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Abstract: Land cover (LC) maps are crucial to environmental modeling and define sustainable
management and planning policies. The development of a land cover mapping continuous service
according to the new EAGLE legend criteria has become of great interest to the public sector. In
this work, a tentative approach to map land cover overcoming remote sensing (RS) limitations in
the mountains according to the newest EAGLE guidelines was proposed. In order to reach this
goal, the methodology has been developed in Aosta Valley, NW of Italy, due to its higher degree
of geomorphological complexity. Copernicus Sentinel-1 and 2 data were adopted, exploiting the
maximum potentialities and limits of both, and processed in Google Earth Engine and SNAP. Due
to SAR geometrical distortions, these data were used only to refine the mapping of urban and
water surfaces, while for other classes, composite and timeseries filtered and regularized stack from
Sentinel-2 were used. GNSS ground truth data were adopted, with training and validation sets.
Results showed that K-Nearest-Neighbor and Minimum Distance classification permit maximizing
the accuracy and reducing errors. Therefore, a mixed hierarchical approach seems to be the best
solution to create LC in mountain areas and strengthen local environmental modeling concerning
land cover mapping.

Keywords: EAGLE land cover; Sentinel-1 SAR; Sentinel-2; Planetscope; Google Earth Engine; SAGA
GIS; Orfeo Toolbox; ESA SNAP; Aosta Valley NW Italy; mountains; mixed hierarchical approach; AI
for environmental modeling

1. Introduction

The recent massive amount of data from Earth Observation (EO) missions and geospa-
tial cloud-based platforms, coupled with advanced machine learning approaches, are
showing a high capability of reducing processing time and enabling effective EO ser-
vices [1–3]. This mainly relies on the ongoing technological transfer, which is affecting
both the research sector and the entrepreneurial one, even supported by significant in-
vestments from the spatial economy [4,5]. Nevertheless, the process has not still reached
the public sector, especially in alpine and rural areas. This makes it desirable to develop
and consolidate proper EO tools for these subjects, thus ensuring higher effectiveness of
public institutions while managing ordinary territorial problems [5,6]. This process fits
well with the Next Generation UE policy and the Recovery post-SARS-CoV2 pandemic
plan that are largely focusing the European economy on investments in digitalization,
environmental sustainability, and social inclusion [7]. Earth Observation data may certainly
support the reaching of the Sustainable Development Goal, as well as the European one.
Nowadays, land cover maps, according to new policies such as EAGLE in the European
Union, represent a key point in the green policies, making it possible to assess the effects of
both climate change and human pressure on natural resources [8–10].
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Nowadays, continued cloud-based land cover services and computer services starting
from EO data provide a valid and useful tool in planning and decision-making. Neverthe-
less, the main critical point that remains is the land cover classification approach adopted
that requires updated, validated, and detailed knowledge about a given territory that
cannot be reached by a wide global scale classification system [11]. Even if cloud-based
services give the possibility of obtaining yearly and newest worldwide land cover map
(hereinafter called LCM), especially at the higher geometric resolution, most of them still
suffer from bias and errors due to the limits that remote sensing has in geomorphological
complexity as well as of a consistent and sufficiently updated number of training sets that
often appear statistically not representative for the entire global mountain areas [12]. It is
worth noting that also in official products released by space agencies, inaccuracies and errors
particularly affect mountain areas, not allowing their applicability for detailed management
or planning activities [1]. Products such as Google Dynamic World [13] or ESRI Global Land
Cover, or ESA Global Land cover, suffer from these biases in the mountain area [14,15]. The
adopted remote sensing approach certainly has its usefulness on a global scale but shows
strong inefficiencies in the mountain environment. It is interesting to note that although alpine
ecosystems such as the cryosphere are more affected by climate change still today at the level
of geoscientific applications and remote sensing, no attempt has been made to develop a solid
procedure for the accurate mapping of global mountain land cover [6]. Key ecosystems in
terms of adaptation and mitigation if we consider, for example, only the Alpine hydrological
component and the central role it plays at a global level. Under this core issue, this work
has been developed trying to try to fill this gap. Firstly, it is necessary to discriminate the
land use and land cover [16]. Land cover is defined as the observed (bio)physical cover type
overlaying Earth’s surface, i.e., forests, agricultural areas, human settlements, glaciers, water,
and wetlands (see Directive 2007/02 of the European Commission). It is worth reminding
that Land cover is not land use and that, in general, EO data can provide LCM and not land
use Maps. These can be, conversely, generated from LCM exploiting auxiliary information
from other sources [17,18]. Some improvements that move potentialities of EO data from
land cover to land use mapping come from the recent augmented temporal resolution of the
ongoing higher resolution missions such as Sentinel-2 [19].

The main aim of this work has been to develop a strong approach to map land cover
in complex geomorphological areas scalable to all mountain realities going beyond EO
data limits and produce land cover maps with the highest accuracy by adopting the most
suitable algorithms. In particular, performing a data fusion of both SAR and multispectral
EO data exploits the capabilities that both offer in order to reduce the limits that, at the
same time, characterize them in an alpine context. This is why a hierarchical approach has
been adopted by mapping only certain territorial components with a given sensor or more
sensors, avoiding the limits that characterize them in the mountain environment. In this
case, land cover maps, according to the European guideline in the EAGLE framework, have
been developed due to the study area [20,21]. It is worth noting that the EIONET Action
Group on land monitoring in Europe (well known as the EAGLE group) is an open assembly
of technical experts from different European Economic Areas (EEA) of the Member States,
mostly related to the National Reference Centers (NRC) for land cover mapping. Currently,
EAGLE actions are funded by EEA within the framework of the Copernicus program. The
Italian NRC is the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). The
distinction between land use and land cover is precisely the core principle of EAGLE. The
EAGLE reference tool is a matrix that combines three descriptors: land cover components
(LCC), land use attributes (LUA), and extra characteristics (LCH). In order to construct
specific categorization systems that are appropriately calibrated for different needs or
to find correspondences with already defined class definitions while keeping descriptor
independence, the descriptors can be crossed only in certain situations [22].
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In order to produce land cover maps, supervised or automatic classification can be
performed. Approaches for automatic classification generally take longer as data volume
and dimension increase [23]. Additionally, because it is based on an a-posteriori analysis,
the interpretation of the results may be inaccurate. This is why the supervised are generally
preferred in this type of activity. However, supervised algorithms, which rely on prior
knowledge of the classes to map and require a sufficient number of training examples,
are more effective when evaluating large amounts of data [24]. They are used to hone the
algorithm’s ability to forecast class type at undetermined places over images (calibrate
model parameters) [25]. Due to the requirement that one sample zone (Area of Interest,
AOI) be at least minimally known in terms of type and position over the image, this
rendered them weaker in comprehensively mapping all the classes present in the research
area. In any case, the abundance, consistency, and correct spatial distribution of the
training areas as well as of the validation areas is fundamental, and this, as previously
said, is a limiting factor that is often extremely significant on a global level with few
areas in mountainous areas. Without considering the need for their continuous updating
that only a continuous ground control can offer as regards the development of change
detection remote sensing services for land cover [26,27]. Nowadays, the last version of
the CORINE Land Cover map (CLC) 2018 ensures a high degree of thematic detail at the
European level for different dates. Nevertheless, it is still limited in terms of spatial detail
and updating frequency (https://land.copernicus.eu/pan-european/corine-land-cover
accessed on 6 November 2022). In the last years, the Higher Resolution Layers (HRLs)
from the Copernicus Land Monitoring Service have provided LCM, with reference to the
main classes, with greater spatial detail and maintaining a multi-year updating frequency.
Unfortunately, these products still show low thematic accuracies in the classification of
alpine areas [28]. The CLC product does not permit detailed mapping of the territory,
especially in alpine areas [29]. Nevertheless, in recent years some institutional, academic
centers and private enterprises have tried to overcome the spatial resolution issue by
creating prototypal products at the national level by adopting Copernicus missions’ EO
Data [30,31]. New evidence is represented by the 10 m Land cover made by ESRI on a
global scale with 10 classes, even if there are very strong limits and errors in the alpine area
due to the absence of mountain training areas as well as ESA Global Land Cover product
at 10 m, both based only on Sentinel-2 [32]. Another example linked to the Italian context
is the prototypal LC of the whole Italian territory performed by ISPRA for the year 2018.
This LC proposes a methodology with joint use of the optical multispectral and radar data
of Sentinel 1 and Sentinel 2 [12]. However, following the choice of the input data adopted
and the need to map an entire territory, it appears to have strong limits in the mountain
area compared to the validation set; these areas are low and not adequate for mapping
mountain territories in detail as suggested by [28,33,34].

