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Abstract: Lake turbidity, representing a general indicator of water ‘cloudiness’, is a key parameter
in many monitoring programs. It is not possible to cover all lakes with frequent in situ monitoring.
Sentinel-2 MultiSpectral Imager (MSI) can help to fill the gaps if a robust turbidity retrieval method-
ology is developed. Previously published results demonstrated the usefulness of MSI at a limited
regional scale, while our aim was to develop methodology that allows monitoring turbidity over the
whole of China. We proposed methodology with a reflectance that can be classified into optical water
types (OWTs), and then a back propagation neural network model (BP-TURB) is used to estimate
turbidity. The reflectance of in situ lake samples extracted from MSI imagery was clustered as three
OWTs, and validation performance was satisfactory: R2 > 0.81, RMSE < 17.54, and MAE < 11.20. This
allowed us to map turbidity in all Chinese lakes, of which the area is larger than 1 km2. A larger
percentage of clear lakes (53.26%) with low turbidity levels (<10 NTU) was found in 2020 than in
2015 (37.43%). Lakes in the plateau regions generally exhibited lower turbidity than those situated in
the plains regions, for which the turbidity patterns were determined by lake volume, averaged depth,
and elevation. We demonstrated that the Sentinel-2 MSI data with the novel approach proposed by us
allows for mapping lake turbidity over a large variety of lakes and extensive geographic conditions,
as well as for revealing temporal changes in these lakes and their links to lake abiotic characteristics.

Keywords: turbidity; Chinese lakes; Sentinel-2; MSI; abiotic factors

1. Introduction

Lakes play a major role in ecology, industry, agriculture, and human wellbeing by
receiving runoff and regulating climate, providing drinking and irrigation water, and
supporting recreation, among other services and functions [1,2]. Turbidity, representing
the “cloudiness” of lakes [3], is seen as a general indicator of scattering capabilities, jointly
modulated by the presence of all optically active substances [4,5]. Turbidity was defined as
the 90◦ side-scattering of light (at 860 nm) in relation to Formazin, a chemical standard that
is sensitive to particle composition [6] under high-intensity scattered light. Hence, turbidity
is often reported in nephelometric turbidity units (NTU), and is associated with lakes’
biogeochemical metabolism, e.g., nutrient or pollutant dynamics and sediment transport
by geomorphologic and hydrological processes. Higher turbidity reduces the depth of
penetration of light, meaning that light is absorbed in a thinner layer [7]. Consequently,
radiative heating and lake stratification depend on turbidity and the changes in it [7,8].
Long-term trends and short-term dynamics of lake turbidity provide the knowledge on
environmental health and changes in the catchment. Given these beneficial functions and
importance, monitoring the turbidity of lakes is useful to protecting and managing the
ecological functions of aquatic ecosystems [9].
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Satellite data have been used in mapping water turbidity since Moore (1980) [10]
assessed the feasibility of satellite data. The remote sensing of turbidity has been employed
as an early alert for changes in lake ecosystems [11,12]. The advantage of remote sensing
is the ability to survey large spatial extent and hard to access areas [13]. Many satellites
launched in the past decades also provide technical capabilities to map lake turbidity;
for example, the European Space Agency has launched several sensors, e.g., Medium
Resolution Imaging Spectrometer, MERIS, on Envisat; Ocean and Land Colour Instrument,
OLCI, on Sentinel-3A and B; and MultiSpectral Instrument, MSI, on Sentinel-2A and B.
The National Aeronautics and Space Administration (NASA) launched Landsat series
satellites [14], and they are suitable for turbidity mapping. However, there are no satellite
sensors that were specifically designed for inland waters, i.e., that have good spatial
resolution necessary for smaller waters and sufficient sensitivity and spectral bands needed
for water quality monitoring. However, the MSI sensor captured the interest of the research
community [15–18]. It has a high spatial resolution (10 m × 10 m at nadir), is acceptable
for water quality remote sensing spectral resolution in the visible and near infrared ranges,
has sufficient sensitivity for most lakes, and has relatively high temporal resolution (every
2–5 days with two satellites). There are commercial satellite systems with very high spatial
resolution. However, the cost of using such imagery over large areas and with high
temporal frequency is prohibitive, whereas Sentinel-2 imagery is free of charge. Turbidity
monitoring requires rapid sensing due to the dynamic environment, with a continuous
supply of nutrients, particles, and organic matter via runoff or rainfall, and sediment
resuspension. Consequently, the use of MSI is a reasonable compromise for a low-cost, high
spatial resolution, and frequent revisit time (every 2–3 days at mid-latitudes) monitoring of
lake water quality over large areas.

The Copernicus Land Monitoring Service (CLMS) also has a turbidity product that
is based on Sentinel-2 data, but it is provided at 100 m spatial resolution, meaning that
it is not sufficient for smaller lakes. For example, 32,843 lakes are located in Tibet, and
around 96% of them are small and in China [19]. Moreover, this product is provided
only for Europe and Africa, not for Asia. Additionally, previous studies of Chinese lakes
provided strictly lake “regional” products [11,20,21]. Nationwide turbidity monitoring
cannot be performed based on these regional algorithms. On the other hand, the turbidity
parameter of the Copernicus program is derived from the suspended particulate matter,
with algorithms depending on the optical water types. This is due to the strong relationship
between turbidity and total suspended solids; a low-cost turbidity measurement can be
used to estimate total suspended solids instead of a traditional gravimetric method in a
lab [20,22]. However, this process could bring more uncertainties because the turbidity was
a comprehensive index incorporating the optically active water constituents [23]. They also
contribute reflectance signals and are even higher in lakes where phytoplankton particles
dominate the optical properties or algal blooms are frequent. However, several sources of
uncertainty for portable SPM (suspended particulate matter) algorithms are expected to
influence the magnitude in uncertainties from reflectance signals. When this comparison
with in situ measurement was applied to a dataset as a whole, it showed uncertainties from
reflectance signals in pixels that were subsequently propagated to any derived turbidity
products on specific algorithm sensitivities [24]. Additional effort strongly demonstrated
that it will be needed to properly develop the turbidity algorithm responding to MSI sensor.

