI 86.46% 0.713 90.32% 84.45% 75.17% 94.37%

NDMI + NDSI 90.06% 0.783 89.52% 90.34% 82.84% 94.30%

NDMI + NDSI + DEM 92.82% 0.834 81.45% 98.74% 97.12% 91.09%

Table 4. DT classification accuracy of all models of Landsat-8 OLI.

Models OA (%) Kappa Mangrove PA
(%)

Non-Mangrove
PA (%)

Mangrove UA
(%)

Non-Mangrove
UA (%)

NDMI 96.69% 0.928 100.00% 94.96% 97.12% 100.00%

NDMI + NIR 98.34% 0.963 96.77% 99.16% 97.12% 98.33%

NDMI + NIR + NDSI 98.07% 0.957 95.16% 99.58% 97.12% 97.53%

NDMI + NIR + NDSI +
DEM 95.03% 0.886 86.29 99.58% 97.12% 93.13%

The highest accuracy of the Landsat-8 OLI image was found in the classification model
with a combination of NDMI + NIR parameters, with an overall accuracy of 98.34% and
a kappa statistic value of 0.963. The classification rules that have been developed for
Landsat-7 ETM+ and Landsat-8 OLI images are relatively simple and can provide very
high accuracy. These rules were very helpful in the process of identifying mangroves and
non-mangroves more quickly so that mangrove forest monitoring activities could be more
effective and efficient.

3.2. RF Algorithm for Identifying Mangrove Forests

The effect of mtry on RF classification accuracy in the Landsat-7 ETM+ image is shown
in Figure 10A. The use of the parameter of mtry = √k (square root) seems to provide
higher accuracy than mtry = k (all variables), with an average accuracy value of 97.43% for
mtry = √k and 97.04% for mtry = k. The highest accuracy of 97.95% was obtained when
using parameters from Landsat-7 ETM+ (6 bands) (Image) with the number of trees = 100
and 1000, mtry = k, and the minimum number of node sizes = 6. The lowest accuracy of
95.31% was obtained when using the parameter of Image + NDMI + NDSI + DEM with the
number of trees = 100, mtry = k, and the minimum number of node sizes = 6. The opposite
situation occurred with the Landsat-8 OLI image (Figure 10B), where the parameter of
mtry = k (all variables) produced slightly higher accuracy than mtry = k (square root),
with average accuracy values of 96.65% (mtry = k) and 96.48% (mtry = √k). The highest
accuracy of 97.41% was obtained when using the parameters from Landsat-8 OLI image
channel (7 bands)/(Image) + NDMI + NDSI + DEM with the number of trees = 100, mtry =
k, and the minimum number of node sizes = 6. The lowest accuracy was 95.85%, obtained
when using the parameter of Image + NDMI + NDSI with the number of trees = 100, mtry
= k, and the minimum number of node sizes = 6.
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Figure 10. Effect of mtry in RF classification accuracy: (A) Landsat-7 ETM+ and (B) Landsat-8 OLI
images.

Furthermore, the overall accuracy average of each number of trees was high (Table 5).
Overall, the accuracy rate did not significantly differ when using a tree parameter of 1000,
500, and 100, being 97.323%, 97.321%, and 97.068%, respectively. These results showed
that the number of trees had no significant effect on the accuracy of mangrove and non-
mangrove classifications.
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Table 5. Average overall accuracy of tree.

