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Abstract: The increasing number of satellite missions provides vast opportunities for continuous
vegetation monitoring, crucial for precision agriculture and environmental sustainability. However,
accurately estimating vegetation traits, such as nitrogen concentration (N%), from Landsat 7 (L7),
Landsat 8 (L8), and Sentinel-2 (S2) satellite data is challenging due to the diverse sensor configurations
and complex atmospheric interactions. To address these limitations, we developed a unified and
physically based method that combines a soil–plant–atmosphere radiative transfer (SPART) model
with the bottom-of-atmosphere (BOA) spectral bidirectional reflectance distribution function. This
approach enables us to assess the effect of rugged terrain, viewing angles, and illumination geometry
on the spectral reflectance of multiple sensors. Our methodology involves inverting radiative transfer
model variables using numerical optimization to estimate N% and creating a hybrid model. We used
Gaussian process regression (GPR) to incorporate the inverted variables into the hybrid model for
N% prediction, resulting in a unified approach for N% estimation across different sensors. Our model
shows a validation accuracy of 0.35 (RMSE %N), a mean prediction interval width (MPIW) of 0.35,
and an R2 of 0.50, using independent data from multiple sensors collected between 2016 and 2019.
Our unified method provides a promising solution for estimating N% in vegetation from L7, L8, and
S2 satellite data, overcoming the limitations posed by diverse sensor configurations and complex
atmospheric interactions.

Keywords: grasslands nitrogen concentration; multispectral imagery; radiative transfer modeling;
topographical correction; BRDF

1. Introduction

Grassland productivity is critical for the meat and dairy sectors due to the ever-
increasing demand for high-quality meat and dairy products [1]. As a significant com-
ponent of the vegetation photosynthetic apparatus, nitrogen concentration (N%) plays a
crucial role in grassland productivity. Nitrogen-based chemical fertilizers are commonly
applied to grasslands to increase productivity, which can harm the environment [2–4].
Therefore, optimizing the application of nitrogen chemical fertilizers to grasslands is es-
sential. Traditionally, grassland N% is monitored by collecting grass samples and sending
them to a chemical lab for wet chemistry analysis. An alternative method of monitoring
grassland N% is using spaceborne optical imagery [5–8]. Spaceborne optical imagery
measures the electromagnetic radiation flux reflected by the incident solar radiation of a
surface, commonly referred to as reflectance.
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Reflectance is the ratio of the amount of light reflected from a surface to the amount of
incident light. Vegetation has a unique reflectance profile across different wavelengths of
the electromagnetic spectrum, allowing for the identification of specific chemical properties,
including N%, which could be detected using the visible (VIS), near infrared (NIR), and
short wave infrared (SWIR) regions of the spectrum [9]. Reflectance can be categorized
into top of atmosphere (TOA) and top of canopy (TOC) reflectance [10,11]. TOA reflectance
represents the measurements of the electromagnetic radiation flux reflected by the earth’s
surface and atmosphere. Although it includes atmospheric effects that may distort the ac-
tual reflectance profile of the vegetation, TOA reflectance is widely used in remote sensing
applications due to its accessibility and global coverage [12]. By applying atmospheric
correction techniques, TOA reflectance data can be converted to TOC reflectance, which
refers to the measurements of the radiation flux reflected only by the earth’s surface, ex-
cluding atmospheric effects [13]. TOC reflectance is considered more relevant for studying
vegetation properties, such as N%, because it provides a more accurate representation of
the actual reflectance profile of the vegetation by minimizing atmospheric interference [14].
However, the use of TOA reflectance in combination with appropriate atmospheric correc-
tion methods can still provide valuable information for monitoring grassland productivity
and optimizing nitrogen fertilizer application.

The presence of chlorophyll and protein content, which are closely associated with
N%, results in distinct spectral reflection that can be detected by spaceborne optical in-
struments [9,15–18]. By analyzing these spectral signatures and the associated reflectance
values, it is possible to estimate the N% of vegetation. Advanced algorithms and models
are developed to interpret these spectral data and derive accurate N% estimations. This
method allows for the non-destructive and continuous monitoring of N% at large spatial
scales, making it more efficient than traditional sampling methods [19]. By leveraging
the unique reflectance properties of vegetation and advanced data processing techniques,
optical remote sensing provides an effective alternative for monitoring grassland N%.

Monitoring N% in grasslands using spaceborne optical imagery faces significant
challenges, including cloud coverage and image acquisition frequency. One solution to
address these issues is to utilize a combination of multiple optical sensors, such as Landsat
7 (L7), Landsat 8 (L8), and Sentinel-2 (S2), for continuous and comprehensive monitoring.
These sensors provide a robust monitoring solution by increasing the data sample size and
offering more frequent images. For example, L7 features a 16-day revisit time, L8 has a
16-day revisit time on the same path and a 5-day revisit time on adjacent paths, while S2
has a 5-day revisit time [20–22]. Leveraging multiple sensors with varying revisit times
minimizes the impact of cloud coverage or poor image quality on any individual image.
However, effectively using the interchangeability of these sensors still needs to be improved.
First, each sensor has unique spectral and spatial resolutions and radiometric calibration,
leading to inconsistencies when merging data from different sources [23]. Preprocessing and
normalization are required to ensure accurate and comparable results. Second, the varying
revisit times of these sensors can result in temporal mismatches, making it challenging to
create a seamless time series of observations [24]. Innovative methodologies and tools to
fully exploit the potential of using multiple optical sensors for N% monitoring in grasslands
must be developed to overcome these challenges.