Several existing algorithms have been suggested for deriving turbidity from the red
part of the reflectance spectrum for low-to-moderate turbidity values. These approaches
generally can be grouped into semi-analytical [25], empirical (for recent reviews see, e.g.,
Lien Rodríguez-López et al., 2021; Maltese et al., 2013) [26,27], reflectance band combi-
nations, and machine learning algorithms [11]. It is widely known that empirical band
ratio algorithms are site-specific and cannot be applied over a large variety of lakes [28].
There are several ways to avoid the shortcomings of empirical methods. For example,
analytical (physics based) methods can be used. However, these methods are sensitive
to atmospheric correction errors, and atmospheric correction is still an unsolved problem
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in inland water remote sensing. Another approach, also used by the CLMS, is dividing
lakes according to optical water types (OWTs) and then using a specific set of algorithms
for each OWT [29,30]. It would be desirable to derive an accurate estimate by per-pixel
similarities of reflectance to a set of OWTs. Likewise, a universal turbidity algorithm
without the requirements of region-specific adaptation or calibration could be appreciated
for the fast-growing automated processing of satellite imagery. It could be expected that
some distinct, but complementary, methodologies for retrieving turbidity could respond
to lake-specific difference issues in a large-scale observation. Therefore, our focus was on
the turbidity characterization scheme of the final turbidity product in relation to OWTs.
To address this need, the aim of this study was to develop a methodology that allowed
for monitoring turbidity in all lakes in China that are larger than 1 km2 in size. We chose
the OWT-guided neural network approach to achieve this. More importantly, we achieved
Chinese turbidity maps and discussed the main forcing factors.

2. Study Region

China covers a total of 9.6 million square kilometers. Its geomorphology is extremely
complex, and there are three terrain steps from the Qinghai-Tibetan Plateau (averaged
elevations >4000 m, dominated by grassland), to the Kunlun Mountains (elevation ranges
1000–2000 m), and the eastern hills and plains (mostly below 500 m from the average sea
level). The latter region can be characterized through intensive agricultural and other
anthropogenic activities (Figure 1). There were 2554 (in 2015) and 2693 (in 2020) natural
lakes (surface area >1 km2) distributed across China, respectively (National Tibetan Plateau
Data Centre) [19] (Figure S1).
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Figure 1. Location of lakes where in situ measurements of trophic parameters, e.g., Chl–a, SDD, and
TP, were made. See text for a description of each data source.
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3. Methods
3.1. In Situ Water Quality Collection and Field Measurements

In 2017–2019, a total of 484 samples from 66 lakes were collected during the highly
productive season (April to October) (Figure 1 and Table S1). Results of some of these
measurements were published in our previous studies [16,31–33]. We used five lake zones
as defined by Wang and Dou (1998, Early National Investigation) [34] (Supplementary
Materials). These lakes spanned over a range of sizes, elevations, water qualities, and
environments (e.g., climatic zones), suggesting large-scale bio-optical variability (Figure S1,
Gross Domestic Product, population, land-use, digital elevation model, temperature, and
precipitation, etc.). More detailed descriptions of the five lake regions can be found in the
Supplementary Materials.

3.2. Water Quality and Light Absorption Determination in Laboratory

The turbidity values (Turb), Chlorophyll-a (Chl–a), suspended matter (SPM), and total
nitrogen (TN) and total phosphorus (TP) concentrations (APHA/AWWA/WEF, 1998) [35]
were determined in the laboratory. Note that we only measured suspended matter and
turbidity for some representative lakes in the YGR (Lakes 48–66, Lakes 31–22, Table S1).
The absorption coefficients of optically active substances, e.g., CDOM [aCDOM(λ)], total par-
ticulate matter [a(λ)], and non-algal particles [ad(λ)], were determined by the quantitative
filtration technique [36]. More details can be found in the Supplementary Materials. We
used absorption values at 443 nm to characterize the amount of CDOM, aCDOM(443).

3.3. MSI Imagery Match-Ups

Sentinel-2A/B MSI Level 1C data can be freely acquired from the Copernicus Open
Access Hub of the European Space Agency (ESA, https://scihub.copernicus.eu/, accessed
on 16 October, 2021). The Level-1C products were calibrated radiometrically for viewing
geometry and orthorectified into a WGS84 projection. All the Sentinel-2 MSI images
were atmospherically corrected using the C2RCC processor, producing normalized water
reflectance rhown(λ) at 443, 492, 560, 665, 704, and 740 nm. This is also consistent with the
atmospheric correction validation in earlier studies [17,37]. We used a 3 × 3 pixel centered
reflectance to create match-ups with in situ data. Only images with no cloud contamination
(<10%) were used for analysis. Altogether, 198 Sentinel-2 scenes were found that were
within a ±7 days’ time window and were used in the match-up analyses. Toming et al.
(2016) [15] confirmed that the time-window of several days or ever longer scales can still
work. Then, we also checked the hydrological and rainfall events during a ±7 days’ time
window. Further, we combined all the available in situ datasets and randomly separated
them into two groups, with around 2/3 of the datasets employed for calibration and 1/3
for validation, respectively. More details can be found in the Supplementary Materials.

3.4. Lake Optical Clustering for Rhown(λ)-Spectra

CLMS uses the global set by Spyrakos et al. (2018) for OWTs. Many of the OWTs in this
global classification are not present in China. Therefore, we had to develop our own OWT
scheme. The lake OWTs included two main steps. The rhown(λ)-spectra at 443, 490, 560, 665,
704, and 740 nm were clustered using a k-means approach to match in situ observations. For
k-means clustering, a Schwartz Bayes criterion (SIC) was used to determine the statistically
optimal number of clusters to identify significant differences (p < 0.001) (Table S2). For each
new OWT, a different turbidity model was calibrated and validated. For 10 m turbidity
mapping, with our turbidity models, we developed a slope threshold approach applied
to every water pixel in a hard classification. We first screened the correlations between in
situ turbidity measurements with rhown(λ)-spectra to find sensitive bands responding to
the in situ turbidity levels (See Section 4.2). Further, the slopes of linear fitted sensitive
rhown-bands (665, 704, and 740 nm) were acquired. The median values of these slopes were
considered a threshold for the selection of turbidity models for different OWTs. Eventually,
the developed turbidity models matching different OWT configurations were applied to

https://scihub.copernicus.eu/
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acquire national-scale turbidity products (Figure 2). In order to feasibly add our developed
turbidity model, we added about 12 Hydrolight simulation reflectance data with high
turbidity levels (ranging from 204.47 NTU to 282.74 NTU).
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Figure 2. Flowchart of mapping procedures for the Sentinel−2 MSI data preprocessing, k−means
rhown−spectra clustering, and BP−TURB models.