The EO Data from the European Space Agency (ESA) and Sentinel-1 and Sentinel-2
satellites, as part of the Copernicus Earth monitoring program’s Space component, have
been exploited in this study [35]. On the one hand, Sentinel-1 interacts with elements
through various signal polarizations (VV, VH) in proportion to their roughness and mois-
ture content [36,37], and it uses synthetic aperture radar (SAR) imaging in the C band [38].
Its independence from weather conditions would make it a formidable tool in the moun-
tains if it were not for the distortions that the radar signal is characterized by in the presence
of geomorphologically complex surfaces; therefore, its use must be defined according to the
type and location of the target area to map. On the other hand, the Sentinel-2 constellation
has a 5-day temporal resolution and 13-band multispectral images ranging from visible
to SWIR. Sentinel-2 data properties ensure good results in land cover monitoring [39,40]
but shadows and clouds limit their application in mountain areas. Many studies have
shown that combining Sentinel-1 and Sentinel-2 data overcomes the limitations of using
single data products in land cover classification [41,42], but no one has explored limits and
potentialities in mountain area land cover mapping [43]. Land cover detection (Joshi et al.,
2016) can be improved by combining these two data sources, for example, for grassland [19],
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urban regions [44], land cover changes [45], and hazard assessment [46–48]. Therefore,
the development of an LC mapping continuous service according to the new EAGLE
legend criteria is becoming of great interest to the public administration at the alpine level
and beyond [49]. In fact, at the national level in Italy, ISPRA produces and updates the
National Land Consumption Map as well as several regional land use and LC maps [30].
These regional products are frequently made with CLC and are not up to date [50,51]. The
coarse geographical characteristics in the mountain areas do not allow a correct definition
of the components of the territory, which are often below the minimum mapping unit
indicated for the CLC but which together have a strong impact on the alpine territory and
whose characterization may depend on access to forms of financing at the local level in the
CAP and policies insurances [52]. In particular, many studies have adopted Sentinel-1 or
Sentinel-2 to map land cover and other land cover components in some alpine areas, but
nobody has studied the limits and potentialities offered by a coupled adoption of SAR and
multispectral data in mountain areas [53–56].

Finally, in order to achieve the main goal of this work, a scalable worldwide approach
capable of mapping EAGLE Land Cover in mountain areas with higher accuracies has
been developed, overcoming remote sensing limitations and trying to exploit only the
potentialities offered by radar and optical in complex geomorphological areas. In particular,
an alpine suitable operative procedure to map with high spatial and temporal resolution
and update the frequency of land cover for environmental planning and management
following the European guidelines of EAGLE has been created. The product realized
starting from the approach developed is compatible with the old Corine Land Cover and
new rules in terms of the kind of classes that have to be adopted as well as creating a
continuous service to help the alpine region to monitor a huge amount of component of the
territory at a higher spatial resolution to help local, national, European and international
planners [39,41] for the production of pixel-based land cover classification products [57].

As described above, the proposed approach was thought to overcome some of the
limits that the classification of mountain areas generally introduces, mainly associated
with local topography, weather conditions, shadows, and land cover class spatial distri-
bution/fragmentation. This methodology has been developed in the Aosta Valley Au-
tonomous region in NW Italy due to its higher degree of geomorphological complex-
ity [6,9,58]. Because of these characteristics, RS processing and classification with high
accuracies and great spatial detail of the degree of each LC component are very hard to
perform, and, therefore, this region represents the perfect operational environment to
perform the suggested method.

2. Materials
2.1. Study Area

The development of a possible approach to map LC according to EAGLE guidelines us-
ing optical and radar EO data in mountain areas has involved the Aosta Valley Autonomous
Region in the NW of Italy. This territory has been chosen for the following reasons:
(1) the highly complex aspect due to its morphological characteristics, which perfectly
represents the typical mountainous conditions researched to develop a tentative robust
alpine EAGLE classification approach; (2) the worst remote sensing operating environment
due to the territory complexity (as described above) that make some techniques harder to
be performed limiting the potential of EO data application. Therefore, to try to compensate
for these limitations, it is necessary to adopt different workflows by identifying the most
suitable to obtain the maximum results by combining at the end the layers obtained going
beyond a single application of an ordinary machine learning algorithm. Here below, we
report the study area involved in the development of the present workflow (see Figure 1).
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Figure 1. Study Area corresponding to the boundaries of the Aosta Valley Autonomous Region (NW
Italy) (EPSG:23032).

It is worth noting that remote sensing limitations in this area, as well as in mountain
areas worldwide, can be overcome reasonably by adopting a step-by-step hierarchical
classification approach (as presented in this work) by detecting which algorithm seems
to best map land cover components and exploit the best workflow per each class so as to
optimize accuracy and reduce error. The question is not so much linked to forms of manual
compensation of spectral or geometric signatures but to the careful use of satellite sensors
on the basis of the little scientific literature present on this topic in the mountain area and
according to the type of coverage and algorithm tests of machine learning as conducted in
this study in order to define a scalable approach that allows a technology transfer.

2.2. Sentinel-1 SAR Data

Copernicus Sentinel-1 mission is part of the European space program. The satellite acquires
radar data with a temporal resolution of 5 days and a spatial resolution between 5 to 40 m
depending on the acquisition mode. The radar data were obtained by the NASA Alaskan
Satellite Facility (ASF) and processed in SNAP [59] and Google Earth Engine (GEE) [60]. The
Sentinel-1 (hereinafter called S1) mission provides data from a dual-polarized C-band SAR
(Synthetic Aperture Radar) instrument. Google Earth Engine provides only Sentinel-1 Ground
Range Detected (GRD) collection, processed using Sentinel-1 Toolbox to generate a calibrated
and ortho-correct product. Level-1 data can be processed into either Single Look Complex
(SLC) and/or Ground Range Detected (GRD) products. The absence of Single Look Complex
(SLC) data in GEE is due to the higher bit weight of this product and difficulty in the processing
phase outside the SNAP environment. In particular, Level-1 SLC (IW) Interferometric Wide
products (IW) were adopted [61,62]. IW swath mode is the main acquisition mode over land
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and satisfies the majority of service requirements. It acquires data with a 250 km swath at 5 m
by 20 m spatial resolution (single look) [34].

As mentioned before, for this work, SLC IW data were adopted by creating two separate
datasets considering the same orbit, frame, and path of the scene in the study area. The two
time series stacks ranging from all images ranging from 1 January 2020 to 31 December 2020
in ascending and descending mode, respectively. Those characteristics are reported in Table 1.
As reported by [63], the main distortion in SAR data is the elevation displacement. The
displacement increases with decreasing incidence angle. Therefore, the main SAR distortions
in mountain areas are represented by: foreshortening, layover, and shadowing.

