
Citation: Hutsler, T.; Pricope, N.G.;

Gao, P.; Rother, M.T. Detecting

Woody Plants in Southern Arizona

Using Data from the National

Ecological Observatory Network

(NEON). Remote Sens. 2023, 15, 98.

https://doi.org/10.3390/rs15010098

Academic Editors: Inge Jonckheere

and Wenquan Zhu

Received: 19 October 2022

Revised: 13 December 2022

Accepted: 22 December 2022

Published: 24 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Detecting Woody Plants in Southern Arizona Using Data from
the National Ecological Observatory Network (NEON)
Thomas Hutsler 1,*, Narcisa G. Pricope 1 , Peng Gao 1 and Monica T. Rother 2

1 Department of Earth and Ocean Sciences, University of North Carolina Wilmington, 601 S College Road,
Wilmington, NC 28403, USA

2 Department of Environmental Sciences, University of North Carolina at Wilmington, 601 S College Road,
Wilmington, NC 28403, USA

* Correspondence: thomas.hutsler@gmail.com

Abstract: Land cover changes and conversions are occurring rapidly in response to human activities
throughout the world. Woody plant encroachment (WPE) is a type of land cover conversion that
involves the proliferation and/or densification of woody plants in an ecosystem. WPE is especially
prevalent in drylands, where subtle changes in precipitation and disturbance regimes can have
dramatic effects on vegetation structure and degrade ecosystem functions and services. Accurately
determining the distribution of woody plants in drylands is critical for protecting human and natural
resources through woody plant management strategies. Using an object-based approach, we have
used novel open-source remote sensing and in situ data from Santa Rita Experimental Range (SRER),
National Ecological Observatory Network (NEON), Arizona, USA with machine learning algorithms
and tested each model’s efficacy for estimating fractional woody cover (FWC) to quantify woody
plant extent. Model performance was compared using standard model assessment metrics such as
accuracy, sensitivity, specificity, and runtime to assess model variables and hyperparameters. We
found that decision tree-based models with a binary classification scheme performed best, with
sequential models (Boosting) slightly outperforming independent models (Random Forest) for both
object classification and FWC estimates. Mean canopy height and mean, median, and maximum
statistics for all vegetation indices were found to have highest variable importance. Optimal model
hyperparameters and potential limitations of the NEON dataset for classifying woody plants in
dryland regions were also identified. Overall, this study lays the groundwork for developing
machine learning models for dryland woody plant management using solely NEON data.

Keywords: national ecological observatory network (NEON); woody plant encroachment (WPE);
vertical vegetation metrics; land degradation; dryland regions; light detection and ranging (LiDAR);
machine learning; drylands modeling; active and passive remote sensing fusion

1. Introduction

Approximately 41% of Earth’s land surface is considered dryland, making drylands
one of the most prevalent land cover types in the world [1,2]. Drylands are characterized
by their low annual precipitation and soil moisture relative to other land cover types
and are typically classified by the ratio of annual precipitation (P) to annual potential
evapotranspiration (PET) [1]. Through the progression of climate change, it is expected that
global dryland cover will increase by 10% under high greenhouse gas emission scenarios
relative to 1961–1990 climatology [1,3]. This dryland expansion is primarily associated
with increased aridity as global temperature rises [1,2]. In addition to their high land cover
percentage, drylands are home to more than one third of the global human population, are
comprised of diverse ecosystems (e.g., desert, grassland, and savanna), provide humans
with rangeland, cropland, and recreational area, and facilitate ecosystem functions and
services (e.g., soil retention, nutrient cycling, carbon sequestration) [1,3–6]. While dryland
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regions are highly valuable, as seen by their myriad benefits to humans and wildlife,
their ecosystems are fragile and prone to rapid degradation. It is therefore paramount to
understand the threats to dryland regions, and how to quantify them, to inform land and
water resource management in these delicate regions.

Dryland ecosystems are extremely susceptible to subtle changes in disturbance [1,3,4].
Common high-impact disturbances in dryland regions include abrupt changes in precip-
itation patterns, wildlife and livestock grazing pressures, shifting fire regimes, and land
use [1,4,6–8]. These disturbances often occur in tandem and have compounding interac-
tions that can cause dramatic shifts in ecosystem structure and function and ultimately
degrade dryland functionality [1,4,6–8]. Metrics like net primary productivity (NPP) and
Normalized Difference Vegetation Index (NDVI) are often used to measure such land
degradation, as these metrics are proxies for vegetation health, with decreases (“brown-
ing”) indicating land degradation and increases (“greening”) indicating healthy land [9,10].
There is issue with this simplified way of assessing land degradation, however, as land
health is not always a function of vegetation health/productivity [11,12]. An example
occurring in dryland regions is called woody plant encroachment (WPE), which can be
regarded as a type of dryland degradation when shifts from non-woody to woody plant
dominance result in loss of land function and biodiversity [4,6–8,11,13]. Such processes
would not be easily identified as land degradation when looking at greenness or NPP alone.
Therefore, other metrics like vegetation structure (canopy height, cover, and density) are
just as important as “greenness” and NPP for identifying land degradation processes at
global and regional scales [6,12].