A common approach to tackling this issue is through a sensor harmonization process
called the bi-directional reflectance distribution function (BRDF) [25,26]. BRDF accounts for
the directional dependence of a target’s reflected energy as a function of illumination and
viewing geometries, producing cross-sensor consistent surface reflectance products [27,28].
By converting the imagery to the earth’s surface point directly below the satellite and
considering factors such as incidence and reflected zenith and azimuth angles, wavelength,
and spectral irradiance, BRDF enables the continuous monitoring of grasslands’ biochem-
ical and biophysical properties, including N%. Although BRDF is a powerful solution,
it can be computationally demanding due to its wavelength dependence and may pose
challenges when used with sensors featuring numerous spectral bands [29]. Despite these
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hurdles, integrating multiple optical sensors with BRDF presents a promising strategy
for overcoming cloud coverage and image acquisition time challenges in grassland N%
monitoring [27].

In grassland monitoring, topography presents a significant challenge [30]. Its influence
on spectral imagery is often underestimated, yet topography plays a crucial role in the
spectral analysis of vegetation in an uneven terrain [31–33]. This is because areas with
slopes facing the light source receive more significant amounts of down-welling radiation,
resulting in increased illumination [34]. Consequently, this hinders the accurate retrieval
of biochemical and biophysical properties of vegetation using empirical–statistical- or
physically based methods. Moreover, the anisotropic nature of non-Lambertian surfaces
adds complexity, as the radiance detected by the observing sensor is further influenced by
surface characteristics [35,36].

Many topographical correction methods have been developed for Lambertian and non-
Lambertian surfaces [37]. A common method of undertaking topographical correction is
by using the cosine method. This method uses the linear relationship between the radiance
measured and the viewing incident angle to undertake topographical correction [38,39].
However, this method has certain limitations, such as the fact that it does not consider the
impact of diffuse irradiance. To address these limitations of the cosine method, Gu and
Gillespie [32] proposed using the sun–canopy–sensor (SCS) topographic correction method,
which accounts for some BRDF effects over rugged terrain. This method improves upon the
cosine correction method by normalizing the illuminated canopy area of a scene. However,
as the SCS method does not consider the impact of diffuse irradiance, this topographic
correction technique may result in over-correction for slopes facing away from the sun.
To address this limitation of the SCS method, Soenen et al. [40] proposed a moderator
variable (C) that simulates the effect of diffuse sky illumination. This variable is derived
by calculating the linear relationship between the radiance and cosine of the incidence
angle Gu and Gillespie [32], Soenen et al. [40].

Estimating the biochemical and biophysical properties of vegetation can be achieved
using physically based RTMs [11,41]. These models monitor the vegetation properties by sim-
ulating the interaction between incoming solar radiation and vegetative canopies [10,42–45].
One approach involves variable inversion, where RTMs simulate the observed reflectance
spectrum as a function of several biophysical and biochemical variables, such as leaf area
index (LAI), protein content (Cp), and chlorophyll content (Cab) [46–48]. Inverting these
variables allows RTMs to find the best match between measured and predicted spectra.
Accurately and reliably inverting the biochemical and biophysical variables of RTMs is
challenging due to the ill-posed nature of RTM problems and our limited understanding
of the biophysical processes governing photon scattering, absorption, and transmission
when interacting with vegetative canopies [30,49–52]. Additionally, while the impact of to-
pographical features on spectral reflectance is well-established, the influence of topography
on the retrieval of N% using RTM needs further exploration [53]. Constraining all sources
of uncertainty and potential error is crucial to improve N% retrieval using optical data.
The soil–plant–atmosphere radiative transfer (SPART) is a specialized RTM that simulates
the interactions between incoming solar radiation, soil, plants, and the atmosphere [54,55].
It integrates atmospheric, canopy, vegetation, and soil RTMs, inverting the vegetation’s
biochemical and biophysical variables using top-of-atmosphere (TOA) reflectance. By
accounting for complex processes, such as light absorption, reflection, and transmission
through different components of the terrestrial environment, the SPART model offers valu-
able insights into vegetation characteristics, enhancing remote sensing-based estimations
of biophysical and biochemical properties for precision agriculture and environmental
monitoring applications. Utilizing TOA reflectance enables the retrieval of grassland char-
acteristics without requiring atmospheric correction, increasing computational efficiency
and reducing potential aggregated errors often encountered due to incorrect atmospheric
correction procedures.
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To estimate grassland N%, we propose using BRDF and topographically corrected
(using the SCS+C method) L7, L8, and S2 TOA data in conjunction with the SPART
model [54,55]. Given the varying specifications of L7, L8, and S2 sensors, such as their
number of bands, unique machine learning models are often developed for each sensor
to estimate N% [56,57]. However, this approach imposes considerable computational de-
mands when assessing grassland N% on a large scale. By employing SPART to convert
spectra from different sensors into a unified feature space, it becomes feasible to construct
a single model that leverages RTM-derived biochemical and biophysical variables for N%
prediction. The primary advantage of RTM is its foundation in a physical model that
simulates the interaction between electromagnetic radiation and vegetation canopies. This
enables precise N% predictions under varying environmental conditions, which can be
challenging using machine learning techniques relying solely on sensor-specific data. It is
essential to combine RTM and machine learning methods to harness the strengths of both.
RTM models the physical processes governing N%, while machine learning integrates
supplementary environmental information, resulting in more accurate and efficient models
for N% prediction. Machine learning techniques offer greater speed and computational
efficiency than RTM, making them valuable for large-scale applications. These models also
boast increased flexibility, incorporating diverse input data such as weather, soil moisture,
and other environmental factors, which enhances prediction accuracy while maintaining
efficiency for large-scale use. However, it is crucial to recognize that machine learning
models may yield different scientific understanding than RTM. Combining both methods
can result in improved predictions and a deeper comprehension of the underlying physical
processes governing N% [17].