Tree Average Overall Accuracy (%)

100 97.068%
500 97.321%
1000 97.323%

The RF classification accuracy of all models generated for Landsat-ETM+ and Landsat-
8 OLI images is shown in Tables 6 and 7. The highest accuracy for the Landsat-7 ETM+
image was found in the classification model using only the Image parameter (6 bands)
with the number of trees = 100 and 1000, mtry square root, and a minimum node size of 6,
which resulted in an overall accuracy of 97.95%, a kappa value of 0.972, and the producer
accuracy for mangroves was 98.31%. The highest accuracy for the Landsat-8 OLI image
was obtained using the classification model with a combination of Image + NDMI + NDSI
+ DEM parameters (tree number = 100, mtry all variables, the minimum number of node
sizes = 6), which produced an overall accuracy of 97.41%, a kappa value of 0.943, and a
producer accuracy for mangroves of 100.00%. Most interestingly, the use of DEM data
provided a producer accuracy of 100% in mapping the mangrove class for Landsat-7 ETM+
and Landsat-8 OLI images. However, increasing producer accuracy for the mangrove class
was not accompanied by an increase in the non-mangrove class producer accuracy, which
tended to be low. This result showed that many non-mangrove objects were grouped into
the mangrove class, which had implications for the overall accuracy of mangrove and
non-mangrove classifications.

Table 6. RF classification accuracy of all models of Landsat-7 ETM+.

Models OA (%) Kappa Mangrove PA
(%)

Non-Mangrove
PA (%)

Mangrove UA
(%)

Non-Mangrove
UA (%)

Image (Tree, 100; Mtry Square Root;
Node, 6) 97.95% 0.972 98.31% 90.38% 96.67% 100.00%

Image (Tree, 500; Mtry Square root;
Node, 6) 97.65% 0.968 97.46% 90.38% 96.64% 100.00%

Image (Tree, 1000; Mtry Square root;
Node, 6) 97.95% 0.972 98.31% 90.38% 96.67% 100.00%

Image + NDMI (Tree, 100; Mtry Square
root; Node, 6) 97.36% 0.963 97.46% 88.46% 98.29% 100.00%

Image + NDMI (Tree, 500; Mtry Square
root; Node, 6) 97.36% 0.963 97.46% 88.46% 97.46% 100.00%

Image + NDMI (Tree, 1000; Mtry
Square root; Node, 6) 97.65% 0.967 98.31% 88.46% 97.48% 100.00%

Image + NDMI + NDSI (Tree, 100;
Mtry Square root; Node, 6) 97.65% 0.967 98.31% 88.46% 97.48% 100.00%

Image + NDMI + NDSI (Tree, 500;
Mtry Square root; Node, 6) 97.65% 0.967 98.31% 88.46% 97.48% 100.00%

Image + NDMI + NDSI (Tree, 1000;
Mtry Square root; Node, 6) 97.65% 0.967 98.31% 88.46% 97.48% 100.00%

Image + NDMI + NDSI + DEM (Tree,
100; Mtry Square root; Node, 6) 96.77% 0.955 100.00% 80.77% 96.72% 100.00%

Image + NDMI + NDSI + DEM (Tree,
500; Mtry Square root; Node, 6) 96.77% 0.955 100.00% 80.77% 96.72% 100.00%

Image + NDMI + NDSI + DEM (Tree,
1000; Mtry Square root; Node, 6) 96.77% 0.955 100.00% 80.77% 96.72% 100.00%
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Table 7. RF classification accuracy of all models of Landsat-8 OLI.

MODEL OA (%) Kappa Mangrove PA
(%)

Non-Mangrove
PA (%)

Mangrove UA
(%)

Non-Mangrove
UA (%)

Image (Tree, 100; Mtry All Variables;
Node, 6) 96.89% 0.955 100.00% 92.90% 93.94% 100.00%

Image (Tree, 500; Mtry All Variables;
Node, 6) 96.89% 0.955 100.00% 92.90% 93.94% 100.00%

Image (Tree, 1000; Mtry All Variables;
Node, 6) 96.89% 0.955 100.00% 92.90% 93.94% 100.00%

Image + NDMI (Tree, 100; Mtry All
Variables; Node, 6) 96.37% 0.947 99.19% 93.55% 93.18% 99.32%

Image + NDMI (Tree, 500; Mtry All
Variables; Node, 6) 96.37% 0.947 99.19% 93.55% 93.18% 99.32%

Image + NDMI (Tree, 1000; Mtry All
Variables; Node, 6) 96.11% 0.943 99.19% 93.55% 93.18% 99.32%