The intrusion of woody plants into grassland and savanna ecosystems has rapidly
increased throughout global dryland regions over the past 100–200 years, threatening
endemic biodiversity and socioeconomic stability [4,6,7,11,14,15]. WPE is a process of
woody plant densification and occurs in both woody and non-woody plant communities
through understory succession and canopy development [11]. While WPE can facilitate
restorative ecosystem shifts in landscapes that have been cleared for other uses (e.g., pasture
or timber harvest), its rate has been unprecedented in historically stable grassland and
savanna ecosystems, ultimately degrading them. WPE is primarily driven by changes
to mean annual precipitation, soil properties, and changes to disturbance regimes (fire,
grazing) [1,4,6–8]. The relationships between these variables and how they drive woody
plant extent is complex. Mean annual precipitation drives woody plant growth on a
fundamental level, as more water availability spurs woody plant growth [4]. However, as
drylands become more arid, lower water tables can favor woody plants over herbaceous
plants [4]. Water availability can also result in changes to water efficiency between different
plant species, influencing plant fitness [4]. Therefore, water availability/precipitation alone
cannot be used to predict whether WPE will occur. Soil type also plays into water retention,
with clay-rich soils storing more water than silty or sandy soils [16]. These factors, combined
with the absence of major fires and increased grazing pressure, allow woody plants to
recruit into grassland and savanna ecosystems. Historically, woody plant dominance has
been stunted by fire-driven dieback and limited access to water, with links to indigenous
humans helping drive fire frequency [17]. Grasses and herbaceous vegetation recover more
quickly from such disturbance and resource limitations, and generally re-establish before
woody plants can gain dominance [6]. Over the past two centuries, however, increased
grazing pressures, decreased frequency and intensity of fires, and changes to precipitation
patterns has led to rapid WPE in many areas [4,6,7]. In dryland regions, WPE negatively
impacts human and wildlife populations by decreasing grazing/cropland productivity,
overlapping human–wildlife boundaries, and degrading land functions [4,6,7,14,15]. For
example, dryland degradation in the southwestern United States has been estimated to
reduce net primary productivity by 35.9 ± 4.7 Tg of carbon per year [18]. Land managers
in dryland regions throughout the world are now faced with the challenge of identifying
where and at what rates WPE is occurring at the landscape scale to prevent, control, and
restore degraded drylands and protect the integrity of dryland ecosystems.
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Current WPE management and mitigation strategies rely on access to accurate es-
timates of Fractional Woody Cover (FWC) to prioritize management areas, formulate
budgets, and monitor mechanical/fire-based treatment effectiveness [19]. FWC is defined
as the proportion of area covered by woody vegetation and has been traditionally estimated
by community-scale field sampling and/or landscape-scale remote sensing [19]. Today,
in situ and remote sensing data can be leveraged with new open-source machine learn-
ing (ML) algorithms to further enhance the scale of woody plant monitoring by training
models to classify woody vegetation [2,19–23]. Once woody vegetation has been mapped
effectively, land managers can strategically implement bush management methods such as
mechanical removal, herbicide application, and controlled burning to efficiently combat
WPE [4,19,24]. Ideal methods for estimating FWC balance the use of field sampling and
remote sensing by acquiring enough ground truth data to reliably classify larger remotely
sensed areas through machine learning algorithms [19]. While remote sensing data is
crucial for large-scale estimates of FWC, few open-source datasets offer the ability to extract
vegetation structure metrics, which play an important role in classifying woody vegetation
for estimating FWC [15,19,20]. Due to the high cost of Light Detection and Ranging (LiDAR)
sensors, the large volume of data to collect and process, and the limited structure data
capabilities of photogrammetry (cannot penetrate canopy), large open-source databases
that satisfy a diversity of user needs are difficult to conceive, let alone actualize. In recog-
nition of this data gap, the National Science Foundation, in partnership with a non-profit
organization called Battelle, has established a highly diverse and comprehensive ecosys-
tem monitoring network in the United States called the National Ecological Observatory
Network (NEON) [25].

The current landscape of remote sensing and ML integration highlights several top
contending statistical models for classifying vegetation at scale, many of which rely on deci-
sion trees [2,19–21,23]. Common ML models used to classify vegetation rely on “forests” of
decision trees and include Bagging and Random Forest (RF). Bagging and RF are known as
independent ML models, as each decision tree is constructed independently [26]. Sequential
ML models are another type of ML model that differ from independent models in that each
newly generated decision tree is created based on information from the previous decision
tree. These sequential models are commonly referred to as ‘boosting’ models (e.g., Gradient
Boost (GB), eXtreme Gradient Boost (XGB), Light Gradient Boost (LGB), Ada Boost (ADA),
and Cat Boost (CAT)). Upon review of current literature surrounding the use of NEON
data to classify woody plants, only two major studies were found [22,23]. One study used
semi-supervised neural networks to delineate tree crowns in a primarily closed-canopy for-
est [22], while the other used pixel-based Random Forest to classify coniferous tree species
in an open woodland ecosystem [23]. With [22] studying dense canopy complexity and [23]
studying open woodland canopy, a gap is presented in ML-driven vegetation monitoring at
NEON sites with low canopy complexity. A combination of this gap in research and sugges-
tions by [23] that canopy complexity influences classification model performance helped
inform our study site selection of NEON’s Santa Rita Experimental Range (SRER)—a long
studied shrub/scrub ecosystem with relatively simple canopy complexity.

The broad goals of this study were to contribute to current understanding of optimal
ML models for monitoring/managing woody vegetation in dryland regions by explor-
ing novel data and approaches for monitoring woody vegetation patterns in a testable,
replicable manner. Our focused research goal was to develop methods for monitoring
woody vegetation cover and ecosystem change in dryland regions that are subjected to
human management and global climate variables while making use of modern datasets.
The methods from this study provide FWC estimates in a dryland region with relatively
low canopy complexity. Optimizing FWC estimates will provide valuable insight and
methods for land managers interested in pursuing large-scale vegetation monitoring in
dryland regions.
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This study addresses three research questions (RQs) to meet our goals:

1. (RQ1) What classification models and schemes most accurately classify woody vege-
tation at a dryland NEON site with low canopy complexity?

2. (RQ2) What variables are most important for classifying woody vegetation at a dry-
land NEON site with low canopy complexity?

3. (RQ3) How do FWC estimates derived from manual classification methods compare
to FWC estimates derived from ML models?

2. Materials and Methods

The National Ecological Observatory Network (NEON) is an array of 81 terrestrial and
freshwater study sites dispersed throughout the continental United States, Alaska, Hawaii,
and Puerto Rico. NEON was established in 2016 by the National Science Foundation with
the primary goal of capturing the ecological heterogeneity of the US. To accomplish this
goal, NEON relies on its Aerial Observation Platform (AOP) and Terrestrial Observation
System (TOS) to collect a comprehensive suite of airborne remote sensing and in situ
sampling data across 20 ecoclimatic domains, from tundra to tropical ecosystems. All
NEON data are open-source and can be directly downloaded from the NEON Data Portal
(https://data.neonscience.org/ (accessed on 23 August 2021)) [27].

The NEON AOP began collecting data in 2013 and consists of Twin Otter aircraft
mounted with a discrete waveform LiDAR sensor to capture ground structure and elevation,
an imaging spectroradiometer to capture multispectral reflection data, and a high-resolution
digital camera [25]. The sensors are co-mounted within the aircraft and flown at an
average altitude of one kilometer to deliver high spatial consistency between generated
data products. The AOP is flown at each site annually, surveying a flight box that covers a
minimum of 100 km2. The remote sensing data collected and derived from the AOP is used
in this study as ancillary/covariate data for mapping the extent of woody plants in dryland
regions by supporting the development of ML models aimed at estimating FWC [24,25].