In this study, we aimed to develop a unified approach for estimating grassland N%
using data from multiple sensors. To harmonize data from different sensors (L7, L8, and S2),
we employed the SPART model to invert the grass’s biochemical and biophysical properties
through numerical optimization. This process utilized pre-processed, topographically
corrected TOA reflectance data, subsequently calibrating the machine learning model.
We assessed the model’s performance by validating it with independent data from the
same satellite sources. A comprehensive statistical analysis was conducted to evaluate the
model’s predictive accuracy and investigate the influence of sensor viewing angles and
scene topography variations on the acquired spectra.

2. Material and Methods
2.1. Field Campaigns and Chemical Analysis

We collected 700 grass samples between 2016 and 2019 from five different hill country
and dairy farms across the North and South Islands of New Zealand, ensuring significant
variability in our study (Table A1). We employed random stratified sampling based on slope
angle, aspect, and soil types. Slope angles were categorized into groups 0–8, 8–16, 16–25,
and 25+ degrees. The open-source digital elevation model (DEM) from Land Information
in New Zealand (LINZ) was used for our sampling design. At each location, a 0.5 square
meter quadrant was placed on the grassland, and the grass was harvested using an electric
shearing machine before being stored in a cooling box [58–60]. Each site was geo-referenced
with an RTK-GPS system, and photographs were taken for visual assessment. Grass
samples were sent to Analytical Research Laboratories (ARL) in Napier, New Zealand,
for N% measurement using the Kjeldahl method [61]. Samples were dried, ground, and
homogenized with a mixer mill [62]. To ensure accurate and reliable measurements, we
collected data from grass-covered areas with a leaf area index (LAI) range of one to four. LAI
is a dimensionless indicator that quantifies the leaf area per unit of ground area, providing
essential information on the vegetation’s structure and density. This LAI range allows for
the precise capture of the canopy’s spectral characteristics while minimizing the influence of
the surrounding soil background, ensuring proper sensor calibration for vegetation canopy
detection and reducing the contribution of soil background to the spectral measurements.
By adhering to these sampling guidelines, our data collection was robust and representative
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of the grassland conditions in the study area. Detailed accounts of our field campaigns and
dataset can be found in Dehghan-Shoar et al. [9], Pullanagari et al. [18].

2.2. Spaceborne Optical Imagery Harmonization and Topographical Correction

We identified and downloaded L7, L8, and S2 TOA imagery for dates on which our
samples were collected (Table 1). This process was undertaken using the Google Earth
Engine (GEE) cloud computing platform and the geo-referenced sampling locations [63]. We
used satellite imagery captured within seven days with less than 15 percent cloud coverage.
We harmonized the imagery captured by different sensors using BRDF, hence re-projecting
the L7, L8, and S2 TOA imagery to Nadir [64]. We utilized the spectrally equivalent
MODIS (moderate resolution imaging spectroradiometer) bands L7, L8, and S2, along
with the corresponding spectral BRDF model parameters suggested by Roy et al. [28,65].
This method was selected based on its demonstrated high performance and ease of use in
calculations when harmonizing both the S2 and L8 TOA data [66].

Table 1. Table containing list of dates and locations where the field campaigns were undertaken, and
L7, L8, and S2 TOA imagery were acquired.

Latitude Longitude Field Sampling Date Image Acquisition Date Instrument

−40.7 175.8 18 April 2016 26 April 2016 Sentinel-2
−43.9 171.5 4 April 2019 30 March 2019 Sentinel-2
−39.3 174.3 22 October 2018 18 October 2018 Landsat 8
−40.7 175.8 18 April 2016 20 April 2016 Landsat 7
−40.1 175.2 28 November 2019 23 November 2019 Landsat 7

To ensure that the data from different data sources with varying spectral and ra-
diometric characteristics are comparable and consistent, we implemented the modified
sun–canopy–sensor (SCS+C) model for the topographic correction of each image. The
SCS+C method enhances the standard sun–canopy–sensor topographic correction by in-
corporating diffuse atmospheric irradiance [33,40]. To perform topographic correction,
we used metadata-based observation and solar angle information, as well as topographic
information calculated from the shuttle radar topography mission (SRTM) digital elevation
model (DEM), including slope and slope aspect [67]. Additionally, we co-registered the
DEM layer and the optical imagery to improve alignment and reduce misregistration errors.
Finally, the L7, L8, and S2 TOA reflectance and DEM imagery were spatially resampled to
10-meter (m) spatial resolution using the nearest neighbor algorithm for further analysis.