Table 1. SAR Stacks parameters criteria.

Absolute Orbit Number Polarization Frame Path Flight Direction

24,789 VV + VH 146 88 ASCENDING
24,417 VV + VH 441 66 DESCENDING

The ascending and descending were both processed in SNAP and then imported in
GEE to create a mosaicked-median composite to reduce geometrics distortions in slopes
where, normally, in a given acquisition mode occurs.

2.3. Multispectral Optical Data
2.3.1. Sentinel-2

Sentinel-2 (hereinafter called S2) mission is part of the Copernicus European space
program. The satellite acquires multispectral optical data with a spatial resolution between
10–20 m as a function of the band considered. The temporal resolution is 5 days being two
twin satellites, S2A and S2B. The multispectral optical data were obtained and processed in
Google Earth Engine (GEE) referring to the COPERNICUS/S2_SR collection. Sentinel-2 is a
high-resolution, broad-spectrum, multispectral optical mission that supports Copernicus
Land Monitoring studies, including monitoring of vegetation, soil, and water cover, as
well as observation of inland waterways and coastal areas. Sentinel-2 L2 data are down-
loaded from Copernicus Scihub (the official distribution portal of the Earth Observation
data in question). The images were pre-processed in sen2cor (official tool released by
the European Space Agency—ESA). The EO data S2 pre-processed in sen2cor contains
12 spectral bands. The images are ortho-projected in WGS84 and are in-ground reflectance
rescaled in dimensionless values from 0 to 10,000 starting from the DN from which they ex-
ist the radiances to calculate ground reflectance by removing the atmospheric contribution.
There are also three QA bands for each scene, one of which (QA60) is a bitmask band with
cloud mask information. In GEE, clouds can be removed as an alternative to using pixels in
QA quality using COPERNICUS/S2_CLOUD_PROBABILITY. In this case, QA have been
used, and bands up to 10 m GSD were bilinearly resampled at 10 m.

A yearly median composite imagery ranging from 1 May 2020 to 31 September 2020
without clouds and shadows has been realized. The S2 data have also been used in order
to create yearly harmonized filtered NDVI and NDRE stacks with a 10-day step to map
some vegetation classes, especially vineyards and orchards.

2.3.2. Planet EO Data

Planetscope, as part of the private space program Planet acquired by Google with its
ultra-high spatial resolution microsatellites, is increasingly becoming a reference reality
in remote sensing activities thanks to the fact that there is the possibility to have access
to the data free of charge for Education and Research purposes (https://www.planet.
com/markets/education-and-research/ last accessed on 6 November 2022). Starting from
the daily data acquired by the Planetscopes, a composite imagery was generated for
the same reference period as the S2 dataset used for an extra product in the validation
phase and in the definition of the training sets in the photo-interpretation phase of some
areas. The satellite acquires multispectral optical data on a daily basis in four bands

https://www.planet.com/markets/education-and-research/
https://www.planet.com/markets/education-and-research/
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with a ground sample distance (GSD) at around 3 m with various levels of processing.
In this case, georeferenced and atmospheric-calibrated products in Surface Reflectance
were adopted. Considering that these data are not open-access and have a fee except for
scientific purposes can be considered optional in the approach proposed in case of scaling
to other areas. Certainly, they represent a useful tool to refine the map produced during a
photo-interpretational phase.

2.4. GIS Products and Ground Data

Digital Terrain Model (DTM) of the Autonomous Region of Aosta Valley with a 10 m
grid step acquired with flight lidar sensors in 2008 cropped and repositioned with perfect
correspondence and overlapping between S1 and S2 pixels.

Training set: the polygons to train the classifier were defined by segmentation by
objects (OBIA) followed by analysis of the spectral signatures and photo-interpretation of
the image as well as from ground truth data polygon (GCP).

Validation set: polygons to validate the classification were obtained both through
photo-interpretation and in the field, obtaining GCP. The validation was carried out in two
phases: the first by calculating the confusion matrix by adopting the dataset obtained from
S1 and S2 bands processing, and the second by assessing the manual classification. Finally,
a Garmin 64S and the Lemon GPS smartphone application developed by the GeneGIS
company were used to define the ground control points (GCP) bounded as polygons. The
GNSS data were acquired in the Aosta Valley region in well-known classes. The boundaries
were defined through perimeter detection or a-posteriori through photo-interpretation of
Planet images. Here below, we report an overview (see Figure 2).
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The collection of such data allowed us to populate both the training set and the
validation. In particular, a random GCP selection was performed in SAGA GIS vers.
8.0.0 [64] with an allocation of 75% of the GCP to the training set and 25% of GCP to the
validation set. The software adopted were: GEE [60], SNAP vers. 8.0.0 to obtain and
calibrate the data during the pre-processing phase, Orfeo Toolbox vers 8.0.0 [65,66] SAGA
GIS vers. 8.0.0 [64] to perform the classification during the processing phase and QGIS with
GRASS and R v.3.0.1 [67–70] during the post-processing phase to prepare the final product.

3. Methods
3.1. Dataset Pre-Processing and Multi-Bands Stack Creation

The S1 and S2 data have been calibrated and processed in SNAP in GEE, respectively.
S1 SAR data were used only to map urban and water component, respectively, in addition
to optical data. The other classes were mapped only with optical remote sensing due
to the fact that SAR distortions in mountain areas do not permit mapping at a higher
accuracy of the land cover. Therefore, the data offered by optical remote sensing are the
only ones in an alpine environment that are truly capable of offering consistent and reliable
mappings despite being bound to atmospheric conditions but which, thanks to composite
in land cover, it is possible to overcome. Calibration workflow to obtain GRD product
was performed according to the [71] approach only for the water areas. Then, Normalized
Difference Polarization Index (NDPI) and the Cross-Ratio (CR) were computed to analyze
the water and humid areas. The urban areas were detected by interferometric analysis
of coherence. Considering the GRD product, four S1 stacks were realized considering
the ascending and descending modes (please see SAR Data in materials) for VV and VH
bands adopted during the computation of NDPI and CR. These stacks of bands were finally
clipped by using an aspect layer retrieved by the 10 m DTM VDA in those areas where
SAR geometrical distortion normally affects portion of the imagery acquired in ascending
or descending mode. Starting from the ancillary and metadata files, the angle of look, and
the aspect layer (α) have been considered during the clipping to exclude areas affected by
strong distortions in both ascending and descending modes. Finally, the stacks have been
mosaicked in order to fill the gaps created in each stack due to the removal of areas affected
by strong distortions; in case of both distortions, we considered those portions with higher
incidence angles according to [46,63]. This operation was performed in SAGA GIS. Then,
the final stack obtained was uploaded in GEE to create a yearly SAR synthetic composite to
compute NDPI and CR, as previously mentioned. The SAR composite was used to better
map the water component, as previously mentioned.

3.2. Water SAR Mapping

In order to assess water areas components, the following SAR bands and indexes were
adopted after a pre-processing phase explained in Table 2 and the creation of a composite
to reduce SAR distortions.

Table 2. SAR Sentinel-1 GRD bands adopted in water mapping.