The NEON TOS began collecting in situ measurements in 2016. Data are collected
every 1–3 years at each site by highly trained field technicians. A large variety of ecological
data are collected at NEON sites; therefore, several types of plots have been established.
Tower base plots (located in proximity around a sensor tower) and distributed base plots
(spread throughout the entire study area) are plots used to collect vegetation data and are
the source of in situ vegetation data for this study. Plots are established according to a
spatially balanced and stratified-random design and are placed to represent dominant land
cover classes according to the National Land Cover Database (NLCD) [28].

Santa Rita Experimental Range (SRER) is a NEON site that falls within Domain 14:
Desert Southwest. SRER is located approximately 25 miles south of Tucson, Arizona
(31.91068◦N, −110.83549◦W) and is one of the most extensively studied dryland regions
in the United States [29]. SRER was established in 1903 by the U.S. Forest Service and
managed by the U.S. Department of Agriculture until 1988, when management was handed
over to the University of Arizona [29]. The initial establishment of SRER was prompted
by a severe drought in the late 1800s that wiped out ranching activities in the region. At
first, research activities were focused on forage plants on the range, allowing scientists to
determine phenology patterns, carrying capacity, and restoration strategies for the area,
with the overall goal to understand rangeland and cattle management. Over time, research
focus has shifted to general studies about climate change, environmental restoration, and
ecological processes [29]. SRER became a NEON study site in 2015 in pursuit of NEON’s
goal to capture the ecological heterogeneity of the United States and is designated as a
terrestrial core site within the network. A site overview is provided in Figure 1.

https://data.neonscience.org/
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Dominant vegetation at SRER is dependent on elevation, with trees (Prosopis velun-
tina) and cacti (Cylindropuntia spp.) dominating elevations between 975–1100 m and 
shrubs (Larrea tridentata) dominating elevations below 975 m [29]. Vegetation data col-
lected at SRER indicate that most of the site falls within the Shrub/Scrub land cover class 
as defined by the National Land Cover Database with FWC estimated between 30–35% 
and an overall mean canopy height of 2.0 m [16,29]. The Shrub/Scrub land cover class is 
described as areas dominated by shrubs less than five meters tall, with shrub canopy typ-
ically greater than 20% of the total vegetation [28]. Climate at SRER is characterized by 
semi-arid, hot conditions. Mean annual precipitation at SRER is 346 mm and occurs in a 
bimodal frequency, with most rainfall occurring as summer monsoons and winter rains 
[29]. Mean annual temperature is 19.3 °C (67 °F) with diurnal temperature swings of up 
to 15 °C (59 °F) regardless of season [13]. Soils at SRER are mostly composed of alluvial 
deposits from the nearby Santa Rita Mountains, with the most common soil subgroup 
being Typic Torrifluvents (hot, dry floodplain soils) [13]. Soils at higher elevations have 

Figure 1. Santa Rita Experimental Range (SRER). AOP flight box is outlined in red, with prediction
areas outlined in purple and training areas outlined in black [25,27,30].

Dominant vegetation at SRER is dependent on elevation, with trees (Prosopis veluntina)
and cacti (Cylindropuntia spp.) dominating elevations between 975–1100 m and shrubs
(Larrea tridentata) dominating elevations below 975 m [29]. Vegetation data collected at
SRER indicate that most of the site falls within the Shrub/Scrub land cover class as defined
by the National Land Cover Database with FWC estimated between 30–35% and an overall
mean canopy height of 2.0 m [16,29]. The Shrub/Scrub land cover class is described as areas
dominated by shrubs less than five meters tall, with shrub canopy typically greater than 20%
of the total vegetation [28]. Climate at SRER is characterized by semi-arid, hot conditions.
Mean annual precipitation at SRER is 346 mm and occurs in a bimodal frequency, with most
rainfall occurring as summer monsoons and winter rains [29]. Mean annual temperature
is 19.3 ◦C (67 ◦F) with diurnal temperature swings of up to 15 ◦C (59 ◦F) regardless of
season [13]. Soils at SRER are mostly composed of alluvial deposits from the nearby Santa
Rita Mountains, with the most common soil subgroup being Typic Torrifluvents (hot, dry
floodplain soils) [13]. Soils at higher elevations have higher organic content, less salt, and
lower temperature compared to soils at lower elevations [13].
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All data were downloaded from the NEON data portal (neonscience.org) and are
listed and described in Table 1. All data and imagery are from the year 2017, as this was
the first year the AOP was flown at SRER. A total of 38 plots (18 tower, 20 distributed) at
SRER had in situ vegetation data collected between 2016–2019 and all were used to create
training data. Plot size ranged from 400–1600 m2, with distributed plots being smaller than
tower plots. LiDAR point clouds, hyperspectral imagery, and high resolution RGB imagery
were collected using the NEON AOP. Data were collected at a period of peak greenness to
ensure all vegetation were at maximum phenological stages.

Table 1. Data products downloaded from the NEON Data Portal. DP1 and DP2 indicate Level-1 and
Level-2 data products, respectively.

Data Product Name Data Format Description

Discrete Return LiDAR Point
Cloud (DP1.3003.001) [31] LAZ

Point locations recorded in meters with
spatial resolution ranging from

0.15–1.5 m
High-resolution orthorectified

camera imagery
(DP1.30010.001) [32]

GeoTIFF White balanced, 8-bit RGB imagery
collected at 0.1 m spatial resolution

Vegetation Indices
(DP2.30026.001) [33] GeoTIFF

Collection of five spectral indices (ARVI,
EVI, NDVI, PRI, and SAVI) derived from

multispectral imagery at 10 m
spatial resolution

Vegetation Structure
(DP1.10098.001) [34] XLSX

Database on woody plant species,
location, and measurements recorded by

TOS field technicians

Flight Boundaries [30] Shapefile Shapefile containing AOP flight
boundaries for all NEON sites

TOS Sampling Locations [27] Shapefile
Shapefile containing TOS sampling

locations. Used to delineate plot
boundaries for masking and clipping.