2.3. RTM Variable Inversion

The spectral signature for each sample was extracted from the pre-processed L7, L8,
and S2 imagery. The extracted spectra correspond to values of a single pixel overlapping
with the captured GPS locations. Due to the impact of shadow and cloud coverage, some
samples were manually removed from the dataset. Using numerical optimization, we used
the SPART model with the extracted L7, L8, and S2 TOA data to invert the biochemical
and biophysical variables. This model uses a vegetation canopy RTM, commonly referred
to as PROSAIL. PROSAIL was developed using the SAIL and PROSPECT models first
proposed by Verhoef [10] and Jacquemoud and Baret [41]. In this work, we implemented
the latest variation of PROSPECT called PROSPECT-PRO, as it enables the forward and
inverse simulation of vegetation protein content [16]. The SPART model also couples
the brightness–shape–moisture (BSM) and simplified method for atmospheric correction
(SMAC) RTM models; hence, it is capable of simulating the biochemical and biophysical
variables of vegetation from TOA data [54,55,68,69].

We used a Markov chain Monte Carlo (MCMC) numerical optimization algorithm with
a total sum of error as the loss function to invert each sample’s biophysical and biochemical
variables using SPART [70]. We used MCMC, as it can sample from high-dimensional
probability distributions associated with RTM problems. In addition, MCMC can calculate
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the uncertainty associated with each inverted variable. We parametrized the MCMC
sampling algorithm using an ensemble sampler with 100 walkers operating for 10,000
simulations per sample. To address the ill-posed nature of RTM, we constrained some of the
SPART variables based on prior knowledge and available data, including soil parameters,
geographical location, atmospheric parameters, viewing and illumination geometry, and
day of year (DOY) required by SPART (Table 2) [50]. We estimated the SPART ozone,
aerosol, and water vapor values using the Total Ozone Mapping Spectrometer (TOMS),
MODIS/Terra Aerosol Cloud Water Vapor, and the NCEP/NCAR 40-Year Reanalysis
Project datasets available from GEE [71–73]. After undertaking the simulations using
MCMC, we performed thinning to calculate the mean and one-sigma standard deviation
for each inverted variable.

Table 2. The SPART parameter search space used for inversion of the biophysical and biochemical
parameters from L7, L8, and S2.

SPART Parameter Parameter ID Search Space RTM Units

Air pressure Pa 900–1100 SMAC hPa

Aerosol optical thickness aot550 0–1 SMAC -

Water vapor uh2o 0–2.5 SMAC g/cm−2

Ozone content uo3 0–0.4 SMAC cm-atm

Structure parameter N 1.5–2.5 PROSPECT-PRO -

Chlorophyll content Cab 10–90 PROSPECT-PRO micro g/cm−2

Carotenoid content Car 2–9 PROSPECT-PRO micro g/cm−2

Brown pigment content Cs 0–0.1 PROSPECT-PRO -

Equivalent water thickness Cw 0–0.2 PROSPECT-PRO cm

Dry matter content Cdm 0–0.1 PROSPECT-PRO g/cm−2

Protein content Cp 0-0.02 PROSPECT-PRO g/cm−2

Carbon constituents CBS 0–0.02 PROSPECT-PRO g/cm−2

Anthocyanin content ant 0–7 PROSPECT-PRO µg/cm−2

Leaf area index LAI 1–4 4SAIL -

Leaf angle distribution a LIDFa −0.5–0.5 4SAIL degree

Leaf angle distribution b LIDFb −0.5–0.5 4SAIL degree

Soil brightness B 0.5 BSM -

Soil moisture percentage SMp 50 BSM percentage

Soil moisture carrying capacity of the soil SMC 0.25 BSM -

Single water film optical thickness film 0.0150 BSM cm

2.4. Retrieval of Grassland N%

After retrieving each sample’s biochemical and biophysical variables using the L7,
L8, and S2 reflectance, we focused on developing a model to predict grassland N%. We
employed a Gaussian process regressor (GPR) algorithm that leverages the inverted bio-
chemical and biophysical variables from TOA imagery for model calibration [74]. GPR
is a robust non-parametric method modeling the relationship between input and output
variables. It assumes that the function values at any set of input points are jointly Gaussian-
distributed, enabling uncertainty estimates for predictions at new, unseen input points [75].
A kernel function, chosen to measure the similarity between input points, is vital for per-
forming GPR. The kernel function influences the model’s behavior and helps learn complex
patterns in the data. Various kernel functions exist, including the squared exponential
kernel, the Matern kernel, and the radial basis function (RBF) kernel. We optimized our
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model using the random search optimization (RSO) algorithm, which identified the RBF
kernel as the optimal parameter for the GPR [76].

