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Abstract: Predicting maize yield using spectral information, temperature, and different irrigation
management through machine learning algorithms provide information in a fast, accurate, and
non-destructive way. The use of multispectral sensor data coupled with irrigation management in
maize allows further exploration of water behavior and its relationship with changes in spectral bands
presented by the crop. Thus, the objective of this study was to evaluate, by means of multivariate
statistics and machine learning techniques, the relationship between irrigation management and
spectral bands in predicting maize yields. Field experiments were carried out over two seasons
(first and second seasons) in a randomized block design with four treatments (control and three
additional irrigation levels) and eighteen sample repetitions. The response variables analyzed were
vegetation indices (IVs) and crop yield (GY). Measurement of spectral wavelengths was performed
with the Sensefly eBee RTK, with autonomous flight control. The eBee was equipped with the Parrot
Sequoia multispectral sensor acquiring reflectance at the wavelengths of green (550 nm ± 40 nm),
red (660 nm ± 40 nm), red-edge (735 nm ± 10 nm), and NIR (790 nm ± 40 nm). The blue length
(496 nm) was obtained by additional RGB imaging. Data were subjected to Pearson correlations (r)
between the evaluated variables represented by a correlation and scatter plot. Subsequently, the
canonical analysis was performed to verify the interrelationship between the variables evaluated.
Data were also subjected to machine learning (ML) analysis, in which three different input dataset
configurations were tested: using only irrigation management (IR), using irrigation management
and spectral bands (SB+IR), and using irrigation management, spectral bands, and temperature
(IR+SB+Temp). ML models used were: Artificial Neural Network (ANN), M5P Decision Tree (J48),
REPTree Decision Tree (REPT), Random Forest (RF), and Support Vector Machine (SVM). A multiple
linear regression (LR) was tested as a control model. Our results revealed that Random Forest has
higher accuracy in predicting grain yield in maize, especially when associated with the inputs SB+IR
and SB+IR+Temp.

Keywords: multispectral bands; UAV imagery; remote sensing; computational intelligence;
random forest

1. Introduction

Maize (Zea mays L.) is an agricultural crop of worldwide importance, subsidizing
animal and human food to biofuel production. The required increase in the crop’s yields
due to the global population growth, which is expected to rise to more than 9 billion by
2050 (ONU, 2019), is one of the main challenges of modern agriculture. Additionally, the
global climate change scenario raises the need to adopt tools and management practices
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that ensure yield gains with more efficient use of natural resources, such as adopting
strategic irrigation systems in critical crop stages [1]. Irrigation management represents
one of the major strains on water resources because of the high consumption and low
efficiency in most irrigation systems [2]. Thus, with the increasing demand for this finite
resource, alternatives are needed to minimize water use in irrigation by improving its
management [3].

Water deficit in the crop tends to increase leaf temperature and begins to negatively
impact plant development [4,5]. C4 plants, such as maize, have higher water-use efficiency
and higher tolerance to increased leaf temperature [6]. Crop leaf temperature is a physio-
logical characteristic and can be used to monitor the plant’s water status [7]. In the presence
of high atmospheric water demand or low soil water availability, the plant triggers its
primary mechanism to control water loss, which is stomatal closure [8]. Activating this
mechanism triggers a series of harmful processes in grain production, such as a decrease in
photosynthetic activity by preventing the entry of CO2 and an increased leaf temperature
due to the retraction of evaporative cooling by water. This increase in temperature can be
on the order of many degrees centigrade, depending on the crop and the water supply and
demand conditions of the soil–atmosphere system [9].

Remote sensing, coupled with high-throughput phenotyping techniques, is a tool
that can be used to provide fast and non-destructive information on crop status [10–12].
Multispectral images captured by the sensors make it possible to know the canopy re-
flectance values in the spectral bands of blue, green, red, red-edge, and near-infrared. Leaf
reflectance allows us to detect parameters and relate them to plant water status due to
the emission of canopy wavelengths in the near-infrared and short-wave infrared ranges,
which are influenced by various internal leaf structures, such as water content [13].