3.5. Back-Propagation Neural-Turbidity Models (BP-TURB)

As in most neural network algorithms, the BP was based on a multilayer perceptron
consisting of several artificial neurons, including the input layer, a hidden layer, and the
output layer. It is a flexible algorithm for modeling water quality from remote sensing
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imagery. We first used a weighted linear summation and bias to connect neurons between
every two layers, followed by a nonlinear activation function. If the output values are
inconsistent with the desired values, the BP algorithm becomes one of back propagation.
The output values are transmitted back to the input layer, and errors are allocated to each
neuron of the network. More importantly, we introduced some sensitive rhown-bands
(665, 704, and 740 nm) that responded to turbidity concentrations for our pooled datasets.
As a result, each error signal, which is a prerequisite of revising the weight value between
every two neurons, was obtained. The output layer transforms values into the desired
water quality indicator (turbidity) (Figure 2). The BP modeling procedure was processed
using the Python 3.8 software scikit-learn. The accuracy assessments of the models used
correlated coefficients and errors and are shown in the Supplementary Materials).

3.6. Chinese Turbidity Products

Zhang et al. (2019) [19] reported multi-decadal numbers, locations, and distributions of
lakes (1960s–2020, 5-years intervals) with Landsat images (Figure S2). We referred to these
lakes’ numbers, as these can be used as the reference standard for our turbidity products.
Lake boundaries were used to extract turbidity maps processed from the MSI satellite data.
MSI imagery covering the whole country was used to generate the turbidity products of
Chinese lakes. A total of 1234 images (2015: 582 scenes; 2020: 652 scenes) were processed
using the C2RCC processor and our BP-TURB models to create the nationwide turbidity
maps (Figure 2). Once the annual mean turbidity maps were generated, the average value
for all pixels within a lake was estimated during the observation period (2015, 2020). The
dynamics of turbidity over temporal (5-year) and spatial (five lake zones) scales were
examined. This included changes in the average turbidity, trend, number, and surface area
of lakes. As determined by a natural break’s method, all lakes (surface area >1 km2) across
China were categorized into six levels: <10 (clear), 10–15 (lightly clear), 15–20 (moderately
clear), 20–30 (moderately turbid), 30–45 (very turbid) and 45+ NTU (extremely turbid).
More details of data processes are shown in the Supplementary Materials.

3.7. Data on Abiotic Factors

Across large spatial scales, biotic factors and their correlates are pivotal determinants
of lake biogeochemistry (Table S3); this is in contrast to the dominance of biotic factors
(e.g., eutrophication) in individual lakes [38]. The average depths and lake volumes in
millions of cubic meters were gathered from HydroSHEDS datasets, which were estimated
using the geostatistical modeling approach [39]. The average lake depth was defined as
the ratio between total lake volume and lake area [40]. For natural factors, we considered
elevation, climate, vegetation coverage, etc. Elevation was determined from a digital
elevation model obtained from the Shuttle Radar Topography Mission (30 m × 30 m). We
extracted the annual mean wind speed recording as m s−1 approximately 10 m above the
surface of lakes from the European Centre for Medium-Range Weather Forecasts. Likewise,
the annual temperature (◦C) and precipitation (mm) were gathered from the Resource and
Environmental Science and Data Center (RESDC), along with the yearly mean normalized
difference vegetation index (NDVI), representing the greening of limnetic regions. These
data were averaged considering five lake regions, consistent with mapped turbidity. Finally,
anthropogenic factors such as GDP and population data for 2020 were also from RESDC
with a 1 km resolution. We also checked the datasets manually. More details of sources of
abiotic factor datasets are shown in the Supplementary Materials.

4. Results
4.1. The Importance of Multi-Spatial-Temporal In Situ Water Qualities

In situ and Hydrolight dataset turbidity ranged from 0 to 282.74 NTU, averaging
at 39.19 NTU with large spatial variation (standard deviation = 31.12) (Table 1). A total
of 33.36% of samples had turbidity greater than 11 NTU, defined as very turbid waters
according to the IOCCG report [41]. The average pH and EC (conductivity) were 8.51
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(Table 2) and 3252.3 µS cm−1, respectively; SDD and SPM were 1.60 m and 15.77 mg L−1;
Chl-a and TP were 7.56 µg L−1 and 0.16 mg L−1, respectively. Comparatively, a little
bit higher standard deviation could be observed in the EC, turbidity, Chl-a, SPM, and TP
concentrations, with a high abundance of water qualities from different lakes. The averaged
ap (443), aph(443), ad(443), and aCDOM (443) were 1.41 m−1 (±1.76), 0.48 m−1 (±0.72),
0.93 m−1 (±1.43), and 0.54 m−1 (± 0.43), respectively. Further, there were significant
correlations between turbidity and SPM (Table S4; r = 0.88, R2 = 0.78, p < 0.001), a(443)
(r = 0.81, R2 = 0.66, p < 0.001), and ad(443) (r = 0.80, R2 = 0.66, p < 0.001), respectively
(Figure S3).

Table 1. Descriptive statistics analysis of water qualities of in situ lakes across China.

Parameters N Avg. SD. Min. Max

Turbidity (NTU) + 484 39.19 31.12 0 282.74
pH 431 8.51 1.04 6.86 13.05

EC (µS cm−1) 431 3252.3 6739.31 0.17 33,453.10
SDD (m) 431 1.60 1.50 0.17 9.47

SPM (mg L−1) 484 15.77 21.00 0.24 147.50
Chl-a (µg L−1) 431 7.56 11.28 0.13 100.22
TP (mg L−1) 431 0.16 0.42 0.003 2.17
ap(443) (m−1) 431 1.41 1.76 0.01 8.06
aph(443) (m−1) 431 0.48 0.72 0 5.33
ad(443) (m−1) 431 0.93 1.43 0 6.96

aCDOM(443) (m−1) 431 0.54 0.43 0 1.89

SDD, SPM, Chl-a, and TP are water clarity, suspended matter, chlorophyll-a, and total phosphorus, respectively. +
The turbidity levels are considered the Hydrolight simulation data.