We validated our model using spatially and temporally independent data from L7,
L8, and S2 TOA reflectance data to predict grassland N%. The dataset we used in this
study consisted of 377 for S2, 277 for L7, and 46 for L8 samples. We used 30% (n = 210) of
our total dataset for independent validation, while the remaining samples were used for
calibration and cross-validating purposes. Due to the imbalanced nature of our dataset,
we used the synthetic minority over-sampling technique for regression with Gaussian
noise (SMOGN) on the calibration data. This method performs the synthetic minority
over-sampling technique for regression (SMOTER) with traditional interpolation and
Gaussian noise (SMOTER-GN) [77]. To achieve the best possible results, we optimized the
default parameters for the method, setting the number of neighbors for over-sampling to 6,
perturbation or noise percentage to 0.02, and a threshold of 0.5. Furthermore, we identified
the most informative biochemical and biophysical variables for predicting grassland N%
using the recursive feature elimination algorithm (RFE) and GPR [78,79]. RFE is a commonly
used feature selection technique that fits a model and removes the least important variables
from a dataset until the existing requirements have been met (specified number of features,
in our case, five).

Followed by this procedure, we calculated the mean and standard deviation of the pre-
dicted values. These values are then used to measure the performance of our methodology
by calculating statistical metrics, including R2, root mean squared error (RMSE), and mean
prediction interval width (MPIW) [80]. In addition, we investigated the impact of slope
angle, slope aspect, viewing, and illumination geometry on the spectra captured by each
sensor, by comparing the impact of these variables on the simulated and real harmonized
and topographically corrected reflectance. In addition, we investigated the impact of the
topographical correction on our model performance using the validation dataset. The
flowchart containing the methodology used in this study is illustrated in Figure 1.

Field campaigns and
grass sample collection

Random stratified sam-
pling and sample storage

DEM-based and soil
type sampling design

Geo-referencing and
N% measurement

Acquirement of Landsat 7,
Landsat 8, and Sentinel-2
TOA imagery using GEE

Harmonization and re-
projection of imagery

Topographic correction
using the SCS+C model

Constraining and inverting
SPART variables using MCMC

Feature selection and devel-
opment of the GPR model

Retrieval of grassland N% us-
ing GPR and map generation

Figure 1. Flowchart depicting the methodology used for grassland N% retrieval using SPART and GPR.



Remote Sens. 2023, 15, 2491 8 of 21

3. Results
3.1. Impact of Viewing and Illumination Geometry on Simulated TOA Reflectance

By fixing all SPART parameters while changing the viewing and illumination angles
of SPART (shaded green area of Figure 2), we estimated the sensitivity of TOA reflectance
to viewing geometry. This indicates that the viewing zenith angle impacts the VIS and
NIR of TOA reflectance, while the illumination zenith angle has a limited impact. A higher
viewing zenith angles result in lower reflectance in the NIR, with a decrease of greater
than 10%. Lower illumination zenith angle values increase the TOA reflectance. Similarly,
variation of the illumination zenith angle has a limited influence, with a decrease of less
than 3%, on other parts of the spectrum, such as the SWIR.

Illumination zenith angle Viewing zenith angle

(a) (b)

(c) (d)

(e) (f)

Figure 2. The impact of viewing and illumination geometry on simulated L7 (a,b), L8 (c,d), and S2
(e,f) TOA reflectance. The dashed red line corresponds to higher viewing and illumination angles,
while the dashed blue line corresponds to lower angles.

The impact of viewing and illumination geometry on TOA reflectance is noticeably
pronounced in rugged terrain, whereas this effect is relatively minimal in flat areas. As
illustrated in Figure 3, a considerable visual difference between rugged and flat terrains
regarding TOA reflectance highlights the sensitivity of rugged terrain to illumination and
viewing geometry. Moreover, the red circles in the same figure further emphasize the
limited impact observed in flat regions, which is consistent with the notion that the effect
of viewing and illumination geometry on TOA reflectance is generally more pronounced in
rugged terrain.
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(a) Sentinel-2 TOA image without topographical correction

(b) Topographically corrected Sentinel-2 TOA image

Figure 3. Impact Impact of topographic correction on S2 TOA imagery in rugged terrain for grassland
present in rugged terrain in the north island, New Zealand. The figure is a composite of Band 11,
Band 8A, and B4 of an S2 TOA image. The limited impact observed in flat regions is highlighted by
the red circles in subfigures (a,b).

3.2. Inversion of SPART Variables

We used SPART and an MCMC numerical inversion method to simulate spectral data
and retrieve the biochemical and biophysical variables. The simulation aimed to minimize
the difference between the actual and simulated spectral data as described in [17]. This
simulation showed higher uncertainty in the NIR region of the L7, L8, and S2 data sets, as
demonstrated in Figure 4.
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Landsat 7 TOA reflectance Landsat 8 TOA reflectance Sentinel-2 TOA reflectance

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Plots depicting the uncertainty associated with the simulated and actual L7 (a,d,g), L8
(b,e,h), and S2 (c,f,i) TOA reflectance. Columns one, two, and three correspond to L7, L8, and S2
TOA reflectance.