Despite the advantages mentioned above, the information obtained from spectral
imagery is very complex and generates a large amount of data, which makes the use of Ma-
chine Learning (ML) techniques an excellent alternative to spectral data processing [14]. Al-
gorithms such as Artificial Neural Networks (ANNs), Decision Trees, Random Forests (RFs),
and Support Vector Machines (SVMs) can be used in studies for yield prediction [15–17],
nutritional status monitoring [18,19], drought stress detection [20–22], and irrigation map-
ping [23] using spectral imagery.

Advances in high-throughput phenotyping techniques are crucial to evaluate the crop
water status and making inferences about future crop conditions, such as associations with
grain yield. Plant responses to photosynthetic efficiency under adequate water supply
conditions are reflected in the crop yield, and to measure these photosynthetic and yield
traits, traditional laboratory methods using sampling and leaf analysis are employed
and provide highly accurate information. However, these methods are costly and time-
consuming and require skilled labor, giving an advantage to using spectral data associated
with ML modeling [24–26].

The use of multispectral sensor data combined with irrigation management in maize
crops allows further exploration of water behavior and its relationship with changes in the
spectral bands reflected by the crop canopy. Thus, the objective of this study was to test
different machine learning techniques and input configurations on the dataset (considering
irrigation management, leaf temperature, and spectral variables) for predicting maize
grain yield.

2. Materials and Methods
2.1. Study Area

Field experiments were carried out at the experimental area of the Federal University
of Mato Grosso do Sul, in the municipality of Chapadão do Sul-MS, Brazil, with coordinates
18◦46′17.9′ ′S and 52◦37′25.0′ ′W, and with an altitude of 810.2 m (Figure 1), during two crop
seasons: 2020/2021 (first season, characterized by a summer harvest) and 2021 (the second
season, characterized by an autumn harvest). The climate of the region is characterized as
a tropical climate with a dry season in winter (Aw). The area had a history of fifteen years
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of non-tillage system, and soybean was previously cultivated as the first crop in the same
agricultural year. Soil samples were collected at the experimental field, at 0.0–0.2 m depth,
for soil chemical analysis. Ten sub-samples were taken. The results of the soil analysis are
shown in Table 1.
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Figure 1. Location of the municipality of Chapadão do Sul/Brazil (A), illustration of the experimental
field and UAV used (B), and measurement of the temperature of the maize crop canopy (C).

Table 1. Information on soil pH, organic matter, phosphorus, aluminum, potassium, calcium and
magnesium, CEC, base saturation (V%), and clay content.

pH (CaCl2) Ca + Mg
(cmolc dm−3)

Ca
(cmol dm−3) Mg (cmol dm−3) H + Al

(cmolc dm−3)
K

(cmol dm−3)

5.1 4.4 15.6 0.9 3.3 0.33

P
(mg dm−3) V% Clay

(g dm−3)
O.M.

(g dm−3)
CEC

(cmolc)

5.00 58.9 335.00 30.1 8.00

pH CaCl2; H + Al: Potential acidity; Ca: Calcium; Mg: Magnesium; K: Potassium; P: Phosphorus (resin);
O.M.: Organic matter; Clay: Clay content; V%: base saturation; and CEC: Cation exchange capacity.

2.2. Experiment Installation

The dimensions of the experimental plots were 20 × 5 m, totaling 24 plots. Each plot
was cultivated with maize (Zea mays L.), hybrid SYN 555 VIP 3, from Syngenta® (Formosa,
Brazil). The maize crop was cultivated as a second crop, sown in the third ten-day period of
February of each experimental year after the harvest of soybean was installed as a first crop.
This type of crop succession is the most common in Brazil, especially in the Cerrado region.