Level-0 NEON AOP data products are raw, unprocessed data and are not used in this
study. Level-1 data products are derived from Level-0 through geometric, atmospheric, and
radiometric correction. Level-2 data products are derived from Level-1 through additional
processing depending on the data product type. Level-2 CHMs for NEON sites are corrected
so that canopy heights of less than 2.0 m are automatically set to zero. With a mean canopy
height of 2.0 m at SRER, the Level-2 CHM did not capture the level of detail needed for
this study. Therefore, the Level-1 classified LiDAR point clouds were used to manually
generate CHMs through an open-source point cloud processing software called Cloud
Compare [35]. Point clouds were initially cleaned of erroneous points using a Statistical
Outlier Removal (SOR) filter [35]. Next, point clouds were visually inspected to remove
any other erroneous points that may have been missed by the SOR filter. Once point clouds
were cleaned, a plugin for ArcGIS Pro called LAStools was used to normalize height values
for the point cloud [36]. Using the “lasheight” tool from the LAStools plugin, the lowest
point in each cloud was set to zero meters and all other points were scaled accordingly.
Once cleaned and height normalized, point clouds were converted into CHMs, Canopy
Density Models (CDMs), and Canopy Cover Models (CCMs) using the “lascover” tool
from the LASTools plugin. These three data products are hereby referred to collectively as
vegetation structure models. Each vegetation structure model was parameterized to match
the resolution, extent, and grid placement of the Level-2 vegetation index models (NDVI,
EVI, SAVI, and ARVI).

Once all vegetation structure models had been created, the Segment Mean Shift tool
in ArcGIS Pro was used to segment the high resolution orthophotos into groups of pixels
with similar spectral properties. Parameters of the Segment Mean Shift tool were adjusted
until pixels from individual shrub crowns were delineated from their surroundings. Next,
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we used the Region Group tool in ArcGIS Pro to assign unique IDs for each segmented
region. The Raster to Polygon tool was then used to convert the rasterized pixel groups
into polygons. This polygon layer was used to generate zonal statistics for each vegetation
structure and index variable by calculating the minimum, maximum, mean, range, and
median pixel value for each polygon. The resulting polygon layer had these five statis-
tics for each of the seven variables, leading to 35 total variables (shown in Table 2 and
Figure S1). Figures starting with “S” can be found at the end of this document via the link
to Supplementary Materials.

Table 2. List of variables used for this study. Five statistics for each variable were calculated (mini-
mum, maximum, mean, range, and median pixel value for each polygon) for a total of 35 numerical
predictor variables and a single response variable.

Variable Derivation Description

Canopy Height (CH, meters) LiDAR Point Cloud Distance between the ground and top of
vegetation canopy

Canopy Cover (CC, %) LiDAR Point Cloud Percent horizontal cover occupied
by canopy

Canopy Density (CD, %) LiDAR Point Cloud Percent vertical cover occupied by canopy
Normalized Difference Vegetation

Index (NDVI) NDVI = NIR−RED
NIR+RED

Index for extracting vegetation; based on
infrared reflectance (−1.0 to 1.0)

Soil Adjusted Vegetation Index (SAVI) SAVI = NIR−RED
NIR+RED+0.5 × 1.5

Index for extracting vegetation that
accounts for soil color (−1.0 to 1.0)

Atmospherically Resistant Vegetation
Index (ARVI) ARVI = NIR−[RED−γ(BLUE−RED)]

NIR+[RED−γ(BLUE−RED)]

Index for extracting vegetation that
accounts for airborne particles like dust

and smoke (γ γ) (−1.0 to 1.0)

Enhanced Vegetation Index (EVI) EVI = 2.5 × (NIR−R)
NIR+6(RED)−7.5(BLUE)+1

Index for extracting vegetation; based on
greenness (−1.0 to 1.0)

Vegetation Cover Class
GPS located woody plants combined
with CH threshold and aerial image

interpretation

Categorical response variable used to
classify a record as woody, non-woody,

or other

Once the polygon layer had been populated with data, we proceeded with polygon
classification. Two classification schemes were used in this study to classify polygons:
binary and multiclass. Initial classification was performed using a simple canopy height
threshold like those used in other studies [2,15]. Polygons with mean canopy height values
greater than or equal to ten centimeters were deemed woody and polygons with mean
canopy height values less than ten centimeters were deemed non-woody. A combination of
in situ vegetation location data and aerial image confirmation were then used to manually
reclassify any mistakes incurred by the initial thresholding. The multiclass dataset was
derived from the binary dataset, but with a new “other” class. The “other” class was used
to classify polygons with mixed cover and bare ground.

Once all polygons were classified, the dataset was exported to a Comma Separated
Value (CSV) file and imported into the Jupyter Notebook programming environment for
Python. Initial exploratory data analysis (EDA) was performed to explore our binary and
multiclass training datasets, their properties, and relationships between variables. In the
process of generating zonal statistics, some polygons did not cross the centroid of a single
pixel, resulting in 151 records with null values. Our initial data cleaning removed these
null records, leaving us with a total of 4339 polygons across the 38 training plots. Under
the binary classification scheme, the woody and non-woody classes each comprised about
half of the polygons (51.9%, 48.1%, respectively). Under the multiclass scheme, the woody
class was more abundant (50.1%), followed by non-woody (37.6%), then other (12.3%).

Variable correlation was assessed with heat maps to understand the relationships
between each variable. High correlation was observed between certain statistics for the
same variable (e.g., mean and max, max and range) which is expected due to the nature of
such statistics. High correlation was observed between the statistics for the canopy cover
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and canopy density variables, which is thought to be due to the growth form of shrubs
(somewhat cube-like or spherical). High correlations were also observed between all vege-
tation indices due to their shared property of having higher values for photosynthetically
active vegetation and lower values for anything else. All variables were also right skewed,
with the most skewness observed in the canopy height statistics. This indicates that high
values for any given vegetation index or structure variable–indicative of vegetation–are
relatively uncommon in the training dataset and more field collection may be necessary to
bolster the representation of woody plant properties in the data.

After EDA, each dataset was input into each machine learning model and performance
was assessed. Five-Fold Cross Validation (FFCV) was used to train each model and assess
its predictions. Performance was compared between decision tree-based and non-decision
tree-based models for initial model selection. The top variables were then ranked by
importance from all selected models using a simple voting method, where if a variable
was in the top ten for a given model, it received one vote. Ten was chosen as the cutoff
due to importance rapidly decreasing after the top ten variables for most models. The
Boruta package in Python (Python Version 3.9.8, Python Software Foundation, Wilmington,
DE, USA) was then used to further supplement and verify the initial variable selection
method [37]. The Boruta package allowed us to see variable importance for each of the five
folds on the FFCV, granting more insight into variable importance.

Once top variables had been selected, models were reassessed using FFCV. Next, we
performed model tuning by making adjustments to each model’s hyperparameters using a
Grid Search method to determine the ideal settings for each model [38]. A list of all settings
tested for each model can be found in Table 3 and visualized at plot level in Figure S1.