Image + NDMI + NDSI (Tree, 100;
Mtry All Variables; Node, 6) 95.85% 0.940 98.39% 93.55% 93.13% 98.64%

Image + NDMI + NDSI (Tree, 500;
Mtry All Variables; Node, 6) 96.37% 0.947 99.19% 93.55% 93.18% 99.32%

Image + NDMI + NDSI (Tree, 1000;
Mtry All Variables; Node, 6) 96.37% 0.947 99.19% 93.55% 93.18% 99.32%

Image + NDMI + NDSI + DEM (Tree,
100; Mtry All Variables; Node, 6) 97.41% 0.943 100.00% 94.19% 94.66% 100.00%

Image + NDMI + NDSI + DEM (Tree,
500; Mtry All Variables; Node, 6) 97.15% 0.959 100.00% 94.19% 93.23% 100.00%

Image + NDMI + NDSI + DEM (Tree,
1000; Mtry All Variables; Node, 6) 97.15% 0.959 100.00% 94.19% 93.94% 100.00%

The results of RF classification from the Landsat-7 ETM+ image using several combina-
tions of parameters are shown in Figure 11, grouped into three classes, including mangrove
(green), non-mangrove (gray), and water (blue), while black polygons indicate a ‘no data’
condition to accommodate the pixels of cloud and cloud shadows. The description of ‘no
data’ from the classification results means there is no information on the pixel value of
an object so that it does not need to be involved in the classification process because it
will reduce the level of information details of the image used. Overall, the classification
results of several parameters showed similarities regarding mangrove distribution where
the number of pixels of mangrove objects with the parameter of Image (6 bands), Image
+ NDMI, Image + NDMI + NDSI and Image + NDMI + NDSI + DEM are 872737, 863333,
863874, and 885877 pixels, respectively. The use of the Image parameter (6 bands) from the
Landsat-7 ETM+ image could highlight mangrove objects bordering water objects where
many mangrove objects were identified along the coastline and riverbanks (Figure 11A).
The combination of the Image + NDMI (Figure 11B), Image + NDMI + NDSI (Figure 11C),
and Image + NDMI + NDSI + DEM (Figure 11D) parameters showed that the distributions
of mangroves were relatively identical, but the combination of Image + NDMI + NDSI
+ DEM showed an apparently denser distribution of mangrove forests compared to the
other parameters. Additionally, the image quality also greatly affected the classification
results because more clouds and cloud shadows affect the reduced accuracy level of the
classification results.
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Figure 11. Random forest classification results for all models in Landsat-7 ETM+ with the parameters
(A) Image (6 bands), (B) Image + NDMI, (C) Image + NDMI + NDSI, and (D) Image + NDMI + NDSI
+ DEM.

Figure 12A–D show the results of the RF classification of the Landsat-8 OLI image
using several parameters, including Image (7 bands), Image + NDMI, Image + NDMI +
NDSI, and Image + NDMI + NDSI + DEM. Three main classes are produced, including
mangroves (green color), non-mangroves (gray color), and aquatic (blue color). Overall, the
classification results of all models were very similar, but the addition of the DEM parameter
in the classification scheme appears to be quite effective in reducing or minimizing non-
mangrove objects grouped into the mangrove class. Unlike the previous Landsat-7 ETM+
image classification that was constrained by image data quality, the classification process of
the Landsat-8 OLI image was constrained by the relatively high heterogeneity of land cover
such that many pixels were found mixed between mangrove and non-mangrove objects.
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4. Discussion
4.1. Distribution of Mangrove Forests in 2002