3.3. Impact of Topographic Correction on TOA Reflectance

We applied the SCS+C method for topographic correction after implementing BRDF
to harmonize sensor data. Our findings reveal a notable visual contrast in rugged terrain
before and after topographic correction. At the same time, minimal differences are observed
in flat areas (as emphasized in red in Figure 3). Following topographic correction, the
NIR spectral reflectance decreases in rugged terrain, aligning with our observations in
Figures 3 and 5. This reduction in NIR spectral reflectance can be due to the variations in
surface slope and orientation associated with a rugged terrain. Such variations can influence
the amount of sunlight reflected by the surface, and topographic correction compensates
for these disparities, yielding a more precise estimate of the surface reflectance.

We investigated the impact of slope angle and slope aspect on each spectral band of
S2 TOA reflectance, as illustrated in Figure 6. Our results show that a higher slope value is
usually associated with a greater difference (on average, better than 10% in the NIR). In
particular, when the aspect is northeast and southwest facing, the difference between the
reflectance values is typically higher. This is because the terrain is facing the sun during
image acquisition. Furthermore, the NIR (B6, B7 and B8, and B8A) is highly impacted
by steep terrain in comparison with the visible region (B2, B3, and B4) and SWIR (B11
and B12).
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Assessment of the influence of topographic correction on S2 TOA Reflectance. Subfigures
(a–f) illustrate the impact of the topographic correction on diverse samples analyzed in this study by
comparing the results obtained with and without the application of topographic correction.

3.4. Validation Results of the Model

Cab, Cw, Cbc, LIDFa, and LAI were identified as the most informative features for
predicting N% in vegetation based on the RFE technique. Among these variables, Cab,
representing chlorophyll-a concentration, is the most important due to its strong correlation
with N%, as both are essential for photosynthesis [17,81]. Cw is related to N% through its
role in cellular hydration, while Cbc is indirectly associated with N% through the carbon–
nitrogen balance in plants [82]. LIDFa provides insights into canopy structure influenced
by nitrogen availability, and LAI indicates vegetation density, which is also affected by
nitrogen availability [18]. Using these biochemical and biophysical variables derived from
TOA reflectance, we calibrated our model with an optimized GPR algorithm for predicting
N% in vegetation.
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(a) B2 (b) B3 (c) B4

(d) B5 (e) B6 (f) B7

(g) B8 (h) B8A (i) B11

(j) B12

Figure 6. The impact of slope angle and slope aspect on S2 TOA reflectance before and after topo-
graphic correction. The x-axis of each plot corresponds to the difference in reflectance values between
the topographically corrected and non-topographically corrected data.

We evaluated our GPR model’s performance using spatially and temporally indepen-
dent biochemical and biophysical data from L7, L8, and S2 satellite imagery. Our model
demonstrated moderate performance using topographically corrected TOA reflectance
data, achieving R2 values of 0.5, RMSE values of 0.35, and MPIW values of 0.35, as shown
in Figure 7a. However, when not using topographically corrected data, the model’s per-
formance declines, resulting in R² values of 0.32, RMSE values of 0.40, and MPIW values
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of 0.39, as depicted in Figure 7b. The difference in prediction accuracy can be attributed
to the importance of accounting for topographic effects on reflectance data, which helps
improve the model’s ability to accurately estimate biochemical and biophysical properties.
Additionally, combined uncertainties from model inversion, BRDF effects, and topography
contribute to the observed discrepancies in model performance, which are also present in
N% maps generated (Figure 8). Addressing these sources of uncertainty is essential for
enhancing the reliability and accuracy of remote sensing-based models when estimating
vegetation properties.

(a) (b)

Figure 7. Performance of our model for monitoring N% using harmonized and topographically
corrected L7, L8, and S2 imagery. (a) Independent validation results with corrections. (b) Independent
validation results without corrections.

(a) Sentinel-2 TOA image N% map without topographical correction

Figure 8. Cont.
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(b) Sentinel-2 TOA N% map with topographical correction

Figure 8. The impact of the topographic correction on S2 TOA-derived N% in grasslands in rugged
terrain in the North Island of New Zealand is shown, with the inset map in figure (a) highlighting the
study area. Subfigures (a,b) illustrate the discrepancies in grassland N% estimation due to the effects
of rugged terrain. The red circles illustrate the impact of topography on the predicted N% values.

4. Discussion
4.1. Impact of Viewing and Illumination Geometry

Vegetation Cab and Cp are often used as proxies for predicting grassland N% as these
two variables are closely linked to vegetation N% [8,83,84]. Since the spectral absorption
associated with Cab is present in the VIS of the spectrum, Cab can be used as a robust
proxy for monitoring grassland N% without applying BRDF correction. However, despite
the promising results achieved for monitoring N using Cab, Cp is the main source of N in
vegetation, and the accurate retrieval of Cp is critical for monitoring N% [16]. Key bands
for estimating protein are scattered across the electromagnetic spectrum (particularly in
the SWIR); as a result, BRDF remains an important step for inverting Cp using RTM. It
is important to identify and constrain all sources of uncertainty and error to accurately
invert RTM variables using numerical inversion (MCMC) (Figure 4). However, there is
uncertainty with inverted variables derived using MCMC uncertainties associated with
the NIR and SWIR caused by several factors, including the inversion process of SPART
variables. As many factors impact the SWIR (e.g., atmospheric variables and viewing
geometry), it is important to identify and isolate different sources of error and uncertainty
(including viewing and illumination geometry) for inverting Cp, thus predicting accurate
N%. This becomes more critical when developing invariant sensor models due to the
differences in the sensor specifications.