Soil served as a basis for the interpretation and recommendation of fertilization [27].
Limestone application was carried out in August according to the need for both crops
in the study areas, raising the base saturation to 65%. Fertilizing was performed in the
sowing furrow at rates of 30 kg ha−1 of N (Urea 45% N), 120 kg ha−1 of Phosphorus (Single
Superphosphate 20% P2O5), and 60 kg ha−1 of Potassium (Potassium Chloride 58% K2O).
Maize was grown as a second crop due to the lower rainfall in the region, allowing for a
higher probability of water deficit in non-irrigated treatments or with less irrigation level.

The spacing used between sowing rows was 0.45 m, and the crop population was
estimated at 65,000 plants ha−1. The seeder used in this process was the Jumil model 2670
(Batatais, Brazil), with a vacuum seed metering mechanism. At the V4 crop phenological
stage, the topdressing fertilization with urea (45% N) was carried out at a dosage of
150 kg ha−1, according to the recommendation for the soil condition and region
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2.3. Experimental Design

The experimental design applied was in randomized blocks, containing four treat-
ments (control and three additional irrigation levels) and eighteen sampling repetitions.
The response variables analyzed were vegetation indices (VI) and crop yield (GY). The
variables were measured at three different sampling points within each plot. The four outer
rows were discarded as borders to avoid possible interference from other treatments. The
four treatments influencing the response variables were 0 (no supplemental irrigation), 30,
60, and 100% of crop evapotranspiration (ETc).

Supplementary irrigation levels were applied to achieve sampling variability among
the measured values, mainly leaf temperature (Temp). This procedure made it possible to
measure the leaf temperature in a situation of turgidity and some level of water deficit.

2.4. Irrigation Management

The data on the weather conditions during the experimental period were obtained
through an automatic station installed at the experimental field (RX3000 Remote Monitoring
Station, Bourne, MA, USA). Crop evapotranspiration was calculated by the Penman–
Monteith FAO method [28]. Conventional sprinkler irrigation was performed using Plonas
KS 1500 sprinklers (Curitiba, Brazil), operating at a 360-degree angle, with a flow rate of
7 m3 h−1, totaling 10 mm h−1. The variation of the irrigation levels was initiated in the
crop only after its establishment, 15 days after emergence (DAE). Irrigation was 100% of
the requirement up to that moment in all plots. The climate balance containing irrigation
and rainfall over the two crop seasons is contained in Supplementary Figure S1.

2.5. Obtaining Spectral Variables and Plant Assessments

Spectral wavelengths reflected by the crop canopy were measured from flights car-
ried out with the Sensefly eBee RTK fixed-wing UAV. The eBee has autonomous flight
control and was equipped with the Parrot Sequoia multispectral sensor. Sequoia mul-
tispectral sensor acquired reflectance at the wavelengths of green (550 nm ± 40 nm),
red (660 nm ± 40 nm), blue (496 nm), red-edge (735 nm ± 10 nm), and near-infrared
(790 nm ± 40 nm). This sensor also captures an RGB image at the same scene.

Overflights were performed at 100 m height of the local soil level, allowing a 0.10 m spa-
tial resolution. In the first crop season, the overflights were performed on 30 October 2020,
7 December 2020, and 28 December 2020, and in the second crop season, they were carried
out on 13 March 2021, 10 April 2021, and 08 May 2021. The overflights were carried out
near the zenith due to the minimization of the shadows of the plants at 11 a.m., given that
the multispectral sensor is a passive type (i.e., dependent on solar luminosity). The images
were mosaic and orthorectified by the computer program Pix4Dmapper. The images were
acquired with 80% longitudinal and 60% lateral overlaps. Radiometric correction of the
images was performed using the Pix4D program and the use of the camera’s reflective
target, in addition to the radiometric sensor coupled to the multispectral camera. The
multispectral maps were processed using ArcGIS 10.5 program.

The calculation of maize grain yield (GY) was performed by harvesting the ears
manually at the end of the crop cycle, at each sampling point, and in a harvested area of
4.05 m2. Sample weighing was performed, correcting the moisture content to 14%.