The results of the decision tree and RF classification using the optimal parameters
from the 2002 Landsat-7 ETM+ image are shown in Figure 13A,B. The optimal combination
of parameters chosen by the decision tree algorithm was NDMI + NDSI + DEM, while the
parameters chosen by the RF algorithm was Image (6 bands) with the number of trees =
100, mtry square root, and nodes = 6. The distribution of mangrove forests using the two
combinations of parameters had similarities, particularly in delineating the boundaries
between mangroves and non-mangroves, but there were slight differences, particularly in
the western and southern regions of the study area, where the distribution of mangroves
using decision tree classification showed that several main mangrove pixels were lost, and
conversely, the distribution of mangroves resulting from RF classification appears denser.
The performance of decision tree classification could minimize mixed pixels quite well.
The mixed-pixel phenomenon was more common in the RF classification results than in
decision tree classification, particularly in the water pixels grouped into the mangrove class.
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Figure 13. Mangrove distribution of Sembilang National Park in 2002 based on (A) decision tree and
(B) random forest algorithms.

The use of classification parameters from several spectral indices in the DT algorithm
could effectively reduce the presence of mixed pixels, but it also had implications for the
reduction of main mangrove pixels because the range of spectral values between mangrove
and non-mangrove objects (particularly terrestrial vegetation) was relatively adjacent, such
that several mangrove object pixels were also eliminated. This condition was not found in
the RF classification results, in which the main mangrove pixels were not greatly reduced.
Although the use of 1000 trees provided relatively high accuracy in all RF classification
models, the choice of 100 trees was optimal for Landsat-7 ETM+ image because it does not
require a longer classification process time.

An accuracy test was performed by calculating the overall accuracy value, kappa
value, user accuracy, and producer accuracy. For the accuracy test of RF classification,
three classes were tested, including mangrove, non-mangrove, and water. The results of
the classification accuracy calculation using the DT and RF algorithms with the Landsat-7
ETM+ image are shown in Tables 8 and 9, respectively. The overall accuracy of RF (99.12%)
was higher than that of the DT algorithm (92.82%).

Table 8. Accuracy assessment of the decision tree classification of Landsat 7 ETM+ (2002).

Classes
Reference

Mangrove Non-Mangrove Total User
Accuracy (%)

Mangrove 101 3 104 97.12
Non-mangrove 23 235 258 91.09

Total 124 238 362

Producer Accuracy (%) 81.45 98.74 Overall Accuracy 92.82%
Kappa 0.83
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Table 9. Accuracy assessment of the random forest classification of Landsat 7 ETM+ (2002).

Classes
Reference

Mangrove Non-Mangrove Water Total User
Accuracy (%)

Mangrove 148 0 0 148 100.00
Non-mangrove 4 132 0 136 97.06

Water 0 0 78 78 100.00

Total 152 132 78 362

Producer Accuracy (%) 97.37 100.00 100.00 Overall Accuracy 99.12%
1.3 Kappa 0.98

4.2. Distribution of Mangrove Forests in 2019

Overall, the results of the DT and RF classifications using the optimal parameters of
the Landsat-8 OLI image in 2019 were not very different from the classification results of
the Landsat-7 ETM+ image (Figure 14A,B). The optimal combination of parameters was
NDMI + NIR for the DT algorithm and Image (7 bands) + NDMI + NDSI + DEM for the
RF algorithm with the number of trees = 100, mtry all variables, and the minimum node
size = 6. Most interestingly, several oil palm plantation areas appeared in 2019 that were
located adjacent to the mangrove forest area. This development provides a challenge in
the classification process of land cover. The performance of DT classification could reduce
the presence of mixed pixels quite well, particularly the pixels of mangroves mixed with
oil palm plantation objects. In the RF classification, these pixels could be eliminated, but
the results were not significant such that several pixels from the oil palm object were still
considered mangrove forest objects.
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Additionally, using the RF algorithm, some pixels that were classified as mangroves in
the Banyuasin Peninsula area were mostly eliminated/missing, and this result did not occur
in the DT classification. The distribution of mangrove pixels was denser in 2019 than in
2002, probably because of the higher radiometric resolution of the Landsat-8 OLI image (12
bits) compared to Landsat-7 ETM+ image (8 bits). The RF algorithm classification results for
2019 showed that the mangroves were evenly distributed from the area around the coastline
to the inner part of Sembilang National Park. The optimal parameter chosen could reduce
mixed pixels (although not as a whole) and maintain the presence of the main mangrove
pixels so that mangrove mapping could be more effective and have high accuracy.