Our study aimed to evaluate the impact of viewing and illumination geometry on
spectra, particularly in the VIS and NIR regions. The results revealed that geometry sig-
nificantly affects both regions, consistent with previous research by Mao et al. [85] that
reported the sensitivity of the spectral regions between 760 nm to 890 nm and 450 nm
to 680 nm with geometric factors. This sensitivity can be attributed to the anisotropy of
the vegetative canopy and its interaction with radiation as explained by [86]. Moreover,
our study showed that predicted biomass values are more sensitive to geometric factors
than biochemical and biophysical variables impacted by the VIS region, consistent with
the findings of Buchhorn et al. [87], who investigated the impact of geometry on various
variables, including biomass. Ignoring these factors can lead to misleading conclusions,
as demonstrated by Mao et al. [85]. Therefore, our results highlight the importance of
considering viewing and illumination geometry, particularly in the NIR region, when pre-
dicting biomass values. Additionally, neglecting BRDF effects, as highlighted by Buchhorn
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et al. [87], can result in inaccurate estimations of biochemical and biophysical variables of
vegetation.

4.2. Impact of Topography

Topographical correction can significantly impact spectra when the terrain is steep
and facing the sun as shown in Figure 6. This is because steep terrain receives more solar
irradiance, which affects the measured reflectance [34,88]. Topographical factors signif-
icantly impact longer wavelengths (greater than 750 nm), making it difficult to retrieve
certain biochemical and biophysical variables, such as LAI, Cw, and Cbc, which have
characteristic absorption in these regions. This can lead to inaccurate estimation of N%
using SPART. To investigate this issue, we compared the performance of our model with
and without topographical correction. Our findings show that topographical correction im-
proves model performance and transferability, particularly in rugged shadow-dominated
terrain. de Oliveira et al. [89] investigated the interaction between topographic factors
on vegetation indices derived from hyperspectral imagery. They found that most vegeta-
tion indices related to biochemical and biophysical variables and plant physiology have
some degree of anisotropy with terrain illumination effects, consistent with our findings
(Figures 3 and 5). There are significant visual differences before and after topographic
correction. This change in reflectance could have a significant impact on the inversion of
SPART variables, adding error and uncertainty to our model.

In addition, we observed the “over-correction” of spectra, where the terrain is not
facing the sun. The SCS+C proposed by Soenen et al. [40] reduces the over-correction
of spectra by introducing the C parameter as an empirical coefficient to calculate diffuse
skylight irradiance. Given the simplicity of the SCS+C model and lack of consideration
of the anisotropic irradiance and reflectance, this model cannot generalize well to multi-
scale topographic regions Bishop et al. [88]. Bishop et al. [88] has discovered that it is very
challenging to accurately retrieve biophysical variables of a scene by using empirical topo-
graphical correction methods. A detailed investigation is required to develop transferable
and physically based topographical correction techniques for retrieving grassland spectra
in rugged terrain.

A limitation of this work is that the topographical correction procedure used is a low
spatial resolution DEM layer. This limitation can lead to errors and uncertainties in the
topographically corrected image, impacting the estimation of biophysical and biochemical
variables, including LAI and Cab. The implications of inaccurate estimation of these vari-
ables can have far-reaching consequences for vegetation monitoring and management (e.g.,
estimation of N%). Higher-quality data sources, such as light detection and ranging (Li-
DAR) products, can provide highly accurate and detailed elevation data for topographical
correction. This could reduce errors and uncertainties in the corrected image, improving
biophysical and biochemical variable estimation accuracy and, therefore, N% retrieval. It
is essential to note that using higher-quality data sources, such as LiDAR, can come at a
higher cost regarding financial resources and time. Therefore, researchers and practitioners
must carefully consider the trade-offs between data quality and cost effectiveness when
selecting data sources for topographical correction.

4.3. The Performance of the Model

The proposed model can predict grassland N% using the biochemical and biophysical
variables derived from multiple satellite imagery (Figure 7). The independent validation
results of our model are promising and show good performance, consistent with results
achieved in other work (Figure 4) [17,90]. Furthermore, our results demonstrate that the
topographically corrected data perform better in terms of RMSE, MPIW, and R2 compared
to data retrieved without undertaking topographical correction.

Using RFE, we identified Cab, LAI, LIDFa, Cbc, and Cw as the critical variables for
predicting N%. The importance of these variables highlights the need for topographical
correction and BRDF correction, which can improve the accuracy of the predictions. By
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inverting the variables and using physical characteristics from the RTM, we can develop
transferable models that consider several physical parameters impacting the spectra. This
approach allows us to combine physical and empirical information, taking advantage of
both methods and improving the robustness of our predictions. The selection of these
biophysical and biochemical variables by RFE depicts the importance of above ground
biomass (AGB) and chlorophyll for estimating N%. Although there is no direct relationship
between N% and AGB, there is an indirect relationship between the two because higher
N% positively correlates with AGB for grasslands [91]. Our research found that LAI,
Cw, and Cbc are essential for estimating N% proxies for fresh AGB. This aligns with the
findings of Wocher et al. [92], which showed that LAI, Cw, Cp, and Cbc could be used to
estimate AGB. It is important to note that while models trained using spectra and similar
empirical and statistical methods may still provide helpful information, they may not be as
transferable as models that combine physical and empirical information. By considering
both methods, we aim to improve the accuracy and reliability of our predictions of N%.