MAIN INPUT DATASET S1 GRD

ID Bands/Index Description

1 “VV Single co-polarization, vertical transmit/vertical receive
2 “VH” Dual-band cross-polarization, vertical transmit/horizontal receive
3 “VV_STD” Standard deviation Single co-polarization, vertical transmit/vertical receive
4 “VH_STD” Standard deviation Dual-band cross-polarization, vertical transmit/horizontal receive
5 “NDPI” Normalized Difference Polarization Index
6 “NDPI_STD” Standard deviation Normalized Difference Polarization Index
7 “CR” Cross ratio
8 “CR_STD” Standard deviation Cross ratio
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NDPI and CR has been calculated as follow:
NDPI Normalized Difference Polarization Index [72]

NDPI =
VH − VV
VH + VV

CR Cross-ratio [72]

CR =
VH
VV

As demonstrated by [73], in complex morphological contexts, SAT approach seems
to be more effective than the Otsu thresholding method. Therefore, these bands were
included to map surface water areas by an automatic thresholding (SAT) approach [74].
The SAT approach consists of the following steps: (1) SAR data pre-processing to create a
backscattering coefficient that is georeferenced with high-resolution LiDAR-derived DEM
(in this case, the Aosta Valley DEM with 2 m step resampled at 10 m). (2) to compensate for
elevation displacement, SAT and de-speckle filter were performed. (3) Conversion to dB
(performed in SNAP vers.8.0.0). Indeed, the intensity of the radar signal reflected from the
unit area of the corresponding point in the scene determined the pixel value of the SAR
image, and the backscattering coefficient β0 was used in calibrating the surface object to
convert the value from a digital number to reflectance. The radar cross-section of the target
per unit area related to the local angle of incidence was the parameter β0. All SAR data
were then converted from raw data to power units (decibel -dB). A de-speckle filter was
used to remove salt and pepper noise while preserving edges and texture structures prior
to data analysis due to the speckle effect produced by coherent radiation used in radar
systems. A speckle Lee filter with a 5-pixel by 5-pixel window was employed, resulting
in a unique valley-to-hill pattern in the histogram that could better distinguish between
water and non-water surfaces. In addition, normalization between incident angles was
performed. To identify a good threshold, we used a series of cubic polynomials to fit the
histogram with some kind of moving step. This is because the cubic polynomial has the
shape that best describes the histogram of the backscatter coefficients after de-speckle, and
the inflection point is easier to solve than the higher-order polynomial.

Once the threshold had been applied, water non-water pixels were detected. The
threshold value was determined by an iterative process to minimize intraclass variance
while maximizing interclass variance. Finally, to refine the mapping of water areas, a
supervised classification (Random Forest) was conducted in SNAP v.8.0.0 by adopting the
main input pre-processed S1 GRD dataset (dividing the training set in water—not water).

3.3. Urban SAR Mapping

To better map the urban areas, as first step, pairs of S1 images were downloaded
to map the urban areas and realize a layer. So, to perform interferometry with accurate
repeatable coverage, we only take into account the images from the same satellite sensor
in the correct acquisition mode (ascending or descending, see Table 1). In the last years in
Aosta Valley, built-up area expansions have assumed a low rate, and, therefore, urban areas
can be acquired within a single-year time frame in S1 images. Interferometry workflow has
been performed according to [46,75]. Furthermore, interferometry was conducted only on
those image pairs which have, within the year (2020), a perpendicular baseline of possibly
more than 130 m and a temporal baseline lower than 10 days. Here we reported the pairs
adopted available from ASF (see Table 3).
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Table 3. SAR S1 images pairs adopted according to orbit in Table 2.

S1 Pairs Ascending Orbit
(Product No, Baseline, Temporal Distances in Days between the Two Acqusitions)

S1A_IW_SLC__1SDV_20200430T172327
_20200430T172354_032360_03BEE8_2356

S1B_IW_SLC__1SDV_20200506T172238
_20200506T172305_021464_028C15_773E 136 m 5d

S1B_IW_SLC__1SDV_20200530T172240
_20200530T172307_021814_029680_5539

S1A_IW_SLC__1SDV_20200605T172329
_20200605T172356_032885_03CF21_34AB 152 m 7d

S1A_IW_SLC__1SDV_20200804T172333
_20200804T172400_033760_03E9BC_E6AD

S1B_IW_SLC__1SDV_20200810T172255
_20200810T172322_022864_02B66E_1179 152 m 6d

S1A_IW_SLC__1SDV_20200828T172334
_20200828T172401_034110_03F5FE_8B79

S1B_IW_SLC__1SDV_20200903T172253
_20200903T172320_023214_02C15A_3F08 162 m 6d

S1B_IW_SLC__1SDV_20200903T172253
_20200903T172320_023214_02C15A_3F08

S1A_IW_SLC__1SDV_20200909T172335
_20200909T172402_034285_03FC20_A288 159 m 6d

S1B_IW_SLC__1SDV_20201009T172254
_20201009T172321_023739_02D1C8_57D8

S1A_IW_SLC__1SDV_20201015T172336
_20201015T172402_034810_040E9B_A403 134 m 6d

S1B_IW_SLC__1SDV_20201114T172240
_20201114T172307_024264_02E22F_E4D7

S1A_IW_SLC__1SDV_20201120T172335
_20201120T172402_035335_0420C3_E828 144 m 7d

S1 Pairs Ascending orbit

S1A_IW_SLC__1SDV_20200112T053523
_20200112T053550_030763_03871C_D73E

S1B_IW_SLC__1SDV_20200118T053455
_20200118T053522_019867_02592E_ADC0 165 m 5d

S1B_IW_SLC__1SDV_20200211T053455
_20200211T053522_020217_026479_497E

S1A_IW_SLC__1SDV_20200217T053522
_20200217T053548_031288_03996E_2722 155 m 7d

S1A_IW_SLC__1SDV_20200324T053522
_20200324T053549_031813_03ABB5_4955

S1B_IW_SLC__1SDV_20200330T053455
_20200330T053522_020917_027ABA_DC4C 129 m 5d

S1B_IW_SLC__1SDV_20200505T053456
_20200505T053523_021442_028B5C_A52F

S1A_IW_SLC__1SDV_20200511T053523
_20200511T053550_032513_03C3F4_2251 138 m 7d

S1B_IW_SLC__1SDV_20200118T053455
_20200118T053522_019867_02592E_ADC0

S1A_IW_SLC__1SDV_20200124T053522
_20200124T053549_030938_038D40_8123 147 m 7d

ESA guidelines [76,77] were used by introducing a variation in the type of classification;
in this case, not Maximum Likelihood but Random forest and batch processing was created
thanks to a routine to involve all pairs selected. The processing steps to correctly calibrate
SAR images in order to map and discriminate urban and not urban areas have been reported
here below. It is worth noting that these steps have been realized in the ESA SNAP v.8.0.0
toolbox (see more detail in Figure 3).

In the workflow, we selected just those bursts that covered our study area (the Aosta
Valley Autonomous Region) from the original product. In addition, the coherence estima-
tion was performed by using a default window range of 20 pixels. Finally, a Range-Doppler
terrain correction was performed, which entails using the 10 m Aosta Valley DTM im-
plemented in SNAP repository, selecting ED50-UTM 32 N (EPSG: 23032). The output
coherence product consists of two bands per each polarization. It is worth noting that
coherence between two SAR images expresses the similarity of the radar reflection between
them. Any changes in the complex reflectivity function of the scene are manifested as a
decorrelation in the phase of the appropriate pixels between the two images. Finally, from
this output, a supervised classification was performed. Since we were interested in map-
ping urban and non-urban areas, we aggregated all non-urban land cover types into the
same class (such as glaciers, lawn pastures, needle forests, and so on). A Random Forests
classifier was performed in SNAP, and we specified the maximum number of decision trees
in the RF classifier, which we set at 500 as the optimal value to achieve noise cancellation
and smooth response [44].
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The classification images produced from S1 imagery consist of discrete raster, with all
pixels classified into either “urban” or “non-urban” values (with values 1 and 0, respec-
tively) and water or “non-water”.

Urban and water masks were adopted in the following phase using optical data
to better refine these classes, which are unique and less affected by SAR distortions in
mountain areas. The refining between SAR and optical data were performed manually.