The use of the DEM parameter in the DT classification of the Landsat-7 ETM+ image
could increase the accuracy significantly (Table 3). However, this condition did not occur
for the Landsat-8 OLI image, where the classification results using the DEM parameter
tended to overestimate the mangrove class. Although non-mangrove pixels (particularly oil
palm plantations) could be eliminated very well, it actually caused many missing mangrove
pixels, such that the accuracy of classification decreased (Table 4). For the Landsat-8 OLI
image, the overall accuracy of DT classification (98.34%) was higher than that of RF (97.79%),
as shown in Tables 10 and 11, respectively. Although non-mangrove (oil palm plantations)
pixels were not greatly reduced using the DT classification model with a combination of
NDMI + NIR parameters, a few of the main mangrove pixels were missing.

Table 10. Accuracy assessment of decision tree classification of Landsat 8 OLI (2019).

Classes Reference

Mangrove Non-Mangrove Total User
Accuracy (%)

Mangrove 120 2 122 97.12
Non-mangrove 4 236 240 98.33

Total 124 238 362

Producer Accuracy (%) 96.77 99.16 Overall Accuracy 98.34%
Kappa 0.96

Table 11. Accuracy assessment of random forest classification of Landsat 8 OLI (2019).

Classes
Reference

Mangrove Non-Mangrove Water Total User
Accuracy (%)

Mangrove 124 7 0 131 94.66
Non-mangrove 0 146 0 146 100.00

Water 0 1 84 85 98.82

Total 124 154 84 362

Producer Accuracy (%) 100.00 94.81 100.00 Overall Accuracy 97.79%
Kappa 0.97

4.3. Comparison of Classification Results Using Decision Tree Learning and RF

This study tried to develop a DT algorithm for identifying mangrove forests and
compared it with a ‘robust’ classification algorithm, namely, RF. These two algorithms
were applied to the mangrove area of Sembilang Banyuasin National Park, Indonesia.
Spatially, the results of RF were denser than those of DT classification (Figures 13 and 14).
However, many mixed pixels remained between the mangrove and non-mangrove classes,
particularly in oil palm plantation objects and other land vegetation that is considered
mangrove forest objects. This problem can be overcome by using a DT algorithm that can
reduce the mixed pixels.
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The classification rules of the Landsat 7 ETM+ image were simpler than those of Landsat
8 OLI because, in 2002, there were few specifics of land cover, one of which was oil palm
plantations around mangrove forests, such that the pixels of the non-mangrove class that were
dominated by very dense terrestrial forest were easier to separate. Mangrove forests are plants
that do not have a long growth phase, but have growth characteristics that only occur at one
time. Based on field observations, the condition of mangroves in Sembilang National Park is
dominated by true mangroves that are able to form pure stands and the majority are in the
mature phase. Several parameters used in the DT classification also seem quite effective in
separating mangrove and non-mangrove objects (Figures 8 and 9). Parameters used for DT
classification of Landsat-7 ETM+ image included NDMI, NDSI, and DEM, while for the
Landsat-8 OLI image, NDMI, NIR, NDSI, and DEM were used. The use of DEM parameters
was very effective in developing knowledge-based image classification because they can
identify the spatial distribution patterns of land cover classes [50].