Thermal camera Fotric model 222 s (Shanghai, China) was used in the sampling
acquisition of the thermal images. This camera has a spatial resolution of 320 × 240 pixels,
capable of reading within the range of−20 ◦C ~ 650 ◦C, with thermal sensitivity of≤0.06 ◦C
and accuracy of±2%, under the conditions of environment temperature 10 ◦C ~ 35 ◦C. The
images were shot through a mobile application called LinkIR. A cell phone with an Android
operating system must be coupled to the camera, and it makes an RGB image of the same
Thermal image (Figure 2). Three evaluations were carried out at different phenological
stages of the maize crop (V5, V8, and R1), at 23 DAE, 31 DAE, and 52 DAE, when data
on canopy temperature (TEMP) and vegetation indices were collected. All variables were
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measured at ten points in the center of each experimental plot, and their average was used
in the statistical evaluation.
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Figure 2. Pearson correlation analysis between the variables grain yield, temperature, spectral bands,
and vegetation indices. The values shown in black indicate the overall correlation, while the colored
values indicate the correlation between irrigation management. *, ** and ***: significant at 5, 1 and
0.1% probability by t-test, respectively.

2.6. Statistical Analysis and Machine Learning

Pearson correlations (r) between the variables grain yield (GY), Temperature (Temp),
and the spectral bands (red, green, NIR, and red-edge) were estimated and represented by a
correlation and scatter plot. The analyses were performed on the Rbio [29] and R [30] soft-
ware using the GGEBiplotGUI package. Subsequently, canonical variable analysis was per-
formed on the Rbio software to verify the interrelationship between the variables evaluated.

Data were subjected to regression analysis by multiple linear regression (used as con-
trol) and ML models (Table 2). ANN has been tested using the default Weka’s architecture,
consisting of a Multilayer Perceptron with a unique hidden layer formed by many neurons
equal to the number of attributes plus the number of classes, all divided by two [31]. LR
has been tested with the Akaike information criteria for attribute selection during linear
regression [32]. The M5P algorithm is a classifier for generating a C4.5 decision tree with an
additional pruning step based on a reduced-error strategy [33]. REPTree is an adaptation
of the C4.5 classifier that can be used in regression problems with an additional pruning
step based on an error reduction strategy [34]. The RF model is able to produce multiple
decision trees for the same dataset and uses a voting scheme among all these learned trees
to classify new instances [35]. SVM performs classification tasks by building hyperplanes
in multidimensional space to distinguish different classes [36]. All model parameters were
set according to the default setting of the Weka 3.8.5 software (Waikato, New Zeland).
For all regression models, three different input dataset configurations were tested: using
only irrigation management (IR), using irrigation management and spectral bands (SB+IR),
and using irrigation management, spectral bands, and temperature (IR+SB+Temp). Grain
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yield (GY) was used as the output variable. All models were performed using stratified
cross-validation with k-fold = 10 and ten repetitions (100 runs for each model).

Table 2. List of machine learning models used in maize yield prediction.

Abbreviation Regression Model Reference

ANN Multilayer Perceptron Artificial Neural Network (ANN) [31]
LR Multiple Linear Regression [32]

M5P M5P Decision Tree Algorithm [33]
REPT REPTree Decision Tree Algorithm [34]

RF Random Forest [35]
SVM Support Vector Machine [36]

Pearson correlation coefficient (r) and Mean Absolute Error (MAE) metrics were used
to evaluate the performance of the tested prediction models. An analysis of variance was
performed to verify the significance of the tested inputs, ML techniques, and the interaction
between both. When significant, boxplots were generated with the means of r and MAE
grouped by the Scott–Knott test [37] at a 5% probability level. The grouping of means was
performed using the Rbio software (Viçosa, Brazil), while the boxplots were generated
using the ggplot2 and ExpDes.pt packages of the R software.

3. Results
3.1. Impact of Irrigation Management on Grain Yield and Leaf Temperature in Maize

According to the boxplots in the upper portion of Figure 2, higher yield values were
obtained with 60% or 100% ET. The other variables reached higher values with 100% ET
followed by 60% ET, except for red. Under control irrigation, the yield was low, as well as
for the other variables, except the red spectral band.