3.4. Multispectral Sentinel-2 Mapping

The S2 data were retrieved by GEE collection COPERNICUS/S2_SR that was already
calibrated in surface reflectance. A self-made algorithm performed in GEE was adopted
to create a median composite. The S2 composite stack includes bands, spectral indices,
and standard deviations. These input parameters have been reported in Table 4. The S2
stack with DTM and slope was adopted as input data during the classification, while the
S1 output layers only to better refine urban and water classes. Each composite image was
generated starting from the EO Data available every 5 days for the period from 1 May 2020
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to 30 September 2020 (t), i.e., the summer weather season, in order to correctly map the
glacial surface of the territory falling within the ablation period and observes the vegetation
during the active phenological period. The composite images generated consist of the
median value for each pixel in the reference period t. For S2, we considered all the images
that satisfy the condition in which each pixel has cloud cover equal to zero (the clouds and
shadows have been suitably masked, and the pixel, if cloudy, has not been considered in
the definition of the median value of the reflectance of each band). After pre-processing S1
and S2 in GEE through a self-made algorithm, the bands and the indices shown in Table 4
were generated, and the standard deviation was calculated for each band as follows:

Table 4. Composition of the input multispectral datasets in the mountain areas analyzed.

ID Bands/Index Description

1 “B2” Blue
2 “B3” Green
3 “B4” Red
4 “B5” Vegetation Red Edge 1
5 “B6” Vegetation Red Edge 2
6 “B7” Vegetation Red Edge 3
7 “B8” NIR
8 “B8A” Vegetation Red Edge 4
9 “B11” SWIR 1
10 “B12” SWIR 2
11 “B2_STD” Standard deviation Blue
12 “B3_STD” Standard deviation Green
13 “B4_STD” Standard deviation Red
14 “B5_STD” Standard deviation Red Edge 1
15 “B6_STD” Standard deviation Red Edge 2
16 “B7_STD” Standard deviation Red Edge 3
17 “B8_STD” Standard deviation NIR
18 “B8A_STD” Standard deviation Red Edge 4
19 “B11_STD” Standard deviation SWIR 1
20 “B12_STD” Standard deviation SWIR 2
21 “NDVI” Normalized Difference Vegetation Index
22 “NDVI_STD” Standard deviation Normalized Difference Vegetation Index
23 “BSI” Bare Soil Index
24 “BSI_STD” Standard deviation Bare Soil Index
25 “NDWI” Normalized Difference Water Index
26 “NDWI_STD” Standard deviation Normalized Difference Water Index
27 “NDSI” Normalized Difference Snow Index
28 “NDSI_STD” Standard deviation Normalized Difference Snow Index
29 “TCB” Tasselled Cap Brightness
30 “TCB_STD” Standard deviation Tasselled Cap Brightness
31 “TCG” Tasselled Cap Greenness
32 “TCG_STD” Standard deviation Tasselled Cap Greenness
33 “TCW” Tasselled Cap Wetness
34 “TCW_STD” Standard deviation Tasselled Cap Wetness
43 DTM Digital Terrain Model 10 m
44
45

Slope
Aspect

Terrain Slope
Terrain aspect

The spectral indexes reported in Table 5 have been calculated as follow in Table 5:
Since orchards and vineyards as well as permanent crops were particularly complex

to discriminate (hereinafter called AGR) after performing a single classification due to
the fact that a single multispectral composite input dataset did not permit considering
the whole phenological active season, a hierarchical classification approach was then
implemented. It has foreseen first classification (considering S2 Main Input dataset) with
all the classes according to the new EAGLE Land Cover Legend (17 classes in this case)
and a subsequent one with only these classes, masking all the remaining ones. In the
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end, the two classifications were subjected to a mosaicking process by applying a first
overlapping for orchards and vineyards. Then, the doubtful areas were corrected manually
by photo-interpretation of a composite Planetscope imagery.

Table 5. Multispectral indexes.

Spectral Index Formula

NDVI
Normalized Difference Vegetation Index [78–82] NDVI = NIR−RED

NIR+RED

BSI
Bare Soil Idex [83] BSI = (SWIR 1+RED)−(NIR+BLUE)

(SWIR 1+RED)+(NIR+BLUE)

NDWI
Normalized Difference Water Index [84,85] NDWI = NIR−SWIR 1

NIR+SWIR 1

NDSI
Normalized Difference Snow Index [86–89] NDSI = NIR−SWIR 1

NIR+SWIR 1

TCB
(Tasselled Cap Brightness) [90–94]

(BLUE × 0.3037) + (GREEN × 0.2793 + (RED × 0.4743)
+ (NIR × 0.5585) + (SWIR1 × 0.5082) + (SWIR2 × 0.1863

TCG
(Tasselled Cap Greenness) [90–94]

(BLUE × −0.2848) + (GREEN × −0.243) + (RED × −0.5436)
+ (NIR × 0.7243) + (SWIR1 × −0.0840) + (SWIR2 × −0.1800)

TCW
(Tasselled Cap Wetness) [90–94]

((BLUE × 0.1509) + (GREEN × 0.1973) + (RED × 0.3279)
+ (NIR × 0.3406) + (SWIR1 × −0.7112) + (SWIR2 × −0.4572))

In this regard, to better map AGR, S2 yearly images (2020) were adopted, perform-
ing a supervised Minimum Distance classification (MDC) starting with the following
inputs normalized:

- Yearly cloud-shadow masked NDVI stack filtered (Savitzky–Golay) [95–97] and regu-
larized at 10 days times-steps [98] on GEE.

- Annual stack of the NDRE index (Normalized Difference Red Edge Index for Agricul-
ture) following the same procedure of NDVI stack [99]

NDRE =
NIR − RE
NIR + RE

- NDVI composite Entropy [11,58]

HNDVI = −
N−1

∑
i=0

N−1

∑
j=0

NDVIi,j log
(
NDVIi,j

)
where NDVIi,j is the NDVI value at the i-th row and j-th column in the local square
window measuring N pixels. For this study, a kernel window size of 10 × 10 pixels
was adopted.

- Rao’s Q Diversity Index on S2 NDVI composite [100]. Rao’s Q is calculated using half
the squared Euclidean distance, therefore, the resulting index is [101]:

Q = ∑ ∑ dij × pi × pj

where pi and pj are, respectively, the proportion of area of each category per rows and
columns in the pairwise distance dij.

- Pattern analysis on S2 NDVI composite. The following pattern was computed: Domi-
nance, Diversity, Relative richness, and Fragmentation. The settings parameters were:
maximum number of classes: 17; kernel type: circle; radius 2.
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To better discriminate these classes, the above-mentioned procedure was adopted
because a simple classification with only median spectral sign and median indexes is not
able to carefully detect agronomic cultivation, as demonstrated by [10]. NDVI and NDRE
temporal stacks were considered, including textural patterns, in order to carefully map
these classes considering that they are very complex to detect, especially in mountain areas.
This procedure has permitted a rise in the user accuracy for both classes of 27%, reaching
per each class mapped a user accuracy of more than 90%.

Then, the KMC were mosaicked using as first overlap onto the MDC retrieved to refine
only AGR classes. As the last step, a simple filter was performed using a radius greater
than 20 m. Furthermore, the classification was manually refined by a photo-interpretation
process, also using Planetscope imagery to improve the accuracy of the manufacturer
and the user and overall reduce errors. Finally, a confusion matrix was computed from
the validation set. The parameters reported in the confusion matrix [102] were: Overall
accuracy, Errors of Commission and Omission, User and Producer accuracy, Sum users and
sum producers, and unclassified pixels (in this case, each pixel was classified).