A slight difference emerged, particularly in the use of the NIR band parameter, which the
Landsat-7 ETM+ image did not use in the classification scheme. This difference is obtained
because, in 2002, the heterogeneity condition of land cover around the mangrove forest
area was still relatively low such that the mangrove and non-mangrove objects could be
separated properly using the NDMI parameter. Wilson et al. (2002) [35] explained that
NDMI optimizes the contrast between the NIR band and the mid-infrared (1.550–1.750 m)
band, which is more sensitive to the wetness of vegetation. Additionally, the combination of
NDMI and other spectral indices can be more effective in describing mangrove forest habitat
characteristics [21]. The average NDMI value was identified as 0.55 for Landsat-7 ETM+
image and 0.80 for Landsat-8 OLI image. These results indicated that the vegetation was
healthy and had a dense canopy cover [73,90]. However, non-mangrove pixels remained,
particularly in the terrestrial vegetation region, but were still grouped into the mangrove
class. Therefore, these pixels must be reduced using other parameters.

Another spectral index proposed in this study, NDSI, can also distinguish mangrove
and non-mangrove objects well. NDSI was used to reduce the spectral variability of the
ground object by optimizing the presence of the SWIR band, which was very sensitive
to the soil object compared to the NIR band [36]. NDSI and NDVI tend to have opposite
characteristics, so NDSI can be used to detect open areas [36], particularly around mangrove
forests. The classification results using the NDSI were very effective in assisting the removal
of non-mangrove pixels classified in the mangrove class. However, the NDSI parameter still
had problems in separating mangrove forests and water objects. This flaw can be seen from
several non-mangrove pixels (water objects) that were classified into the mangrove class.
Therefore, the DEM parameter must be used to remove the pixels of mangrove objects that
were classified into non-mangrove classes (particularly on water objects). The classification
results of each parameter used for the Landsat-7 ETM+ image along with the pixel anomaly
conditions are shown in Figure 8.

Furthermore, by using the spectral capabilities of the NIR band, additional param-
eters in the DT classification of the Landsat-8 OLI image could distinguish between the
reflectance values of mangrove forests and terrestrial vegetation (including oil palm planta-
tions) quite well. The combination of NIR and NDSI bands was very optimal in reducing
the presence of mixed pixels in the classification of mangroves and non-mangroves. The
NIR band had a high sensitivity to leaf chlorophyll because NIR energy was mostly re-
flected to the sensor when it impinged upon the vegetation surface [37]. However, in this
study, NIR band performance was also very effective in distinguishing between mangrove
forests and terrestrial vegetation, while NDSI tends to be effective in identifying open land
objects that were former oil palm plantations and/or oil palm that had just been planted.
The difference between spectral profiles of mangrove forests and oil palm plantations in the
NIR band is shown in Figure 15, where the effective reflectance values of mangrove forests
were identified in the range of 0.267–0.35 with an average value of 0.287, while the effective
reflectance values of oil palm plantation objects were identified in the range of 0.24–0.267
with an average value of 0.257. The classification rule of the Landsat-7 ETM+ image cannot
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be applied directly to the Landsat-8 OLI image and vice versa. This restriction is due to the
difference in the radiometric resolution of the two images, greatly affecting the threshold
value of the classification rule of each parameter. The classification rule that has been
developed will be more optimal if it is applied to image data with the same radiometric
resolution, in the same season (dry season is recommended for the tropics), and in adjacent
acquisition times.
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The training data retrieval technique in the RF classification also greatly influenced the
classification results. In this study, a combination of training data retrieval techniques was
used based on the homogeneity of the pixel values and the heterogeneity of the object’s
pixel values (training locations on the border of the image pixel values, particularly for
non-mangrove objects). The training retrieval technique could provide better classification
results. This finding is consistent with the previous study, in which the RF classification
algorithm is included in the nonparametric classifier group so that it can ignore the normal
distribution assumption of a dataset and provide better accuracy than the parametric-based
classification [50,91].

Overall, the present DT and RF algorithms can separate mangrove and non-mangrove
forest objects very well. However, there are still obstacles to separating non-mangrove
objects that have the same spectral character as mangrove objects. The present DT algorithm
has a better ability to reduce the presence of mixed pixels between mangrove and non-
mangrove classes, but its use also has several consequences that must be faced, one of which
being the presence of several mangrove pixels that risk being eliminated in the classification
process. In addition, the DT algorithm developed was also effective in delineating the
mangrove distribution because it could integrate satellite data and other ancillary data [26].
A simpler model of the DT is usually preferred over a more complex model.