4.2. Lake Optical Water Types Clustering

Figure 3 shows the rhown(λ)-spectra from atmospherically corrected MSI products.
According to our analysis, the rhown(λ) was optimally divided into three OWTs (i.e., OWT
C1, OWT C2, and OWT C3) when the variation and distance measurement ratios of the
SIC were the largest (0.130 and 4.983, respectively). The average rhown(λ) result shows that
the OWT C3 dataset has relatively high reflectance, with OWT C1 and OWT C2 having
progressively lower reflectance. There were notable differences (ANOVA, p < 0.001) in
water properties, e.g., pH, SPM, TP, SDD, aCDOM(λ), aph(λ), and ad(λ) for each partition
of rhown(λ), followed by EC (p < 0.05) among the OWTs. The optical properties and
concentrations of optically active substances, as expected, underpinned the clustering of
rhown(λ). A literature review to identify spectral bands for turbidity modeling showed that
bands and band ratios in the red or NIR wavelength were commonly utilized [42]. Our
correlation analysis (r > 0.80, R2 > 0.62) also indicated that rhown(665, 704, and 740 nm)
explained a high proportion of turbidity variance (Figure S4).

Thus, we obtained the median values of rhown (665, 704, and 740 nm) for integrated
OWT C1 and OWT C3 reflectance and integrated OWT C1 and OWT C2 reflectance.
Then, a linear fit was determined from the three sensitive bands considering different
integrated datasets, aiming to find segmental boundaries among different OWTs. Two
slope thresholds (−0.0000769 for OWT C1 and OWT C2; −0.0004478 for OWT C1 and
OWT C3) were delineated for turbidity models responding to optical lake types. Given
the specific boundaries of different OWTs of stochastic imagery data responding to the
turbidity variations, consistent turbidity models and downstream product generation can
be conducted.
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Figure 3. (a) The rhown(λ) −spectra were divided into OWT C1 (blue line), OWT C2 (orange line),
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4.3. BP-TURB Models

A neural net was trained for each OWT by k-means clustering schemes and iterative
analysis. The model performed well, as seen from the calibration and validation results,
the small y-intercept and errors, and the close relationships between in situ-measured and
MSI-estimated turbidity (high R2, slope close to 1; Figure 4). When we used rhown (443,
490, 560, 665, 704, 740) as the input for OWT C1, the BP-TURB OWT C1 model performed
the best, with slopes close to 1 (slope > 0.83), and returned a high R2 > 0.87 (Table 2).
We used iteration to select the sensitive bands or band combinations responding to the
turbidity concentrations for the following OWTs. The band levels were ranked according
to maximum Pearson coefficient (r, 2-tailed, p < 0.01), denoting the best correlations with
turbidity, and were assigned in the algorithm configuration optimization using the BP
neural network as input variables. For the OWT C2 dataset, there were 13 bands or band
combinations used as input variables for BP-TURB OWT C2, performing well (slope > 0.82
and R2 > 0.81).

Table 2. The input variables of BP-TURB models considering different OWTs and their performances
compared with multiple linear regression between measured and estimated turbidity from the MSI
spectral bands for a pool dataset (unit: NTU).

Models Input Band Combinations or Model Datasets N Slopes * R2 Errors

BP-TURB
OWT

C1

Input: rhown (443, 490, 560, 665, 704 and 740) Cal- 76 0.84 0.87 RMSE = 4.01;
MAE = 2.99

Val- 39 0.83 0.88 RMSE = 4.42;
MAE = 3.00

BP-TURB
OWT

C2

Input: rhown (443, 490, 560, 665, 704 and 740); rhown (665 ×
704 × 740/443); rhown(560 × 704 × 665/443); rhown(704 ×
740/490); rhown(704 + 740/443); rhown(704+740/560);
rhown(665 + 704 + 490/443); rhown(704 × 740)

Cal- 163 0.83 0.81 RMSE = 3.24;
MAE = 2.51

Val- 82 0.82 0.81 RMSE = 3.67;
MAE = 2.91
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Table 2. Cont.

Models Input Band Combinations or Model Datasets N Slopes * R2 Errors

BP-TURB
OWT

C3

Input: rhown (443, 490, 560, 665, 704 and 740); rhown(704 ×
740/490); rhown(665 × 704/490); rhown(704 × 740/665);
rhown(560 × 740/443); rhown(490 × 665 × 704/443); rhown(665
× 704 × 740/443); rhown(560 × 740/443); rhown(665 ×
704/443); rhown(704 × 740/443); rhown(490 × 704 × 740/443);
rhown(490 × 740/443); rhown(704 × 740)

Cal- 131 0.87 0.79 RMSE = 27.74;
MAE = 20.92

Val- 64 0.89 0.81 RMSE = 17.54;
MAE = 11.20

Multiple Linear
regressions

Input: rhown(740)
Cal-:Tur =2059.14 × rhown(740) + 0.669
Val-:Tur estimated = 0.63 × Tur measured + 7.18

Cal- 370 - 0.56 RMSE = 14.96;
MAE = 8.02

Val- 185 0.63 0.53 RMSE = 15.12,
MAE = 8.12

Input: rhown(709), rhown(740)
Cal-:Tur = 6867.67 × rhown(740)–1752.26 × rhown(709) + 3.96
Val-:Tur estimated = 0.64 × Tur measured + 6.87

Cal- 370 - 0.55 RMSE = 27.20;
MAE = 17.36

Val- 185 0.64 0.55 RMSE = 48.60;
MAE = 30.11,

* Slopes of linear fitting, where a slope close to 1 represents the unbiased performance of models. Cal- represents
the calibration dataset, and Val- was validation dataset. Tur estimated and Tur measured represent the estimated and
measured turbidity for our lake samples.
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Figure 4. Relationships between measured and estimated turbidity for BP-TURB models’ calibration
and validation datasets, of which (a) is the BP-TURB OWT C1 model, (b) is BP-TURB OWT C2 model,
and (c) BP-TURB OWT C3 model, respectively.