Table 3. Hyperparameter settings tested with the Grid Search Method. Models include Decision
Tree (DT), Bagging (BAG), Random Forest (RF), Gradient Boost (GB), eXtreme Gradient Boost (XGB),
Light Gradient Boost (LGB), Ada Boost (ADA), and Cat Boost (CAT).

Hyperparameter Values Tested DT BAG RF GB XGB LGB ADA CAT

Number of Trees 10, 100, 1000 X * X X X X X X X
Max Tree Depth 1, 5, 10 - X X X X X - * X

Max Number of Leaf Nodes None, 5, 10 - X X X X - - -
CCP Alpha 0.0, 0.1, 0.3, 0.5 - X X X X - - -

Learning Rate 0.001, 0.01, 0.1 - - - X X X X X
Subsample 0.5, 0.7, 1.0 - - - X X X - X

Loss Function deviance, exponential - - - X - - - -
Split Function Friedman MSE, Squared Error - - - X - - - -

Number of Covariates Considered per Split
2
√

# o f variables ;
log2(# o f variables)

- - X X X - - -

Number of Leaves 10, 20, 30, 40 - - - - - X - -
Minimum Child Samples 10, 15, 20, 25 - - - - - X - X

* An ‘X’ indicates that the hyperparameter was tested and a ‘-’ indicates that the hyperparameter was
not applicable.

Once tuned, the finalized models predicted woody plant cover for the 1.0 km2 image
tile that each training plot was contained within. A total of 20 image tiles were predicted
due to the 18 tower plots all falling within a single image tile and another case where two
plots fell within the same image tile. The results from each model were exported as a CSV
and brought into ArcGIS Pro, where they were joined back to a corresponding polygon
layer. A prediction field for each model and classification scheme was calculated from
the model output, resulting in a polygon layer with predictions from each model. FWC
was calculated from the training data and compared to predicted FWC for each model by
calculating the difference in FWC (dFWC). Training sites were also ranked by FWC into
Low, Moderate, and High to assess if canopy density influenced dFWC.
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3. Results
3.1. Model Selection

The goal for initial model selection was to determine the best possible polygon clas-
sification models, as higher polygon classification accuracy was assumed to yield higher
accuracy of FWC estimates. Intermediate results from model selection for each classification
scheme are reported in Figures S2–S5. Results for the multiclass classification scheme do
not include the Cat Boost model, as it was not supported with the same methodology used
for the other models. Runtimes for each initial model can be found in Figures S6 and S7.

Initial classification models agreed that decision tree-based models have higher clas-
sification performance metrics and prediction stability, but longer runtimes compared
to non-decision tree-based models. Most models had higher specificity than sensitivity,
indicating that the non-woody classes were being classified with higher accuracy than the
woody class. Multiclass models took longer to run in general compared to binary models
and overpredicted the ‘other’ class, leading to much higher specificity than sensitivity. This
overprediction is thought to be due to the inclusion of mixed-cover polygons in the ‘other’
class, giving it properties of both the ‘woody’ and ‘non-woody’ class in some cases.

In general, non-decision tree-based models underperformed the decision-tree based
models. While the logistic regression model appears to perform well at first glance, it
was unable to run with all variables in the dataset upon initial model selection due to
unexpected errors with the LogisticRegression package in Python. All non-decision tree-
based models were ruled out through our model selection process and were not considered
in the next steps.

3.2. Variable Selection & Model Tuning

Variable selection was initially performed using the top ten variables from all binary
models. Binary models were chosen for variable selection as they had higher performance
than multiclass. The results from the first variable selection are shown in Table S1. After
initial variable selection, the Boruta package in Python was used to assess variable impor-
tance. Agreement between the Boruta method and initial voting method was assessed to
add and remove variables. Final variable selection is listed in Table 4.

Table 4. Final variable selection after the Boruta method. Variables with more than three ‘keep’ votes
from Boruta were added to the list and variables with more than three ‘reject’ votes were removed
from the list.

Variable Number of Votes

EVI (median) 6
ARVI (mean) 6

SAVI (median) 5
Canopy Height (mean) 5

ARVI (median) 5
EVI (mean) 5
NDVI (max) 5

NDVI (mean) 5
SAVI (mean) 5
SAVI (max) 4
ARVI (max) 4

NDVI (median) 3
EVI (max) 3

After both rounds of variable selection, we had determined that 13 of the 35 variables
were of high importance and were the only variables considered when moving forward
with model tuning and estimating FWC. Final selected variables include the mean, median,
and maximum statistics for all vegetation indices and mean Canopy Height. Intermediate
results following variable selection are shown in Figures S8–S13. Compared to the initial
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models, the variable-selected model accuracy decreased from 67.8–69.8% to 67.0–69.5% for
the binary scheme and from 59.2–61.1% to 57.9–60.8% for the multiclass scheme.

Overall, variable selection resulted in a slight decrease in model accuracy and stability
across all models, likely due to there being less information for models to make predictions
from. Next, model tuning was performed with the Grid Search method to determine the
best hyperparameters for each model and attempt to regain some of the lost accuracy.
Results from the binary Grid Search are listed in Table 5 and results from the multiclass
grid search are listed in Table S2 in Supplementary Materials.

Table 5. Optimal hyperparameters for each binary model after variable selection as determined by
grid search.

Hyperparameter DT BAG RF GB XGB LGB ADA CAT

Number of Trees 1 100 1000 100 1000 1000 1000 100
Max Tree Depth - 10 5 5 5 10 - 10

Max Number of Leaf Nodes - None None None None - - -
CCP Alpha - 0.0 0.0 0.0 0.0 - - -

Learning Rate - - - 0.01 0.001 0.001 0.01 0.1
Subsample - - - 0.5 0.5 0.5 - 0.7

Loss Function - - - deviance - - - -

Split Function - - - Squared
error - - - -

Number of Covariates
Considered per Split - - auto log2 auto - - -

Number of Leaves - - - - - 10 - -
Minimum Child Samples - - - - - 15 - 10

Each model was run with FFCV after tuning to assess final model performance,
with binary model results shown in Figures 2 and 3 and multiclass model results shown
in Figures S14 and S15. Final model runtimes can be found in Figures S16 and S17 in
Supplementary Materials.