The RF classification results show that the number of trees (100/500/1000) had little effect
on classification result accuracy. This result is consistent with the study by Tridawati et al.
(2020) [86], which stated that the number of trees had no significant effect on classification
accuracy. The use of mtry = square root and mtry = all variables, provides a more optimal
accuracy when combined with the selection of the right parameters. The use of mtry =
square root showed effectiveness with the Image (6 bands) parameter for the Landsat-7
ETM+ image, while the use of mtry = all variables was very effective with the Image +
NDMI + NDSI + DEM parameters for the Landsat-8 OLI image.
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The use of DEM data has a crucial role in classifications using the RF algorithm. This
role can be seen from the producer’s accuracy value of 100% for the mangrove class under
all parameters involving DEM data, thus all mangrove classes can be mapped properly.
Therefore, the use of DEM data in classifying mangrove and non-mangrove pixels is also
very effective and optimal in increasing classification result accuracy, particularly when the
RF algorithm is used. The DEM data used resulted from integrating DEM SRTM3 (Shuttle
Radar Topography Mission) and AW3D-30m (ALOS: Advanced Land Observing Satellite,
World 3D) data, which was developed by removing several error components (absolute
bias, stripe noise, speckle noise, and tree height bias) [62].

5. Conclusions

The monitoring of mangrove forests with a fast and easy remote sensing technological
approach is crucial in preserving mangroves. We succeeded in investigating the ability of
DT learning and the RF algorithm to map mangrove forests in the best mangrove areas on
one of the largest islands in Indonesia. The results of data processing and accuracy tests
show that the classification results of the DT and RF algorithms in the two image datasets
used show similarities regarding the spatial distribution of mangroves, and with acceptable
accuracy. Additionally, some class anomalies could be reduced properly using the two
classification algorithms (decision tree and random forest).

The DT classification algorithm with a parameter combination of NDMI + NDSI + DEM
proposed in the DT algorithm is very effective in classifying mangrove and non-mangrove
objects of the Landsat-7 ETM+ image, while the combination of NDMI + NIR parameters is
very effectively used in classifying the Landsat-8 OLI image. The RF classification algorithm
with the parameter of Image (6 bands), the number of trees = 100, mtry square root, and
minimum node size = 6 provides the highest overall accuracy in classifying mangrove
and non-mangrove objects in the Landsat-7 ETM+ image, while the combination of the
Image (7 bands) + NDMI + NDSI + DEM parameters with the number of trees = 100,
mtry all variables, and a minimum node size of 6, provides the highest overall accuracy
in classifying mangrove and non-mangrove objects in the Landsat-8 OLI image. For the
Landsat-7 ETM+ image, the overall classification accuracy of the RF algorithm, 99.12%, is
higher than that of the DT, 92.82%, but for the Landsat-8 OLI image, the accuracy of the DT
algorithm (98.34%) is slightly higher than that of the RF algorithm (97.79%). Overall, the
RF algorithm tends to outperform the DT because it uses parameters that provide a higher
producer accuracy in mapping mangrove forests.

Due to the limitations of the availability of SPOT 6/7 images in this case, this study only
used SPOT 6/7 images to assist in determining the training sample and ground truth points.
In future studies, Landsat-7 ETM+ and Landsat-8 OLI images can be combined with SPOT
6/7 images or other high-resolution images through image fusion techniques to obtain
images with the most optimal spatial and radiometric resolution. Additionally, attention
must be paid to the quality of satellite image data used, particularly disturbances from cloud
and cloud shadows, to reduce noise and errors in the classification process. The number of
land cover classes, the parameters used, and other ancillary data must be added. Method
development should cover existing weaknesses and improve the classification accuracy so
that the method can support nationwide mangrove monitoring and rehabilitation programs,
particularly in Indonesia.
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