Finally, the kappa coefficient measures the agreement between classification and truth
values. A kappa value of 1 represents perfect agreement, while a value of 0 represents no
agreement. The kappa coefficient is computed as follows:

k =
N ∑n

i=1 mi,j − ∑n
i=1

(
GjCj

)
N2 − ∑n

i=1
(
GjCj

)
where:

i: is the class number
N: is the total number of classified values compared to truth values
mi,i: is the n◦ values belonging to the truth class i that have been classified as class i
Ci: is the total number of predicted values belonging to class i
Gi: is the total number of truth values belonging to class i
Despite a semi-automatic workflow, as previously said, some manual photo-interpretation

refining was performed involving urban and rock classes, as well as lawn pastures and
alpine grasslands, respectively.

3.5. Definition of Optimal Number of Area of Interest (AOI) Required for Each Class of the
Training Set

After creating the initial input dataset, a K-means unsupervised classification with
17 classes was performed in order to better know the spatial extent distribution of each
class with the aim of defining the optimal number of training areas for each class of the
training set. It is worth noting that there must be enough training pixels for each spectral
class to allow for reasonable estimates of the elements of the conditional mean vector and
of the class covariance matrix. According to [33,34], for the N-dimensional multivariance
space, the covariance matrix is symmetric of size N × N. Therefore, it has 1/2 N (N + 1)
distinct elements that must be estimated from the training data. In order to avoid the
matrix being singular, at least N(N + 1) independent samples are needed. Fortunately, each
N-dimensional pixel vector actually contains N samples (one of each waveband); therefore,
the minimum number of independent training pixels required is (N + 1). Because it is
difficult to guarantee the independence of pixels, it is common to choose more than this
minimum number. Ref. [103] recommends, as a practical minimum, that 10 N training
pixels per spectral class be used, with as many as 100 N per class if possible. Therefore,
for this classification, considering only the spectral bands and relative indexes without the
standard deviation, a minimal number of 250 polygons has been computed (including a
minimum of 5 pixels) for each class.

3.6. Stack Segmentation and AOI Definitions

The Object-Based-Segmentation (OBS) approach was performed using the mean shift
algorithm available on the Orfeo Toolbox software v.8.0.0 [104,105]. OBC algorithms
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aimed at minimizing the spectral heterogeneity of polygons by comparing relatively the
spectral properties of neighboring pixels. The resulting segmentation vector layer (SVL)
was generated according to a previously defined minimum mapping unit of 300 m2. In
particular, the segmentation was performed with reference to the S2 bands having a Ground
Sample Distance (GSD) equal to 10 m, i.e., B2, B3, B4, and B8 natively. Starting from the
native reflectance values, the images were segmented into segments having an internally
homogeneous spectral response. The segments were then vectorized to generate the
corresponding vector layer. During segmentation, the required parameters were set to
the values shown in Table 6. SEG was then used to explore internal features other than
spectral signatures, such as recurrent radiometric patterns (texture) and shape. Some
of these polygons were then randomly extracted, and others were created by analyzing
the signatures of the entire stack to define part of the training areas. This procedure has
permitted defining some training areas per each class.

Table 6. Segmentation parameters.

Segmentation Parameter Settings

Spatial radius 3 pixels
Range radius 100 DN
Mode convergence threshold 0.1
Maximum numerous of iterations 200
Minimum region size 3 pixels

3.7. Regions of Interests Distributions

ROI was defined mostly on the field and partially by applying both segmentation and
a spectral signature-photo interpretation phase. The image below depicts the distribution
of the ROIs in the study area. Each ROI per class has a number of polygon upper to 250.
An overall of 4300 ROIs were defined, and 75% of them were adopted as training set the
25% as validation set (see Figure 4).
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3.8. Classification and Confusion Matrix

Finally, starting from the input dataset and the training set, several supervised classifi-
cations were performed in SAGA GIS vers. 8.0.0 by adopting different machine learning
algorithms, and the relative confusion matrix was computed in order to define the most
suitable in complex morphology, such as mountainous Aosta Valley region, by evaluating
the best overall accuracy and therefore minimizing the errors. Given the characteristics
of the input dataset and the alpine territory analyzed, the best performing algorithm
was the K-Nearest Neighbors Classification-KMC and the Minimum Distance with pre-
segmentation (SNIC) by applying a Distance threshold of 50. The k-nearest neighbors
(k-NN) is an algorithm used in pattern recognition for the classification of objects based
on the characteristics of the objects close to the one considered. It is a non-parametric
classification method. In both cases, the input is the closest k training examples in the
feature space. The output depends on whether k-NN is used for classification or regression.
In the k-NN classification, the output is a membership in a class. An object is classified
by a plurality vote of its neighbors, with the object assigned to the most common class
among its k closest neighbors (k is a positive, typically small, integer). If k = 1, the object
is simply assigned to the class of that single closest neighbor. In the k-NN regression,
the output is the property value for the object. This value is the average of the closest
neighboring k values. On the other hand, the minimum distance classifier is used to classify
unknown image data into classes, which minimizes the distance between the image data
and the class in multi-feature space. The distance is defined as an index of similarity so
that the minimum distance is identical to the maximum similarity. Therefore, the minimum
distance technique uses the mean vectors of each endmember and calculates the Euclidean
distance from each unknown pixel to the mean vector for each class. All pixels are classified
to the nearest class unless a standard deviation or distance threshold is specified, in which
case some pixels may be unclassified if they do not meet the selected criteria.

In order to ensure the scalability of the methodology proposed in the mountain area,
we have tried to condense everything in the following workflow (see Figure 5):
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Figure 5. Workflow methodology developed to map EAGLE Land Cover in Alpine Areas.
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4. Results

The supervised classifications were performed by adopting the following
algorithms [16,106]: Supervised Maximum Likelihood, Minimum Distance with pre-
segmentation (SNIC) [19,107,108], the Random Forest (OpenCV), Support Vector Machine
(OpenCV), Artificial Neural Network—ANN (neural networks)—[108,109], and K-Nearest
Neighbors Classification (OpenCV) [64]. Classifications performed were then vectorized.
At the same time, the confusion matrix was calculated for each of the techniques adopted
to identify the goodness of the product realized. The best one was chosen by observing the
results offered by K-coefficient and the overall accuracy. In fact, the main aim was to find
the optimal algorithm to minimize the errors and therefore maximize the accuracy. The
two best were: K-Nearest Neighbors Classification (OpenCV) and the Minimum Distance
with pre-segmentation (SNIC) with a distance threshold of 50. Here below, it was reported
the overall accuracies and the K coefficient obtained by performing a confusion matrix for
each classification realized (see Table 7).

Table 7. Classes mapped.

EAGLE Land Cover Classes Broad-leaved forests
Bare Rocks Needle-leaved forests
Permanent crops and green anthropic areas Mixed Forests
Soils with discontinuous vegetation cover Lawn-pastures
Permanent sparsely vegetated areas Natural grassland and Alpine pastures
Transitional woodland and shrubs Orchards
Glaciers and snow Vineyards
Moors Water bodies
Urban and anthropic areas Water courses

The EAGLE classes mapped in mountain areas are the following in Table 7, and they
are carefully described in Appendix A:

Concerning the quality reached in mapping a complex geomorphological area, here
below a snapshot of some areas in the Aosta Valley region with a representation scale
of 1:10,000 has been provided (the images in the upper part and 1:40,000 in the Aosta
municipality (please see Figure 6).
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In order to better map urban and water areas components, S1 masks obtained were
overlapped with urban and water surfaces mapped with S2 data. Then, manual refining
was performed. In order to assess the classification land cover quality, several supervised
classifications were realized, as reported in Table 8.

Table 8. Accuracies obtained from different machine learning algorithms to perform supervised
classifications.