Changes to model accuracy, standard error, sensitivity, and specificity between each
binary model refinement step are presented in Table 6. Compared to initial model runs,
variable selection caused slight decreases to overall accuracy (max decrease was 1.2% for
Random Forest). This is expected, as over half of the initial variables were removed from
the training dataset. Variable reduction also reduced the large standard errors observed
in the Bagging and Light Gradient Boost models. Final model accuracy improved from
initial models for all independent models (Decision Tree, Bagging, and Random Forest) and
declined for all sequential models. Given that all final model accuracies are within 1–2%
of initial models and standard errors are also ~1–2%, we can generally conclude that final
models perform nearly as accurately as initial models, but at faster setup and runtimes now
that optimal variables and hyperparameters have been determined. A corresponding table
for multiclass can be found in Table S3.

Table 6. Binary model performance metrics between each refinement step.

Overall Accuracy Standard Error Sensitivity Specificity

Model Initial Variable
Selection Final Initial Variable

Selection Final Initial Variable
Selection Final Initial Variable

Selection Final

DT 67.8% 68.3% 68.3% 0.8% 1.7% 1.7% 66.0% 68.0% 68.0% 70.0% 69.0% 69.0%
BAG 67.9% 67.0% 69.0% 9.1% 0.9% 0.7% 67.0% 65.0% 67.0% 69.0% 69.0% 71.0%
RF 68.0% 66.8% 69.4% 1.1% 1.1% 1.4% 69.0% 65.0% 68.0% 71.0% 69.0% 71.0%
GB 69.8% 69.3% 69.2% 0.1% 1.1% 1.1% 68.0% 67.0% 69.0% 72.0% 71.0% 70.0%

XGB 69.6% 69.2% 69.3% 1.0% 1.8% 1.1% 68.0% 67.0% 67.0% 72.0% 72.0% 72.0%
LGB 69.6% 69.1% 68.9% 14.7% 0.9% 1.4% 69.0% 66.0% 67.0% 68.0% 72.0% 71.0%
ADA 68.8% 68.3% 68.2% 1.2% 1.2% 1.3% 68.0% 68.0% 68.0% 71.0% 68.0% 68.0%
CAT 69.6% 69.5% 69.3% 0.8% 1.2% 0.9% 66.0% 67.0% 67.0% 70.0% 72.0% 72.0%
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Figure 2. Finalized binary model performance showed a slight improvement at the lower limit of
overall accuracy compared to the previous runs (68.2% from 67.8% and 67.0%) and slight decline at
the upper limit of overall accuracy (69.4% from 69.8% and 69.5%). Specificity remained higher than
sensitivity for all models, with the only improvement from initial models seen in the lower limit of
sensitivity (67.0% from 65.0%). Random Forest performed with highest overall accuracy with 69.4%
but has a larger difference between sensitivity and specificity compared to Gradient Boost, which has
an overall accuracy of 69.3%. Lowest sensitivity was observed from the Bagging, eXtreme Gradient
Boost, Light Gradient Boost, and Cat Boost models (67%) and highest sensitivity was observed from
the Gradient Boost model (69%). Lowest specificity was observed from the Ada Boost model (68%)
and highest specificity was observed from the eXtreme Gradient Boost and Cat Boost models (72%).

3.3. FWC Estimates

After the models had been refined and finalized, they were used to predict the 1 km2

image tiles to demonstrate how these models can predict woody vegetation and estimate
FWC in areas beyond the training sites with no in-situ data. FWC estimates from the
training data were used to categorize each plot into low, moderate, or high FWC. The plots
with minimum (Plot 14), median (Plot 46), and maximum (Plot 19) FWC were used to
map the top two model predictions (XGB and Cat Boost) and the worst model prediction
(DT) with respect to dFWC. The XGB model had the smallest dFWC (Figure 4) and was
used to map image tile predictions. Plot 46 maps are shown in the following map series
(Figures 5–10). Maps for Plots 14 and 19 are included in Figures S18–S29. Image segmenta-
tion on training plots was initially performed at the extent of each training plot. Subsequent
image segmentation for predicting image tiles was performed at the extent of the image
tile, so predicted training plots have slight differences in the number, size, and shape of
polygons, but these differences are generally subtle and are not expected to have dramatic
impacts on FWC estimations.
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Figure 4. XGB had the lowest dFWC for both binary and multiclass schemes (0.2%, 3.19%, respec-
tively). Cat Boost also had dFWC of 0.2% for binary. Decision Tree performed worst overall when
considering both schemes, with binary dFWC of 4.01% and multiclass dFWC of 3.7%.
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properties at SRER, which is why there are many plots within its image tile. This plot is also double 
the dimensions of the distributed plots (1600 m2 instead of 400 m2). Due to its size, field located 
vegetation is concentrated in four regions. Vegetation for this plot is denser than Plot 14. 

Figure 5. Overview of Plot 46 (moderate FWC). Average FWC between binary and multiclass training
data was 33.73%. Plot 46 is a tower plot and is representative of the most dominant vegetation
properties at SRER, which is why there are many plots within its image tile. This plot is also double
the dimensions of the distributed plots (1600 m2 instead of 400 m2). Due to its size, field located
vegetation is concentrated in four regions. Vegetation for this plot is denser than Plot 14.
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Figure 6. XGB predictions for Plot 46 under both binary and multiclass classification schemes. De-
spite slight differences in image segmentation, overall estimations of FWC are very similar between 
training and prediction methods, with slight overprediction of FWC indicated by positive dFWC 
values. Most differences in classification occur in polygons that appear less green in imagery, but 
field verification indicates live vegetation (polygons on the east and southeast border for example). 
This presents a possible limitation in AOP or model ability to determine live plant status with cur-
rent sensor/data resolutions. The multiclass scheme appears to be classifying the less green, but still 
live vegetation as non-woody and the surrounding bare ground as other. Model predictions also 
seem to predict woody vegetation in more clustered groups compared to the training data which is 
more sporadic. This highlights human ability to discern small gaps in vegetation relative to the 
model. dFWC remained relatively low (0.59% for binary and 3.27% for multiclass) despite these 
differences. 

Figure 6. XGB predictions for Plot 46 under both binary and multiclass classification schemes. Despite
slight differences in image segmentation, overall estimations of FWC are very similar between training
and prediction methods, with slight overprediction of FWC indicated by positive dFWC values. Most
differences in classification occur in polygons that appear less green in imagery, but field verification
indicates live vegetation (polygons on the east and southeast border for example). This presents a
possible limitation in AOP or model ability to determine live plant status with current sensor/data
resolutions. The multiclass scheme appears to be classifying the less green, but still live vegetation as
non-woody and the surrounding bare ground as other. Model predictions also seem to predict woody
vegetation in more clustered groups compared to the training data which is more sporadic. This
highlights human ability to discern small gaps in vegetation relative to the model. dFWC remained
relatively low (0.59% for binary and 3.27% for multiclass) despite these differences.
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Figure 7. Cat Boost predictions for Plot 46. Multiclass is not shown, as it was not supported by the 
Cat Boost model. As observed in the XGB model, less-green live vegetation is being classified as 
non-woody and areas of woody vegetation are being predicted in a more clustered pattern com-
pared to training data. 