Further, our trial analysis found that the turbidity model for the OWT C3 dataset can
have improved performances when a total of 18 bands or band combinations (moderate cor-
relations, r > 0.55) are joined and developed as BP-TURB OWT C3 (Table 2). The synergistic
BP-TURB models with the k-means clustering of reflectance can be applied to provide a
reliable framework to estimate turbidity and to generate national-scale turbidity products.
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4.4. Spatial Distributions of Turbidity in 2015 and 2020

Figure 5a shows the distributions of lake turbidity in the five lake zones across China
in 2015 and 2020, revealing remarkable spatial variations, with plateau lakes generally
having lower turbidity than plain lakes. A larger percentage of clear lakes (53.26%) with
low turbidity levels (<10 NTU) was found in 2020 than in 2015 (37.43%). Likewise, 7.78%
of lakes were moderately clear, 8.51% were moderately turbid, and 8.74% were very
turbid in 2020, exhibiting significant improvement compared to 2015 (11.16%, 17.03%, and
12.57%), respectively. There were significant differences among different limnetic regions
from different years (F = 48.3 and 54.53, p < 0.001) (Figure 5). For annual mean turbidity
(NTU) in 2015 and 2020, the top regions were NLR (26.59, 29.54), ELR (20.44, 15.42), and
MXR (21.79, 18.41), followed by TQR (15.24, 13.69) and YGR (10.61, 16.80). The lakes
with turbidity >45 NTU were most common and accounted for 13% (NLR), 6% (ELR),
18% (MXR), 8% (TQR), and 5% (YGL) in 2015, consistent with results of 26%, 6%, 11%,
7%, and 12% in 2020, indicating that NLR has the highest lake abundance with extreme
turbidity (Figure 5d). Lake turbidity values showed obvious improvements in this 5-year
comparison, considering the intermediate turbidity levels (very turbid, moderately turbid,
and moderately clear). Turbid lakes (>30 NTU) were common over Songnen Plain (NLR),
Xilinguole (MXR), and Shanxi Province (MXR), as well as in YGL. Conversely, a larger
percentage of lakes had low turbidity in the Yangtze River basin flat plains (ELR).
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Figure 5. The mean turbidity (NTU) of lakes (>1 km2) across China in 2015 (a) and 2020 (b) from our
BP-TURB models, respectively, and their spatial distribution of lakes with mean turbidity, proportion
of lake number with turbidity values for six different levels, box plots of the mean turbidity values,
and proportion of lake number at different turbidity levels from the five limnetic regions.
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4.5. Temporal Dynamics of Lake Turbidity (>1 km2)
4.5.1. Temporal Average and Trend in Lake Turbidity

Turbidity ranged from 0.01 to 98.63 NTU with an average of 19.35 ± 8.70 NTU in 2015;
turbidity ranged from 0.01 to 122.09 NTU with a mean of 16.92 ± 6.25 NTU in 2020. There
were significant differences (F = 27.74, p < 0.001) in lake turbidity between the two studied
years. The NLR showed the highest lake turbidity, with an average turbidity of 26.6 ± 16.56
NTU (2015) and 29.54 ± 19.83 NTU (2020), followed by lakes of MXR (2015, 21.79 ± 16.51
NTU; 2020, 18.41 ± 17.65 NTU) and ELR (2015, 20.44 ± 12.55 NTU; 2020, 15.42 ± 14.77
NTU), while turbid lakes mostly dominated in the flat plains (Figure 6). Mean turbidity
values of lakes in TQR (2015, 15.24 ± 16.04 NTU; 2020, 13.69 ± 14.96 NTU) and YGR (2015,
10.61 ± 14.86 NTU; 2020, 16.80 ± 17.94 NTU) located at high altitudes (Tibet Plateau and
Yungui Plateau) had high spatial heterogeneity and were relatively low.
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(c) MXR, (d) TQR, and (e) YGR, and ANOVA analysis (significance, p < 0.05).

4.5.2. Interannual Changes in Turbidity

While assembling the datasets for this study, lakes, such as Chagan Lake (NLR), Hulun
Lake (MXR), Taihu Lake (ELR), Qinghai Lake (TQR), and Dianchi Lake (YGR), were mapped
with our BP-TURB models (Figure 7 and Table S5). In Taihu Lake, the highest turbidity
occurred in spring (26.18 NTU), followed by summer (13.36 NTU), and spring (23.28
NTU). Due to high elevation and less human activity, Qinghai Lake had lower average
turbidity, with the following seasonal variations: 13.05 NTU (spring) >11.36 NTU (summer)
> 8.48 NTU (autumn). The same seasonal dynamics were held for Dianchi Lake (16.12 NTU,
10.32 NTU, and 11.64 NTU). The seasonal averaged turbidity of Hulun Lake was 40.11 NTU
(spring) > 36.57 NTU (summer) > 17.50 NTU (autumn), suggesting terrestrial inputs via
soil leaching and runoff in spring. Evidently, Chagan Lake has stable seasonal dynamics for
lake turbidity, with average turbidity values greater than 30 NTU. The dynamic processes
of lake turbidity are affected by the regional environmental background, e.g., hydrology,
climate, and anthropogenic activities, over large-scales.
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Figure 7. Spatial variations of turbidity derived from BP-TURB models in typical lakes, e.g.,
(a) Chagan Lake, (b) Hulun Lake, (c) Taihu Lake, (d) Qinghai Lake, and (e) Dianchi Lake, and
their pixel numbers in different turbidity ranges. For each lake, the seasonal turbidity dynamics were
mapped within spring (April to May), summer (June to August), and autumn (September to October).
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4.6. Abiotic Factors Acting on the Spatial Variations of Turbidity