Even though Cp is the main N-containing biochemical in grassland, the RFE algorithm
has yet to identify this variable as necessary. This is because of the uncertainty and
error in the inversion process and limitations of the sensors (e.g., low spectral and spatial
resolution and poor signal-to-noise ratio of the SWIR). Alternatively, Cab is selected as an
essential variable for estimation N%, as Cab is the second-most N-containing biochemical
variable in vegetation [83,84]. The lack of selection of Cp for predicting N% highlights
the importance of identifying and addressing different sources of error and uncertainty,
including topography and geometry, when monitoring grassland N% in rugged terrain.

4.4. Enhancing RTM for Monitoring Grassland N% in Rugged Terrain

Enhancing the accuracy of the proposed model for grassland N% prediction requires
addressing factors that affect input variable quality and inversion process precision. This
can be achieved using higher spectral resolution instruments, such as hyperspectral imagery
with a superior signal-to-noise ratio (SNR), to collect high-quality spectral data and enable
a more precise inversion process [9]. Improvements to the model’s accuracy can also result
from refining the statistical and physically based models used in the inversion process,
such as algorithm advancements, data incorporation, or parameter adjustments [93,94].
Moreover, exploring new methods for obtaining RTM variables and enhancing the inversion
process may be beneficial. Addressing these factors can improve model accuracy and
provide reliable grassland N% monitoring results.

This study demonstrated promising results in monitoring grassland N% using BRDF
and topographical correction techniques. Although our approach offers higher temporal
resolution through various optical spaceborne instruments, periods with limited optical
imagery remain. Therefore, exploring alternative methods for improving temporal res-
olution in N% monitoring is essential. Further enhancements are required to monitor
grassland biophysical and biochemical variables. Our results suggest that integrating BRDF
and topographical correction techniques has the potential for grassland N% monitoring.
However, limitations exist, including limited temporal resolution and the need to refine
statistical and physically based models within the inversion process. Future research could
explore physics-informed machine learning algorithms for vegetation N% monitoring,
given the strong correlation between N% Cab and Cp [95,96]. Implementing such strategies
may enable more accurate and reliable monitoring across different vegetation species.

5. Conclusion

Our study presents a novel physically based sensor workflow for monitoring grassland
N% using spaceborne optical imaging. Our approach integrates multiple RTMs with L7, L8,
and S2 TOA reflectance data, BRDF for sensor harmonization, and SCS+C for topographical
correction. The key findings of our work are as follows:

1. Our approach achieves an independent validation accuracy of 0.35 (RMSE %N), a
mean prediction interval width value of 0.35, and an R2 of 0.50 using independent
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validation data from multiple sensors between 2016 and 2019, demonstrating the
potential for the cost-efficient monitoring of grassland N% using various spaceborne
optical instruments in rugged terrain.

2. We investigated the impact of rugged terrain, viewing, and illumination on different
sensors’ spectral reflectance for estimating grassland N%, showing that viewing
and illumination geometry can significantly impact spectra, particularly in longer
wavelengths. Moreover, topographic correction is essential for monitoring grassland
characteristics in rugged terrain.

3. To address the ill-posed nature of RTM, it is essential to identify and address sources
of uncertainty, including topography and viewing and illumination geometry. Future
research should investigate the impact of different BRDF and topographical correction
methods on retrieving grassland N%.

4. Although our proposed methodology provides higher temporal resolution for mon-
itoring grassland N%, there are still periods where acquiring optical imagery is
challenging. Therefore, it is crucial to investigate alternative methods of continuously
monitoring grassland characteristics.

5. Further investigation should be undertaken using physically guided machine learning
algorithms to monitor N%. This will enable the development of high-performance
sensor models for monitoring vegetation characteristics across different species.

Overall, our study represents a significant step forward in developing an efficient
approach for monitoring grassland N%, with important implications for improving the
sustainability of agriculture and the environment. Our approach offers a low-cost and
continuous monitoring solution for grassland N% that reduces the negative impact of
chemical nitrogen fertilizers on the environment. Additionally, our approach is available
on cloud services, providing increased accessibility for users.
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Appendix A

Table A1. Table containing the ID list of the acquired L7, L8 and S2 TOA imagery. The imagery was
acquired when the cloud coverage was less than 15 percent.

Instrument Image ID

Sentinel-2 COPERNICUS/S2/20160426T221552_20160426T221553_T60GUA
Sentinel-2 COPERNICUS/S2/20190330T222539_20190330T222539_T59GNM
Landsat 8 LANDSAT/LC08/C01/T1_TOA/LC08_073087_20181018
Landsat 7 LANDSAT/LE07/C01/T1_TOA/LE07_07208_20160420
Landsat 7 LANDSAT/LE07/C01/T1_TOA/LE07_072088_20191123
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