The correlations were high between spectral variables, which is expected due to the use
of spectral bands in the calculations of vegetation indices. The low or no correlation between
the spectral variables, yield, and temperature, is due to the lack of linearity between them.
Thus, non-conventional analyses such as Machine Learning (ML) techniques should be
used to evaluate correlations between such variables.

Maize yield was higher when irrigation was 100% ET or 60% of ET. This relationship
can be seen by the graph of canonical variables (Figure 3), in which the GY vector was
close to the mentioned irrigation management. Red wavelength was close to the control
ET vector, i.e., when plants are not adequately irrigated, there is a higher reflectance of
red wavelength by the canopy. The temperature variable was also close to the control
irrigation management.

3.2. Prediction of Grain Yield in Maize by Machine Learning Models

Table 3 presents p-values obtained by ANOVA for r and MAE considering the different
ML models and inputs. Regarding r, there was significance (p < 0.05) for the ML models
tested, while for MAE, there was a significant interaction between the models and inputs
tested, requiring the unfolding of the interaction.

The best ML algorithm for predicting maize yield under the different irrigation treat-
ments was Random Forest (Figure 4A), according to the Pearson correlation coefficient,
reaching an average of 0.58. All other algorithms did not differ from each other. The lowest
MAE found using IR as input was found using the LR, M5P, REPT, and RF models. Using
IR+SB and IR+SB+Temp as input, the lowest MAE was found using the RF models. When
comparing each ML with the tested inputs, LR, ANN, M5P, and REPT showed no statistical
difference. SVM showed lower MAE when the input tested was IR+SB+Temp, and RF
showed lower MAE using IR+SB and IR+SB+Temp (Figure 4B). The RF model using IR+SB
and IR+SB+Temp inputs outperformed the other algorithms by achieving higher r and
lower MAE values.
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Table 3. Summary of analysis of variance for Pearson correlation coefficients (r) and mean absolute
error (MAE) by different inputs and Machine Learning (ML) models tested.

SV DF r MAE

Input 2 0.00475 ns 205689.5 *
ML 5 0.039006 * 591503.2 *

Input ×ML 10 0.009434 ns 68399 *
CV (%) 16.23 7.44

ns: non-significant; * significant at 5% probability by F-test; ML: Machine Learning.
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4. Discussion
4.1. Impact of Irrigation Management on Grain Yield and Leaf Temperature in Maize

It is remarkable the proximity of the variable GY with the irrigation management
60% ET and ET (Figure 3) because the irrigation management has expressive impacts on
the crop. The effects of water deficit reflect directly on maize grain yield, especially in
three stages of plant development: (a) blooming and inflorescence development, when the
potential number of grains is determined; (b) fertilizing time, when the production potential
is fixed; in this step, the water availability is also fundamental to avoid the dehydration
of the pollen grain and to guarantee the development and penetration of the pollen tube;
(c) grain filling, when there is an increase in dry matter deposition, which is closely related
to photosynthesis since stress will result in lower carbohydrate production, which would
imply a lower volume of dry matter in the grains [4,6,7]. Water stress at 31 DAE, when the
crop was at approximately V8, may affect the length of internodes, probably by inhibiting
the elongation of developing cells, thus contributing to a decrease in the sugar storage
capacity of the stem. Water deficit will also lead to thinner stems, shorter plants, and
reduced leaf area [38].

The use of information obtained by multispectral imaging enables the fast and non-
destructive monitoring of several physiological and structural characteristics of different
crops [39]. The behavior of the spectral reflectance of leaves differs according to internal
plant characteristics. For example, the reflectance in the visible and red-edge bands when
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plants are under adequate hydration and water stress are different [40]. When plants are
subjected to water stress for a short time, they use mechanisms to avoid further damage,
which leads to heat emission and altered wavelength reflectance processes. When the
stress is prolonged, the damage is at the level of chlorophyll detriment, which increases the
interference with leaf reflectance [41,42].