Lake turbidity was considered to be co-determined by various abiotic factors [24,43].
Satellite-derived average turbidity for all lake pixels in 2020 was used to represent the
turbidity levels across China. Within a specific lake zone, turbidity varied spatially. Then,
the consistent spatial variations of abiotic factors, such as lake characteristics, natural
factors, and anthropogenic factors, also showed different distributions among five limnetic
regions (Table S1 and Figure 8a). For Chinese lakes (area >1 km2) in 2020, there was a
moderately negative correlation between average turbidity and elevation, with R2 = 0.52
(p < 0.05) (Figure 8b). Likewise, the derived turbidity by BP-TURB models showed that the
average turbidity was strongly negatively related to lake volume (R2 = 0.86, p < 0.01), as
well as moderately correlated with lake average depth (R2 = 0.56, p < 0.05). Meanwhile,
BP-TURB models revealed a strong negative relationship between average turbidity and
lake volume (R2 = 0.86, p < 0.01), as well as a modest relationship with lake average depth
(R2 = 0.56, p < 0.05). Multiple abiotic factors influenced turbidity in Chinese lakes, with the
geographical distributions of turbidity being mainly influenced by lake volume, followed
by lake depth and elevation.
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anthropogenic factors (Table S1), and regression analysis (b) among turbidity, lake volume, lake
average depth, and elevation in five limnetic regions.
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5. Discussion
5.1. OWTs Clustering for Turbidity Modeling

The efforts [28] to increase the usage of remote sensing in monitoring biogeochemical
characteristics and processes taking place in lakes have increased considerably (e.g., Chl-a,
and CDOM; IOPs, absorption; radiometric quantities) [44]. However, several studies have
shown that it is difficult to develop a universal algorithm for such a variety of lakes [30]. On
the other hand, if such an algorithm is developed, then it often performs poorly for every
lake separately (Table 2). Remote sensing algorithms are not universal and need tuning for
specific lakes. Although the specific tuning of remote sensing algorithms of lakes could
improve derived results locally, these would be not appropriate for studies of large-scale
regions. Water pixels, on the other hand, are snapshots of a continuum that represent
average optical conditions. Nevertheless, the pure water pixels near the shore are affected
by complex processes linked to adjacency effects or shallow bottom, resulting in a higher
variance in turbidity estimation. Based on the obvious differences in spectral shapes and
the magnitude of reflectance or radiometric quantities, water optical typologies allow us to
capture the unique characteristics of lakes [44]. Clustering OWTs before mapping turbidity
is a good compromise to develop groups of optimized algorithm configurations with lower
variance. This process did not require preliminary parameterization data (e.g., suspended
matter, trophic state, etc.) to improve the performance of models [16]. As illustrated
in Tables 2 and S6, the turbidity levels and optically active constituents for each class
were different, with significant differences among turbidity, SPM, and ad(443) (F > 170.4,
p < 0.000). It can be inferred that lakes in OWT C3 were turbid with higher SPM and Chl-a,
and lakes in OWT C2 were clear. We developed two empirical algorithms based on all in
situ datasets we had (Table S5) in order to compare how the OWT-assisted neural network
performed compared to that of the conventional approach. The results are provided in
Figure 4 and bands or band combinations in Table 2. OWT-assisted BP-TURB models
outperformed previously proposed empirical algorithms. Despite the great variability
of these in-water characteristics and the often-complex interactions between reflectance
and water qualities, there are some notable differences for different OWTs (Table S2). As
expected, the optical properties (e.g., ad(443), aph(443), and ag(443)) and SPM underpin the
clustering of rhown-bands, with significant differences (AVOVA, p < 0.001) (Table S2). There
were no significant differences in Chl-a among different OWTs, owing to the dominance
of suspended matter on measured turbidity levels. For turbidity product generation on
a national-scale, we adopted a new approach of assigning pixels or observations to the
optimized algorithm configuration scheme by OWTs (Figure 2).

5.2. Remotely Sensed Turbidity Models

There is evidence [15,16,18,45] that, despite that sentinel MSI was built as a land sensor,
it can be used for water remote sensing as well. In situ turbidity measurements showed
significant correlations with rhown(665), rhown(704), and rhown(740) (p < 0.001) (Figure S4).
The reflectance signals in the red bands were jointly modulated by optically active sub-
stances and varied within different lake characteristics and watershed catchments [30]. The
correlation between the reflectance values and optical water constituents was purely due to
optics. Band ratio algorithms are the most primitive way to relate optical water properties
(reflectance) and other water properties. In general, the broader MSI bands have increased
sensitivity to the integrated absorption and scatter properties of optically active substances
(e.g., Chl-a, SPM, and CDOM), signifying turbidity (this study), or in other studies, trophic
state [18,45]. Matsushita et al. (2015) [46] also demonstrated that quantifying water qual-
ities in turbid waters generally requires a sufficient signal to noise ratio at red or NIR
bands. Turbidity is always a relative measurement, comparing how much light a sample
scatters to how much light a standard scatters. The turbidity of the sample increased as
more light was scattered. Simultaneously, the turbidity was driven primarily by SPM or
phytoplankton scatter within reflectance, and suspended solids had strong backscattering
at red or NIR wavelengths [36]. Because particles dominate the optical properties of our
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investigated waters, turbidity generally showed significant correlations with SPM (Figure
S3). The turbidity products (e.g., Copernicus Global Land Service) are therefore frequently
derived from SPM models. However, these products are for Europe and Africa and are not
available in China. Likewise, the OWTs (see Section 5.1) and calibrated datasets should be
based on wide ranges of turbidity levels. While encouraging, the BP-TURB by MSI sensor
considering OWTs was developed (Figure 4). A blended algorithm approach is superior to
single algorithms when considering the entire dynamic range of environmental conditions.

Machine learning algorithms are superior at dealing with high-dimensional and non-
linear regression problems [11]. They are excellent for solving the nonlinear relationships
between reflectance and in situ turbidity, considering moderate and even high turbidity.
However, if we considered OWTs for every pixel in an investigation of large-scale lake
groups with moderate or small lakes, this process would be time-consuming (Figure 4,
Table S4). BP integrated across sensitive bands of turbidity performed better than either
of the relatively coarse and poorly generalizable empirical models. Likewise, BP always
has a baby-size computational overhead compared to other machine learning algorithms
(e.g., support vector machines). Our trial analysis found that the BP-TURB model for
the OWT C3 dataset required more band combinations responding to in situ turbidity as
input variables (Table S6). This caused algorithm performance to improve across the entire
training dataset (CAL and Val version).