Figure 7. Cat Boost predictions for Plot 46. Multiclass is not shown, as it was not supported by the
Cat Boost model. As observed in the XGB model, less-green live vegetation is being classified as
non-woody and areas of woody vegetation are being predicted in a more clustered pattern compared
to training data.
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Figure 8. Decision Tree predictions for Plot 46 for the binary and multiclass schemes. Despite having 
the worst performance overall, the Decision Tree model performs very well at this moderate FWC 
plot under the binary classification scheme, although the areas of less-green live vegetation to the 
east and southeast are still misclassified. Decision Tree also differed from eXtreme Gradient Boost 
for the multiclass prediction in that it did not predict much “other” cover, which is consistent with 
the Decision Tree predictions for Plot 14. Decision Tree overpredicted FWC in the multiclass scheme 
with a relatively high dFWC value of 4.65%. Like the previous models, woody vegetation was pre-
dicted in a more clustered pattern than in the training data. 

Figure 8. Decision Tree predictions for Plot 46 for the binary and multiclass schemes. Despite having
the worst performance overall, the Decision Tree model performs very well at this moderate FWC
plot under the binary classification scheme, although the areas of less-green live vegetation to the
east and southeast are still misclassified. Decision Tree also differed from eXtreme Gradient Boost for
the multiclass prediction in that it did not predict much “other” cover, which is consistent with the
Decision Tree predictions for Plot 14. Decision Tree overpredicted FWC in the multiclass scheme with
a relatively high dFWC value of 4.65%. Like the previous models, woody vegetation was predicted
in a more clustered pattern than in the training data.
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Figure 9. XGB predictions for the Plot 46 image tile using the binary classification scheme. FWC for 
the entire prediction area is 31.7%. Areas with higher densities of woody plant cover are clearly 
highlighted in green in both the RGB and prediction tile, along with clear delineation of water and 
road/trail features. 

Figure 9. XGB predictions for the Plot 46 image tile using the binary classification scheme. FWC
for the entire prediction area is 31.7%. Areas with higher densities of woody plant cover are clearly
highlighted in green in both the RGB and prediction tile, along with clear delineation of water and
road/trail features.



Remote Sens. 2023, 15, 98 18 of 24Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 10. XGB model predictions for the Plot 46 image tile using a multiclass classification scheme. 
FWC for the entire prediction area is 33.1%. Major woody vegetation patterns appear in green for 
both the RGB and prediction tile, with areas of bare ground, roads, and water features being classi-
fied in blue as “other”. Areas being classified as non-woody appear to have a reddish soil color or 
have areas of less-green vegetation. 
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Figure 10. XGB model predictions for the Plot 46 image tile using a multiclass classification scheme.
FWC for the entire prediction area is 33.1%. Major woody vegetation patterns appear in green for
both the RGB and prediction tile, with areas of bare ground, roads, and water features being classified
in blue as “other”. Areas being classified as non-woody appear to have a reddish soil color or have
areas of less-green vegetation.

3.3.1. SRER Plot 46: Moderate FWC

Overall, Plot 46 had high agreeance in FWC between the training and prediction clas-
sification methods (mean dFWC for XGB = 1.93%). The XGB model slightly overpredicted
woody vegetation overall, as indicated by the positive dFWC value and visual inspection
showing clustered predictions in areas of woody vegetation. This clustering behavior
overlooks canopy gaps that manual annotation can discern. The prediction tiles for this
plot highlights areas of woody vegetation consistently between classification schemes
(dFWC between schemes = 1.5%). The multiclass scheme shows additional detail with the
non-woody class potentially highlighting areas of interest for further field data collection
and verification.

3.3.2. Plot Complexity Analysis

dFWC was broken down between each of the FWC classes to assess if FWC was related
to dFWC. Plots were sorted into classes by FWC, with the highest, middle, and lowest
thirds falling into high, moderate, and low FWC, respectively. The results are graphed in
Figures 11 and 12. The overall trend shows that plots with high FWC had higher dFWC,
regardless of classification scheme.
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Figure 11. dFWC for the binary XGB, Cat Boost, and Decision Tree models. dFWC is highest for 
plots with high FWC with Decision Tree having the highest dFWC (11.17%). This pattern of declined 
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tions made by [23]. 

 
Figure 12. dFWC for the multiclass XGB and Decision Tree models. dFWC is highest for plots with 
high FWC with Decision Tree and eXtreme Gradient Boost having the highest dFWC (24.99%). This 
pattern of declined model prediction accuracy occurring with increased site complexity is in agree-
ment with suggestions made by [23]. 

Figure 11. dFWC for the binary XGB, Cat Boost, and Decision Tree models. dFWC is highest for
plots with high FWC with Decision Tree having the highest dFWC (11.17%). This pattern of declined
model prediction accuracy occurring with increased site complexity is in agreement with suggestions
made by [23].
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Figure 12. dFWC for the multiclass XGB and Decision Tree models. dFWC is highest for plots
with high FWC with Decision Tree and eXtreme Gradient Boost having the highest dFWC (24.99%).
This pattern of declined model prediction accuracy occurring with increased site complexity is in
agreement with suggestions made by [23].
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4. Discussion

Overall, we have answered all three of our RQs with the following conclusions:

RQ1: What classification models and schemes most accurately classify woody vegetation
at a dryland NEON site with low canopy complexity?

Decision tree-based models had higher model performance compared to non-decision
tree-based models, with Gradient Boost having higher polygon-based classification ac-
curacy in both initial and finalized models. We have also identified limitations with
scikit-learn models, as Logistic Regression could not run without the removal of variables
and Cat Boost could not be implemented with the multiclass dataset. In this study, we test
both a binary (‘woody’ vs. ‘non-woody’ cover) and multiclass (‘woody’ vs. ‘non-woody’
vs. ‘other’ cover) scheme. It is important to denote that the ‘non-woody’ class in the
binary scheme does not solely represent vegetation cover, as the ‘non-woody’ class can
also represent non-vegetated areas such as roads, water, and bare ground. Conversely, the
‘non-woody’ class in the multiclass scheme solely represents vegetation cover, with the
‘other’ class handling non-vegetated cover like roads, water, and bare ground. The binary
classification scheme had higher overall accuracy compared to multiclass, but the multi-
class scheme may provide additional feature delineation that the binary scheme does not
provide. More field data is needed to assess the type of features that the non-woody class
represents, if there are common features. Narrowing down the high performing models and
classification scheme uses will save time for future research by ruling out underperforming
models and demonstrating the advantages of different classification schemes.