The reflectances emitted by a plant with its biological activity fully active and another
one going through drought stress showed distinct proximities with the vectors for VIs and
SB. Red was close to the control ET vector because drought stress leads the plant to reduce
green reflectance and increase blue and red reflectances [43].

4.2. Prediction of Grain Yield in Maize with Machine Learning Models

Yield prediction supports improved crop monitoring and policy management, and
Yield prediction supports improved crop monitoring, policy management, and decision-
making before the crop is harvested [44]. However, yield data encompass many variables
intrinsic to crop, management, and climate conditions. Using technologies such as machine
learning techniques allied to spectral data has an essential role in contributing to the
productive improvement of farming systems [15].

ML models make it possible to process a large and highly complex dataset, circum-
venting the lack of linearity that exists between data [45]. RF proves to be a highly accurate
algorithm in many agricultural applications [15]. In Figure 4, both for r and MAE, RF
presented better results than the other techniques used, showing good performance in
predicting maize yield. Marques Ramos et al. [15] verified the high accuracy of maize yield
prediction obtained by the RF algorithm using UAV-based imagery. In addition to good
performance in maize yield prediction, RF has better data generalization [46].

When evaluating the inputs tested, those with SB+IR and SB+IR+Temp performed
better. As both inputs showed similar performance, from the point of view of acquiring
and processing information, using the spectral bands and irrigation management is more
advantageous than using the input containing temperature. This is because measuring
temperature requires a thermal camera, time investment, and increased data processing.
Another shortcoming of using canopy temperature information is that it is greatly influ-
enced by solar radiation, weather conditions, and intrinsic leaf characteristics, such as
canopy architecture, making it difficult to obtain only the shoot temperature, especially
when it is affected by water conditions [47–49]. As plant canopy temperature is directly
related to the crop water status, it can be elevated by up to 2.3 ◦C under drought stress
conditions [50]; it is not necessary to use the temperature as an input variable.

Using spectral bands as input in machine learning algorithms also generates accurate
outputs for many studies, such as the identification of soybean cultivars [51] and in the
prediction of agronomic traits such as plant height and maturity [17]. According to specific
characteristics of the chlorophyll pigments, the wavelengths reflected by plants, especially
red, are sensitive to chlorophyll alteration and allow correlation with crop characteris-
tics [52,53]. Irrigation management strongly influences these characteristics. One of the
explanations for this effect is that the closure of the stomata by plants undergoing drought
stress leads to a decrease in net photosynthesis, fluorescence and chlorophyll content of the
leaves [54].

Physiological changes that occur in plants due to water and temperature variations
can assist in predicting crop yields when leaf area is taken into consideration because it can
determine the amount of chlorophyll in the leaves and thus estimate the photosynthetic
potential [55] and correlate this information with the crop’s yield potential.

According to the results presented here, the superior performance of the RF algorithm
may be more evident when the response is the product of multiple complex interactions
between several predictors, such as in agricultural systems where the interactions between
biophysical, ecological, physiological, and agronomic management can complicate mod-
eling. Herrero-Huerta [56] also tested ML models in soybean yield prediction using data
obtained by a UAV multispectral sensor and verified high accuracy (90.7%) by RF. In a study
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to predict leaf nitrogen concentration (LNC) and plant height (PH) with machine learning
techniques and UAV-based multispectral imagery in maize crops in Brazil, Osco et al. [18]
also verified superior performance by RF, which archived r and RMSE, respectively, of 0.91
and 1.9 g.kg−1 for LNC, and 0.86 and 0.17 m for PH.

Most RF applications have focused on its utility as a classification tool [51,57]. How-
ever, recent studies exploring the regression capabilities of the RF algorithm to predict crop
productivity in tropical territories are very limited. Various studies have pointed out nu-
merous advantages of RF as a regression tool over traditional regression models [18,56,57].
To date, the applications of RF regression in the fields of agronomy and crop science remain
scarce. Therefore, the results presented here could constitute the basis for initiating new
contributions to agricultural sciences.