As illustrated in Table 2, OWT C3 waters typically had relatively high SPM (OWT C3,
43.2 mg L−1 ± 23.2) and Chl-a (OWT C3, 9.2 µg L−1 ± 8.4) coupled with non-covarying
OACs (ad(443), 2.43 m−1 ± 1.85) compared to OWT C1 and OWT C2 waters. The fact that
rhown(λ) can vary with changing optically active substances is shown in Figure 3. For exam-
ple, the variance of particulate concentration and particle assemblage from 0.1 to 2 µm can
efficiently increase the scattered light, reflecting in the reflectance spectral dependency [36].
Likewise, the non-covarying OACs (ad(443) and aCDOM(443)) had a significant impact on
the reflectance at blue or green spectral bands [47]. In addition to predictive performance,
BP-TURB OWT C3 exhibited good performance.

5.3. Chinese Lake Turbidity Distributions in Five Limnetic Regions

Early investigations of Chinese lake turbidity were conducted in regional lake groups
located in the Middle and Lower Yangtze River basin [20] and in Poyang Lake [22]. Many
studies or monitoring agencies used a relative parameter turbidity to actually represent
a concentration of SPM, as turbidity measurements are less time consuming and much
cheaper. (Section 5.2). No systematic efforts have been made to establish a long-term
record of water turbidity data for a large-scale Chinese lake overview. This study is the
first attempt to achieve this. Although turbidity varied spatially within lake regions,
low turbidity lakes were mostly located in the southwest plateau regions such as Tibet
(TQR) and Yunnan-Guizhou (YGR) (Figure 5). Our results were consistent with the spatial
distributions of lake clarity demonstrated from Song et al. (2021) [48]. They also showed
that lake clarity was high in TQR and YGR.

The abiotic factor analysis indicated that satellite-derived turbidities were mainly
a function of lake volume, followed by lake depth, and elevation (Figure 8b). This is
not surprising, as turbidity is usually higher in shallower and smaller lakes due to re-
suspension. For example, mineral particles settle out from the water column relatively
quickly. If the lake is deep (and consequently the volume is large), then these particles
cannot re-suspend and are out of circulation. In shallow lakes, the turbidity is high.
Theoretically, lake turbidity is co-determined by phytoplankton, suspended matter, and
CDOM [49]. Increased phytoplankton means higher turbidity. Thus, there should be good
correlation between Chl-a and turbidity, not observed in our in situ data. Consequently,
mineral particles dominated in the formation of turbidity, e.g., SPM. High CDOM (yellow
substances) may reduce turbidity values due to the absorption of light [50], meaning that the
measured turbidity In CDOM-rich lakes can be lower, not because there are less scattering
particles, but because some of the light traveling between the light source and sensor is
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absorbed. However, the CDOM concentrations in the lakes studied were relatively small
and should have had little effect on turbidity measurements that were carried out at 680 nm.
In contrast, the abiotic factors we studied (Table S3) and their correlates are pivotal factors in
determining lake biogeochemistry at multiple scales [38]. This could help to understand the
mechanistic processes governing specific lake water qualities, optical absorption processes,
and spectral clustering (Sections 5.1 and 5.2). However, a large-scale study of abiotic factors’
(list in Table S3) influence on lake turbidity is required to understand the future prospects
of lakes in response to global changes. For example, increased turbidity from a climate-
driven increase in sediment re-suspension can be associated with the erosion of recently
submerged shorelines following submersion during the rapid expansion of a lake [51].

In comparison to our finding (Figure 8b) that increased lake volume was significantly
negatively correlated with lake turbidity, high water level could contribute to weak sedi-
ment re-suspension, stable water flow conditions [22], and good buffer capacity. Previous
studies [43] have demonstrated that lakes with mean depths >5 m in China are mainly
located in the YPL, IMXPL, and TQR, whereas the lakes located in the ELR had a mean
water depth of only 3.42 m. These lakes are hydro-geographically connected with the rivers,
and their turbidity values are controlled by the re-suspension of sediments [52]. In addition,
our results also showed that distributions of lake elevation were negatively correlated to
lake turbidity in five limnetic regions. We suspected that two interactive factors, such as
elevation and anthropogenic activities, drive turbidity, possibly by increasing available
nutrients from agricultural and sewage discharge and runoff from the surrounding land,
which in turn impacts soil erosion. Although we analyzed the effects of abiotic factors on
lake turbidity, it should be emphasized that lake volume dominated.

5.4. Comparison with Past Studies, Uncertainties, Challenges, and Future Perspectives

Observing lake water qualities with MSI is not without challenges [15]. Recognized
challenges include issues related to atmospheric correction [37], land adjacency effects [53],
and bottom reflectance [54]. In our study, we aimed to provide technical operations and
downstream products; the dedicated processes can be either seen as: (i) C2RCC processor,
(ii) k-means clustering of reflectance for developing new BP-TURB models, (iii) clustering
schemes for mapping, (iv) buffers approximately 3–10 water pixels for lake masks, and
(v) removing the area of algal bloom, to reduce the errors from atmospheric correction
(e.g., aerosol characterization) and mixed pixels caused by land adjacency and shallow
lake bottom reflectance. Our in situ turbidity ranges for developing the models varied
from 0 to 282.74 NTU, covering wide ranges from clear to turbid lakes. Nevertheless, our
ambition for this work was to provide a novel OWT and BP framework, which could lead
to more targeted validation efforts. Note that we referred to Song et al., (2020, 2022) [32,48]
to select the appropriate MSI images with a 7-day time window. This was due to the limited
image numbers in low-latitude regions compared to those in high-latitude regions, and
Toming et al. (2016) [15] and Cardille et al. (2013) [55] found that, in some cases, even
longer (weeks to month scale) time differences may still be acceptable. We compared the
model performance of BP-TURB considering different time windows (Figure S5). It can be
seen that the BP-TURB C1 and BP-TURB C3 models showed relatively significant perfor-
mances, with a high linear fitting slope and R2 found in the longer ±0–1 day time-window.
However, for the BP-TURB C2 dataset, we found there was no significant improvement.
In addition, the BP-TURB models, including other machine learning algorithms, are data-
driven models, and their performance largely depends on sample size and the importance
of each feature band. More effort can be made for in situ collection and the development
of other machine learning algorithms of turbidity when adding more sensitive band com-
binations. Reparametrizing model inputs considering targeted water types specifically
could improve performance across the turbidity concentration continuum. This, due to the
lake-specific differences in algorithm performance, will manifest in the algorithm response
when its specificity to the target substance is relatively poor. However, the generalization
of these methods remains to be demonstrated as robust across OWTs, providing a clearer
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knowledge of optical behaviors. In a broader sense, the scheme provided here can be
used as a template to guide band selections, algorithm selection, and downstream product
generation, including for atmospheric correction processors that could be considered within
the same OWTs.