RQ2: What variables are most important for classifying woody vegetation at a dryland
NEON site with low canopy complexity?

The only high-importance vegetation structure variable was mean canopy height, and
all vegetation indices were deemed highly important, but only their mean, median, and
maximum statistics. Narrowing down the best variables for classifying woody vegetation
will save time for variable collection and processing in future work. For example, the gener-
ation of canopy cover and canopy density variables was unnecessary for this study. Model
runtimes and error also improve with a smaller number of highly important variables.
The variables tested in this study are only a small handful of the wide variety of variables
collected by NEON, and future studies might consider testing variables such as leaf area
index and canopy moisture content.

RQ3: How do FWC estimates derived from manual classification methods compare to
FWC estimates derived from ML models?

The XGB model had the lowest overall dFWC (0.2% for binary, 3.2% for multiclass)
when compared to the manually annotated training data, indicating that it predicted gross
FWC estimations with the highest agreeance. This dFWC metric has not been spatially
assessed, however, to determine spatial accuracy. dFWC also differed depending on FWC
at the plot level, with high FWC plots having much higher dFWC across models. This
indicates that these models may perform best in low to moderate FWC areas, which is
where most of the training data has been collected. More field sampling in the southern
portions of SRER, where vegetation density and complexity is more robust, may improve
estimates in areas of high FWC, but also introduce more prediction error for the low and
moderate classes. Overall, manual classification methods have estimated FWC at 34.8%
across all training plots, with a dFWC range from −1.1–7.5% when considering all models.
This mostly falls within the 30–35% range suggested by [16], indicating that both manual
and automated classification methods are reasonably accurate overall.

While this study provides a good starting point for estimating FWC in a semi-arid
region, it only provides a snapshot in time of the dynamic WPE process. As time progresses
and WPE occurs, the annual data collected by NEON will be crucial for time-series analysis
and change detection to assess the true extent and rate of WPE at SRER. With this study
serving as a baseline establishment of FWC estimation methods, further studies that
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replicate these methods can be used with subsequent years of in situ and remote sensing
data collection to monitor WPE throughout the study area and possibly throughout other
similar areas of interest.

We also recognize that the variables used in this study are by no means a compre-
hensive representation of those that can be collected or derived to fully describe woody
vegetation, nor do they represent all potential vegetation variables collected by NEON.
Further variable selection is therefore necessary to assess variables like Leaf Area Index
(LAI), Ecohydrological Index (EI), and Soil Moisture Index (SMI), to name a few. Finally,
we also recognize that the training data used in this study is small relative to other studies.
With the goal of using solely NEON data for this study, we were limited to the amount
of training data included by the amount of data collected at the time of this study. Using
data from other similar NEON sites, such as the San Joaquin Experimental Range (SJER),
or future in situ and remote sensing data collected at SRER, would be expected to improve
classification results.

5. Conclusions

The results from this study lay the groundwork for future use and implementation
of NEON data by determining the best models, variables, and hyperparameter settings
for predicting woody plant cover at SRER along with exploring different classification
schemes. Land managers at SRER can apply these ML models to develop and monitor
woody plant management strategies within their domain. With a planned mission time of
30 years, the volume of data collected at SRER will continue to grow, allowing developed
models to be augmented and reassessed as land cover change occurs. This study also
demonstrates the capabilities of using solely open-source NEON data and open-source
code to train prediction models without any additional data collection—a workflow that
can be implemented for any NEON site from anywhere in the world.

Land managers in other dryland landscapes where WPE is occurring can also use the
methods from this study as a framework for developing their own models, and possibly use
the models trained in this study to predict woody cover within their own domain, provided
the same data are available and the sites have similar vegetation structure and distribution
patterns. A prime example of such a location is the San Joaquin Experimental Range (SJER),
which is the only other study area within the Desert Southwest Domain (D14) established
by NEON. Using the models from this study to assess model performance at other manually
classified training plots would provide more insight into model performance outside of
their own training data.

With NEON in its infancy, limited work has been published that relies solely on its data
to delineate or classify woody vegetation. Two other studies, 22,23], have accomplished this,
but their chosen NEON sites were representative of open and closed woodland ecosystems,
respectively. This study fills a research gap by developing woody plant detection models in
shrub/scrub ecosystems with relatively low vegetation complexity. As suggested by [23],
the prediction models used for this study had higher classification accuracy than those
conducted in more complex ecosystems, supporting their suggestion. The classification
methods for this study are simpler however, as we only tested very general classes, rather
than classifying at species level. The simplification of both the modeling framework and the
vegetation complexity may be working in tandem to drive classification accuracy higher.
Dryland regions have been traditionally defined by an aridity index (AI) as described in
our introduction by the ratio P/PET [1]. Use of ML to model dryland migration under
the context of climate change has consistently predicted an overall expansion of global
dryland cover [1]. In 2021, Berg & McColl [39] suggested that a new index, coined the
ecohydrological index (EI), may be more appropriate for predicting dryland migration, as it
takes plant physiology and soil moisture into account rather than solely relying on climatic
variables. In their study, Berg & McColl [39] found that dryland expansion will not occur
under the RCP 8.5 climate scenario when using EI as a metric, which is highly contradictory
to past studies. Therefore, further investigation of EI as a predictor of drylands is necessary
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both under the current and future climate models published by the IPCC. Luckily, all
variables needed to calculate EI are collected and publicly available through the NEON
data portal, further highlighting its future role in investigating ecosystem dynamics.

The National Ecological Observatory Network (NEON) is the largest and most com-
prehensive ecological dataset of its kind, with the promise of 30 continuous years of
high-resolution remote sensing and in situ monitoring over its 81 field sites. Discovering
how we can use solely NEON data to train Machine Learning (ML) and Artificial Intelli-
gence (AI) models for land cover prediction is vital to land managers throughout the world
looking for new and cost-effective ways to gain insight to their changing landscapes. As
more data is collected at these NEON sites, models and methods such as those tested in this
study have the potential to evolve in ways that will inform land management strategies far
into the future. Successive studies conducted with this data may investigate other ML/AI
models, additional variables collected by NEON, and change detection of FWC over time
and in response to woody plant management regimes.
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