5. Conclusions

Our study tested different machine learning models and inputs for grain yield pre-
diction in maize. Among the inputs tested are spectral bands (SB) obtained with a UAV
multispectral sensor, leaf temperature (Temp) obtained with a thermal sensor, and irrigation
management (IR). Random Forest achieved higher accuracy in predicting maize grain yield,
especially when associated with inputs SB+IR and SB+IR+Temp.

Given the results obtained, there are no gains in accuracy with the use of leaf tempera-
ture obtained with a thermal sensor for predicting grain yield in maize.

This manuscript reports a promising result for estimating grain yield in maize using
a multispectral UAV sensor with a thermal sensor associated with the random forest
algorithm. However, it is important to highlight that grain yield is a complex trait governed
by many genes and with a strong environmental effect. Therefore, future research can be
carried out with hyperspectral sensors aiming to increase the prediction accuracy of this
variable in maize.
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//www.mdpi.com/article/10.3390/rs15010079/s1, Figure S1. Water balance during the experiment
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(RAW) and water storage (Storage) for supplemented irrigation (1A and 2A) and rainfed condition
(1B and 2B).
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35. Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
36. Nalepa, J.; Kawulok, M. Selecting Training Sets for Support Vector Machines: A Review. Artif. Intell. Rev. 2019, 52, 857–900.

[CrossRef]
37. Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 1974, 30, 507–512.

[CrossRef]
38. Magalhaes, P.C.; Durães, F.O.M. Fisiologia Da Produção de Milho. Circ. Técnica 2006, 76, 1–10.
39. Gerhards, M.; Rock, G.; Schlerf, M.; Udelhoven, T. Water Stress Detection in Potato Plants Using Leaf Temperature, Emissivity,

and Reflectance. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 27–39. [CrossRef]
40. Sun, J.; Yang, L.; Yang, X.; Wei, J.; Li, L.; Guo, E.; Kong, Y. Using Spectral Reflectance to Estimate the Leaf Chlorophyll Content of

Maize Inoculated With Arbuscular Mycorrhizal Fungi Under Water Stress. Front. Plant Sci. 2021, 12, 646173. [CrossRef]
41. Lichtenthaler, H.K. Vegetation Stress: An Introduction to the Stress Concept in Plants. J. Plant Physiol. 1996, 148, 4–14. [CrossRef]
42. Zhang, F.; Zhou, G. Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop

Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecol. 2019, 19, 18. [CrossRef]
43. Zarco-Tejada, P.J.; Ustin, S.L. Modeling Canopy Water Content for Carbon Estimates from MODIS Data at Land EOS Validation

Sites. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International
Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 1,
pp. 342–344.

44. Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y. Grain Yield Prediction of Rice Using
Multi-Temporal UAV-Based RGB and Multispectral Images and Model Transfer–a Case Study of Small Farmlands in the South of
China. Agric. For. Meteorol. 2020, 291, 108096. [CrossRef]

45. Roell, Y.E.; Beucher, A.; Møller, P.G.; Greve, M.B.; Greve, M.H. Comparing a Random Forest Based Prediction of Winter Wheat
Yield to Historical Yield Potential. Agronomy 2020, 10, 395. [CrossRef]

46. Meng, L.; Liu, H.; Ustin, S.L.; Zhang, X. Predicting Maize Yield at the Plot Scale of Different Fertilizer Systems by Multi-Source
Data and Machine Learning Methods. Remote Sens. 2021, 13, 3760. [CrossRef]

47. Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to Explore Plant–Environment Interactions. J. Exp. Bot. 2013, 64, 3937–3949.
[CrossRef] [PubMed]

48. Hsiao, T.C. Plant Responses to Water Stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [CrossRef]
49. Sobejano-Paz, V.; Mikkelsen, T.N.; Baum, A.; Mo, X.; Liu, S.; Köppl, C.J.; Johnson, M.S.; Gulyas, L.; García, M. Hyperspectral

and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought.
Remote Sens. 2020, 12, 3182. [CrossRef]