Machine Learning Supervised Classification Algorithm Overall Accuracy K-Coefficient

K-Nearest Neighbors Classification (OpenCV) 93% 0.93
Minimum Distance with pre-segmentation (SNIC) 92% 0.92

Artificial Neural Network—ANN (neural networks) 84% 0.84
Random Forest (OpenCV) 88% 0.88

Support Vector Machine (OpenCV) 90% 0.90
Supervised Maximum Likelihood 85% 0.85

Each classification was carried out by normalizing the dataset due to the diversity
of the input variables to make them homogeneous. The parameters adopted in the K-
Nearest Neighbors Classification-KMC (OpenCV) were the number of neighbors equal
to 8 and a training method named: classification, and finally, the type of Brute Force
algorithm [110]. K-Nearest Neighbors Classification (OpenCV) and Minimum Distance
with pre-segmentation (SNIC) were adopted as algorithms in the present work. The
workflow followed is reported in Figure 6. Here below, the improvement obtained by
performing the two classifications has been reported, not only a single one, as described in
the previous section. In both cases, no photo-interpretation refining was performed in this
phase. In the end, accuracies were computed (see Table 9).

Table 9. Comparison of accuracies.

Machine Learning Supervised Classification Algorithm Overall Accuracy K-Coefficient

K-Nearest Neighbors Classification (OpenCV) 93% 0.93
K-Nearest Neighbors Classification (OpenCV + Minimum Distance) 96% 0.96

Finally, manual refining was performed using Planetscope imagery as described in
the above section, then the final confusion matrix (CM) was computed, and the map was
generated, as reported in Figures 7 and 8.
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5. Discussions

The new EAGLE classes were defined by the European Union (EU) and supported by
the European Environmental Agency (EEA) and all the national environmental agencies (in
Italy represented by the Istituto Superiore per la Protezione e Ricerca Ambientale—ISPRA).
The new classes adopted are more linked to land cover than those presented in Corine Land
Cover (CLC) and will be mandatory for regional and national to create LC higher resolution
maps starting from the end of 2022 (https://land.copernicus.eu/global/products/lc last
accessed on 6 November 2022). In fact, it is worth noting that the previous CLC products
had a strong overlap between land cover and land use, generating confusion both in technics
and users [16,106]. It is well known that remote sensing permits to define only land cover
and sometimes a few numbers of use such as mowing activities [19,107,108]. To map
the land use is necessary to ground truth data collected with proximal sensing [108,109].
Following these premises, the new land cover is more linked to the new criteria that consider
only biophysical surface components, preserving different levels of detail as the previous
CLC products. In https://geoportale.regione.vda.it/download/carta-copertura-suolo/
accessed on 1 September 2022, are reported respectively the legend adopted by ISPRA
according to EEA and the final of the present work with a major degree of detail. It is
also linked to a detailed explanation of each class. The photo-interpretation correction
phase has permitted to increase in the overall accuracy, as well as the K-coefficient by 0.2.
Nevertheless, the procedure proposed seems to be sufficiently robust not to require a final
phase of refinement and control through photo-interpretation. The combined application of
S1 (only for a couple of classes) and S2 EO data seem to boost the classification of land cover
components also in mountain areas. Anyway, as suggested in this work, S1 data have to be
adopted only to map in addition to optic data urban and water areas because differently a
misleading classification may occur due to the physical limits of SAR in mountain areas.

The methodology proposed is scalable to other morphological complex realities, in
particular mountainous areas. The tentative approach adopted with free EO data and open-
source tools can represent a possible ordinary workflow that can be pursued by territorial
planning and management enterprises and agencies to monitor land cover changes through
the years and perform new maps. We believe that this approach may have an important
technology transfer in mountain territories. This would also help the implementation
of local policies concerning new forms of redistribution of contributions with a view to
sustainable development. In this regard, each year, Aosta Valley, similar to many Italian
regions, has to assign development funds to each municipality, which are largely based
on the distribution and extension of the land cover components within its borders. The
current method adopted without Remote Sensing (RS), which is extremely dated, provides
for sample inspections and GIS analysis using buffer areas that are not representative of
reality and which are overlooked by elements deemed of particular interest at a European
level. Therefore, this RS methodology may represent a useful tool to reach two goals in
one. Firstly, regulate a procedure at a local level that provides for the use of the land cover
and an annual update for the purpose of distributing local funds. Secondly, respond to the
needs of the European Union by making use of its most recent land cover classification
system while promoting technology transfer and the culture of environmental monitoring
and sustainability in the public administration.

Cloud computing and archived EO data in the GEE have many advantages for large-
scale and composite creation or long timeseries mapping, such as monitoring land cover
changes. Moreover, it is easy to integrate EO data coming from different missions and
textural features to improve classification accuracy. Nevertheless, the approach suggested
goes beyond the simple use of GEE. In fact, GEE has many limitations in terms of the
capacity to map mountain areas only in this environment. As shown in this work, SAR
data can be adopted only by considering and classifying those classes less affected by SAR
distortions. Despite of SAR may map in each weather condition, its application in land
cover mapping due to distortions makes its single application weak and feasible. Therefore,
optical remote sensing is preferable to SAR for mapping mountain areas. However, their

https://land.copernicus.eu/global/products/lc
https://geoportale.regione.vda.it/download/carta-copertura-suolo/
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rational and combined use, as demonstrated by the classifications carried out, allows
accurate classification of land cover components that are often difficult to map in mountain
areas. A hierarchical approach based on optical and SAR data with different classifications
of the results obtained seems to be preferable to classifications based on optical or SAR data
only or combined but with a single classification. One of the possible reasons is dictated by
the fact that the developed method emphasizes the potential offered by each sensor based
on the type of coverage to be mapped or by refining it in the case of combined use. In fact,
there are components that respond better to classifications based on timeseries stacks rather
than single images or that are based on composite images. Naturally, the consistency of the
method proposed here is linked to the time span to be mapped. Therefore, a weekly-based
approach would be weaker than a monthly- or yearly-based approach because for mapping
the long-term coverage of a component, it is better with more observations and, therefore,
more data are available.

Concerning the final matrix obtained, it is interesting to note that a hierarchical
approach permits maximizing in complex geomorphological areas both the user and
producer accuracies and, at the same time, minimizing the omission and commission errors.
Moreover, a wise adoption of Sentinel-1 data (considering only those components that are
the least affected by geometrical distortions such as water and urban areas), Sentinel-2
composite data per all classes considering median spectral signature, some indexes, and
their standard deviation coupled with multitemporal NDVI and NDRE stack for agronomic
classes seem to be the best procedure to map EAGLE Land Cover in alpine areas. This will
permit the development of interesting Earth Observation services considering the high
spatio-temporal resolution of these missions. In fact, these missions may help planners to
develop rural mountain areas tools for distributing funds based on variations in coverage
or even planning targeted interventions at a local level in marginal contexts or those that are
difficult to access on land. It is interesting to note that simpler machine learning algorithms
such as MD and KNN permit reaching the highest accuracies in complex areas with respect
to others. According to our knowledge, this is due to the fact the kernel window of these
algorithms operates in the near space avoiding abrupt changes that normally occur in
complex geomorphological areas and that condition the other ones. Nevertheless, more
studies have to be performed in order to overcome remote sensing limitations in mountain
areas where it is possible so to permit a real and strong technology transfer worldwide.