6. Conclusions

We proposed a methodology that combines the spectral clustering of optical water
types and BP-based models using Sentinel-2 imagery. In situ turbidity data over a diverse
range of bio-optical regimes were collected in 2017–2019 and were used to develop BP-
TURB models. The high spatial resolution of the atmospheric corrected imagery (10 m)
allowed mapping all Chinese lakes that are at least 1 km2 in size. Complete turbidity maps
were generated from Sentinel-2 imagery for two years (2015, 2020) in order to study changes
in lakes over the 5-year period, and the abiotic factors acting on the spatial variations of
turbidity were examined. Our methodology provided a large-scale application example of
lake turbidity. Some findings were acquired from this study as follows:

(1) The rhown(λ), consistent with in situ samples, was optimally divided into three OWTs
(i.e., OWT C1, OWT C2, and OWT C3) with notable differences (ANOVA, p < 0.001)
in water properties, e.g., pH, SPM, TP, SDD, aCDOM(λ), aph(λ), ad(λ), and EC.

(2) The developed BP-TURB models, including BP-TURB OWT C1, BP-TURB OWT C2,
and BP-TURB OWT C3, performed well with slopes close to 1 (slope > 0.82), R2 > 0.81,
RMSE < 17.54, and MAE < 11.20.

(3) For Chinese lakes, a larger percentage of clear lakes (53.26%) with low turbidity levels
(<10 NTU) was found in 2020 than in 2015 (37.43%). The turbidity patterns were
determined by lake volume, average depth, and elevation.

The BP-TURB models were confirmed to have stable performance and temporal trans-
ferability. This will allow for using the methodology in routine water quality monitoring,
as well as in studying the effects of climate change and anthropogenic pressure on lakes.

Supplementary Materials: The following supporting information can be downloaded at: https:
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tation GDP, population and land-use distribution maps of China; Figure S2: Chinese lake numbers
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regression analysis of turbidity and SPM (a), a(443) (b) and ad(443) (c), and the absorption contribution
at 443 nm of phytoplankton pigment absorption aph(443), non-algal particles ad(443) and CDOM ab-
sorption aCDOM(443). The r is Pearson correlation coefficients found in Table S1, and R2 is regression
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Author Contributions: S.L. and K.S. designed and performed the study; T.K. and G.L. revised the
paper; Y.L. collected in situ data and image processing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China Fund] grant
number [U2243230, 42201414, 42171374, 42071336, 42171385, 42101366, 42201433 and 42001311],
the ‘Young support talents program’ from the Science, Technology Association of Jilin Province
(2020–2023) to Dr. Sijia Li and Land Observation Satellite Supporting Platform of National Civil Space

https://www.mdpi.com/article/10.3390/rs15102489/s1
https://www.mdpi.com/article/10.3390/rs15102489/s1


Remote Sens. 2023, 15, 2489 18 of 20

Infrastructure Project (CASPLOS-CCSI). Tiit Kutser was supported by the Estonian Research Council
grant (PRG302).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: The authors thank all staff and students for their persistent assistance with both
field sampling and laboratory analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lampert, W.; Sommer, U. Limnoecology: The Ecology of Lakes and Streams; Oxford University Press: Oxford, UK, 2007.
2. Maberly, S.C.; O’Donnell, R.A.; Woolway, R.I.; Cutler, M.E.J.; Gong, M.; Jones, I.D.; Merchant, C.J.; Miller, C.A.; Politi, E.; Scott,

E.M.; et al. Global lake thermal regions shift under climate change. Nat. Commun. 2020, 11, 1232. [CrossRef] [PubMed]
3. Davies-Colley, R.J.; Smith, D.G. Turbidity Suspended Sediment, and Water Clarity: A Review 1. JAWRA J. Am. Water Resour.

Assoc. 2001, 37, 1085–1101. [CrossRef]
4. Anderson, C.W. Turbidity 6.7. In USGS National Field Manual for The Collection of Water Quality Data; US Geological Survey: Reston,

VA, USA, 2005.
5. Petus, C.; Chust, G.; Gohin, F.; Doxaran, D.; Froidefond, J.-M.; Sagarminaga, Y. Estimating turbidity and total suspended matter

in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont. Shelf Res. 2010, 30, 379–392. [CrossRef]
6. Michaud, J.P. A Citizen’s Guide to Understanding and Monitoring Lakes and Streams; Publ. #94–149; Washington State Department of

Ecology, Publications Office: Olympia, WA, USA, 1991.
7. Jacobsen, L.; Berg, S.; Baktoft, H.; Nilsson, P.A.; Skov, C. The effect of turbidity and prey fish density on consumption rates of

piscivorous Eurasian perch Perca fluviatilis. J. Limnol. 2014, 73, 187–190. [CrossRef]
8. Woolway, R.I.; Merchant, C.J. Wordlwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 271–276.

[CrossRef]
9. Dudgeon, D.; Arthington, A.H.; Gessner MO Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto,

D.; Stiassny, M.L.; Sullivan, C.A. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006,
81, 163–182. [CrossRef]

10. Moore, G.K. Satellite remote sensing of water turbidity/Sonde de télémesure par satellite de la turbidité de l’eau. Hydrol. Sci. J.
1980, 25, 407–421. [CrossRef]

11. Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote sensing of turbidity for lakes in
northeast China using Sentinel-2 images with machine learning algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,
14, 9132–9146. [CrossRef]

12. Wang, Y.; Feng, L.; Liu, J.; Hou, X.; Chen, D. Changes of inundation area and water turbidity of Tonle Sap Lake: Responses to
climate changes or upstream dam construction? Environ. Res. Lett. 2020, 15, 0940a1. [CrossRef]
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