50. Carroll, D.A.; Hansen, N.C.; Hopkins, B.G.; DeJonge, K.C. Leaf Temperature of Maize and Crop Water Stress Index with Variable
Irrigation and Nitrogen Supply. Irrig. Sci. 2017, 35, 549–560. [CrossRef]

51. Gava, R.; Santana, D.C.; Cotrim, M.F.; Rossi, F.S.; Teodoro, L.P.R.; da Silva Junior, C.A.; Teodoro, P.E. Soybean Cultivars
Identification Using Remotely Sensed Image and Machine Learning Models. Sustainability 2022, 14, 7125. [CrossRef]

52. Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the Relationship between Reflectance Red Edge and Chlorophyll Content in
Slash Pine. Tree Physiol. 1990, 7, 33–48. [CrossRef]

53. Xu, M.; Liu, R.; Chen, J.M.; Liu, Y.; Shang, R.; Ju, W.; Wu, C.; Huang, W. Retrieving Leaf Chlorophyll Content Using a Matrix-Based
Vegetation Index Combination Approach. Remote Sens. Environ. 2019, 224, 60–73. [CrossRef]

http://doi.org/10.3390/rs13112160
http://doi.org/10.3390/rs12060906
http://doi.org/10.1093/jxb/erg262
http://doi.org/10.1016/j.agwat.2018.07.035
http://doi.org/10.1590/1984-70332017v17n2s29
http://doi.org/10.1016/S0031-3203(01)00178-9
http://doi.org/10.1016/j.forsciint.2017.08.005
http://doi.org/10.1016/j.eij.2011.04.003
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1007/s10462-017-9611-1
http://doi.org/10.2307/2529204
http://doi.org/10.1016/j.jag.2016.08.004
http://doi.org/10.3389/fpls.2021.646173
http://doi.org/10.1016/S0176-1617(96)80287-2
http://doi.org/10.1186/s12898-019-0233-0
http://doi.org/10.1016/j.agrformet.2020.108096
http://doi.org/10.3390/agronomy10030395
http://doi.org/10.3390/rs13183760
http://doi.org/10.1093/jxb/ert029
http://www.ncbi.nlm.nih.gov/pubmed/23599272
http://doi.org/10.1146/annurev.pp.24.060173.002511
http://doi.org/10.3390/rs12193182
http://doi.org/10.1007/s00271-017-0558-4
http://doi.org/10.3390/su14127125
http://doi.org/10.1093/treephys/7.1-2-3-4.33
http://doi.org/10.1016/j.rse.2019.01.039


Remote Sens. 2023, 15, 79 13 of 13

54. Zhu, M.; Li, F.H.; Shi, Z.S. Morphological and Photosynthetic Response of Waxy Corn Inbred Line to Waterlogging. Photosynthetica
2016, 54, 636–640. [CrossRef]

55. Nemeskéri, E.; Helyes, L. Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy 2019, 9, 447.
[CrossRef]

56. Herrero-Huerta, M.; Rodriguez-Gonzalvez, P.; Rainey, K.M. Yield prediction by machine learning from UAS-based multi-sensor
data fusion in soybean. Plant Methods 2020, 16, 78. [CrossRef] [PubMed]

57. Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al.
Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11099-016-0203-0
http://doi.org/10.3390/agronomy9080447
http://doi.org/10.1186/s13007-020-00620-6
http://www.ncbi.nlm.nih.gov/pubmed/32514286
http://doi.org/10.1371/journal.pone.0156571
http://www.ncbi.nlm.nih.gov/pubmed/27257967

	Introduction 
	Materials and Methods 
	Study Area 
	Experiment Installation 
	Experimental Design 
	Irrigation Management 
	Obtaining Spectral Variables and Plant Assessments 
	Statistical Analysis and Machine Learning 

	Results 
	Impact of Irrigation Management on Grain Yield and Leaf Temperature in Maize 
	Prediction of Grain Yield in Maize by Machine Learning Models 

	Discussion 
	Impact of Irrigation Management on Grain Yield and Leaf Temperature in Maize 
	Prediction of Grain Yield in Maize with Machine Learning Models 

	Conclusions 
	References