6. Conclusions

Land cover maps are crucial to monitoring and assessing land cover changes and
proposing useful, sustainable management and planning policies. It is worth noting that
regions and EU countries, starting in 2022, will have to produce and update land cover
products according to the new EAGLE guidelines. Free Copernicus data, offered by S1 and
S2 missions, may play a great role in land cover mapping. Nevertheless, the exploitation
of these kinds of EO data is well known in the literature, but there is still a lack in the
development of a robust methodology to map mountain areas (such as the Alps) with a
high level of accuracy, according to EAGLE guidelines. Even if ISPRA proposes a combined
use of the radar also in the mountain area, the optical data alone is preferable in these
contexts, avoiding problems related to the distortions to which the radar is subjected. At the
same time, however, using only optical data, if not processed according to temporal criteria
to create composites, prevents the entire territory from being mapped due to shadows or
clouds. In this regard, this work explored a possible scalable and repeatable methodology
for mountain areas that makes predominant use of optical data but also uses radar data
for some components, aiming to compensate for native SAR acquisition mode distortions
by adopting a mixed hierarchical approach. An evaluation of different algorithms was
conducted, and the most performing for geomorphologically complex territories were the
Minimum Distance and the K-Nearest Neighbors. It is worth noting that, according to our
knowledge, there is a lack of studies concerning a definition of an approach to overcome
remote sensing limitations in mountain areas; therefore, this method could help scientists
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and experts deal with remote sensing limits and potentiality in alpine areas having a
guideline to map land cover in a complex geomorphological area. The main limitations
of this research are represented by: radar distortions that can be compensated but never
deleted in alpine areas, ground data continuous updating, and sufficiently numerous to
train the model. Finally, the biggest issue that still remains open is the discrimination of
rocks and built-up areas due to the fact they both have a similar or equal spectral signature.
Therefore, to correctly detect is still necessary a DTM in mountain areas and some manual
refining to obtain high accuracies. Nevertheless, the approach proposed may help planners
detect land cover changes over time on all components, allowing the regional level to
address certain management policies and rational use of available funds.

This suggested methodology may help the implementation of European, as well as
global and local policies concerning land cover mapping both at a high spatial and temporal
resolution to assess land cover changes due to anthropic pressure and climate change and
pursuing a sustainable development perspective empowering the technological transfer
in mountainous realities trying to overcome remote sensing limitations that normally is
present in alpine areas.
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Table A1. Land cover description.

Class Name EAGLE-ISPRA
Presence Class Number Description Class Name EAGLE-ISPRA

Presence Class Number Description

Permanent
crops and green
anthropic areas

YES 21133

Surfaces affected by anthropogenic
activity. Areas affected by agronomic

practices in the sensu lato (from simple
mowing to irrigation up to

plowing/burglary or other soil
conditioning practices in most of the

time) and the presence of various crops
or ornamental green areas conditioned

by anthropogenic activities (such as
parks, flower beds, sports areas such as

turf of soccer fields or arenas). These
areas are of a permanent nature without

undergoing changes in the type of
coverage that characterizes them in the

period of time considered.

Bare Rocks YES 121

Natural surfaces. Areas
characterized by the presence of

rocks, landslides or poorly
powerful but consolidated soils in

the process of formation.

Urban and
anthropic areas YES 11

Surfaces strongly influenced by
anthropic activity and characterized by
human settlements. These are areas in

which there are built structures without
distinction on the intended use or under
construction, as well as roads, airports,
railways, parking lots and any artifact
capable of determining a permanent or

semi-permanent loss of the soil resource.

Soils with
discontinuous

vegetation
cover

YES 1221

Natural or natural-shaped
surfaces. Areas characterized by

unconsolidated soils with
continuous coverage over time as

they have reduced annual
vegetation or xeric sparse

vegetation or poorly managed
grassing and with little or no

agronomic conditioning practices.
This coverage also includes jumps
in rock or rubble as long as there
are spots of vegetation with the

presence of spots of little powerful
soils and extremely reduced or

absent vegetation.
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Table A1. Cont.

Class Name EAGLE-ISPRA
Presence Class Number Description Class Name EAGLE-ISPRA

Presence Class Number Description

Moors YES 41

Natural surfaces. These are areas
characterized by an

herbaceous-shrubby vegetable
association that characterizes slopes
and wetlands with usually acid soils,
generally cold and humid but well

drained and usually poor in humus.
The vegetation is mainly made up of

Ericaceae (in particular Calluna vulgaris
L., known as heather from which the
term moor or moor derives), Fabaceae
(such as Cytisus scoparius L. in sunnier

areas) and junipers (Juniperus spp.)

Permanent
sparsely

vegetated areas
YES 222

Natural surfaces. Areas
characterized by the presence of
areas with scarce but permanent

vegetation that is difficult to graze
given both the characteristics of
the vegetation and in some cases
the slope. These are high-altitude

surfaces near rocks or natural
grasslands and woods.

Transitional
woodland and

shrubs
YES 21221

Natural or natural-shaped surfaces.
Areas characterized by arboreal species

and generally sparse woods near grazing
areas or areas with reduced herbaceous
vegetation and rocks (such as rubble).

These areas indicate dynamics of
ecological forest succession following the

abandonment of grazing areas and
consequent expansion of forest areas or

following disturbances to natural or
anthropogenic disturbances to the forest.

Vineyards YES 21211

Surfaces influenced by human
activity and agronomic practices.

Areas characterized by the
presence of various cultivation

systems of the vineyard.

Water bodies YES 312

Natural or natural-shaped surfaces. Areas
characterized by the presence of bodies of

water such as natural lakes of fluvial
and/or glacial origin, artificial reservoirs

for the collection and interception of
water in correspondence with dams,
fishing basins or any other surface of

water for recreational or anthropic use.

Broad-leaved
forests YES 2111

Natural or natural-shaped
surfaces. Wooded areas

characterized by a prevalent and
widespread presence of

broad-leaved trees or
broad-leaved species on a given

surface (oak, chestnut, ash, maple,
lime, alder, birch, poplars, etc.)
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Table A1. Cont.

Class Name EAGLE-ISPRA
Presence Class Number Description Class Name EAGLE-ISPRA

Presence Class Number Description

Water courses NO 311

Natural or natural-shaped surfaces.
Areas characterized by the presence of
waterways such as rivers, streams, ru

and works of hydraulic derivation along
runoff lines and slope impluviums.

Needle-leaved
forests YES 2112

Natural or natural-shaped surfaces.
Wooded areas characterized by a

prevalent and widespread presence
of conifers or needle-like species on

a given surface (larch, spruce, fir,
pine, Douglas fir...)

Glaciers and
snow YES 32

Natural surfaces. Areas characterized by
the presence of glaciers, seracs, icefalls
and frozen or snow-covered surfaces
such as snowfields in the observation
period considered. It should be noted
how the measurements carried out fall
within the full ablation season and can
therefore constitute a useful data on the

perimeter in this sense. The rock glaciers
being totally covered by debris and rocks
are not included in this class since they
follow a criterion of spectral uniformity
of both optical and SAR remote sensing
data and therefore refer to the rock class.

Mixed forests NO 2114

Natural or natural-shaped
surfaces. Wooded areas

characterized by a concomitant
presence of broad-leaved trees

and conifers.

Natural
grasslands and
alpine pastures

NO 22112

Natural or natural-shaped surfaces. Areas
characterized by a natural evolution or at

most by management conditioning
practices at a pastoral level. These areas are
characterized by the presence of herbaceous
species of medium-high altitude sometimes
in correspondence with SPAs, SIC or SACs
and of particular naturalistic interest as for
some forest areas. In the presence of these
surfaces, it is possible to witness grazing

activities and the presence of mayen
(mountain pastures) with a high

historical-cultural and landscape value.

Lawn-pastures
Orchards

YES
YES

22111
21131

Natural-shaped surfaces. Areas
characterized by herbaceous cover

conditioned by pastoral and
agronomic practices in this case

mowing, haymaking, and possible
irrigation for most of the time. The
areas can be characterized by both

grazing and mowing. Surfaces
affected by human activity and

agronomic practices. Areas affected
by the presence of orchards or fruit

plants for both productive and
ornamental purposes.
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