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Abstract: Vegetation indices (VIs) related to plant greenness have been studied extensively for the
remote detection of foliar nitrogen content. Yet, the potential of chlorophyll fluorescence (ChlF)
and photoprotection-based indices such as the photochemical reflectance index (PRI) or the chloro-
phyll/carotenoid index (CCI) for the detection of a wide range of nutrients remains elusive. We
measured the dynamics of foliar macro- and micronutrient contents in potato plants as affected by
fertilization and water stress, along with leaf and canopy level observations of spectral reflectance and
ChlF (or solar-induced fluorescence). ChlF and photoprotection-related indices were more strongly
related to a wide range of foliar nutrient contents compared to greenness-based indices. At the leaf
level, relationships were largely mediated by foliar chlorophyll contents (Cab) and leaf morphology,
which resulted in two contrasting groupings: a group dominated by macronutrients N, P, K, and Mg
that decreased during canopy development and was positively correlated with Cab, and a group
including Cu, Mn, Zn, and S that increased and was negatively related to Cab. At the canopy-level,
spectral indices were additionally influenced by canopy structure, and so their capacity to detect
foliar nutrient contents depends on the spatiotemporal covariation between foliar Cab, morphology,
and canopy structure within the observations.

Keywords: chlorophyll fluorescence; potato (Solanum tuberosum L.), SIF; PRI; UAV; canopy structure

1. Introduction

Population growth over the last century has resulted in increased agricultural ac-
tivity and the use of chemical fertilizers. While fertilization of food crops brings with it
larger yields, excess fertilization not only costs the farmer money, but also carries consider-
able environmental risks caused by eutrophication through the leaching of nutrients into
groundwater and waterways [1]. Precision agriculture methods, including the gathering
of near-real-time optical data from crops, answer the need for farmers to optimize the
application of fertilizers [2,3]. However, the applicability of optical methods to detect
plant nutrient contents has mostly concentrated on the use of simple vegetation indices
(VIs) related to chlorophyll contents and therefore canopy greenness to track nitrogen
contents [4]. The potential of emerging optical signals, related to plant photoprotection
strategies or chlorophyll fluorescence, for tracking a wider range of nutrients remains
poorly understood.

The essential nutrients needed by plants are divided into macro- and micronutrients,
depending on the amount of nutrient that is required by a plant. Nitrogen (N) is the most
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common plant growth-limiting macronutrient and an estimated 1–5% of above-ground
plant dry matter is N, making it the second most needed element after carbon (C) [5].
In plants, N is used, for example, to produce chlorophyll, nucleic acids, and proteins,
such as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) [6], which is used by
plants in carbon fixation. Other macronutrients include phosphorus (P), sulfur (S), calcium
(Ca), magnesium (Mg), and potassium (K). Micronutrients, such as copper (Cu), iron (Fe),
manganese (Mn), and zinc (Zn) play varying important roles in plant protein formation
and plant stress response [5] (Table 1).

Table 1. Macro- and micronutrients targeted in this study and their primary functions in plants.

Nutrient Function in Plant

N Required for all proteins, e.g., RuBisCO, chlorophyll synthesis, electron transport

P Essential for cellular energy transfer and metabolism: ATP and NADP

K Photosynthesis (through ATP synthesis) and stomatal control

Mg Chlorophyll synthesis, phosphate metabolism, protein (e.g., ATP) activation

Ca Cell wall synthesis, acts as a messenger in nutrient and stress signaling in plant

S Amino acid (cysteine and methionine) and coenzyme synthesis

Cu Protein synthesis (e.g., plastocyanin), nitrogen fixation

Fe Chlorophyll synthesis and chloroplast maintenance

Mn Metabolic processes (glycosylation) and nitrogen assimilation

Zn Regulates plant response to biotic and abiotic stress, protein synthesis

Cd Non-essential, hinders nutrient and water uptake

Plants require a balanced amount of macro- and micronutrients to function optimally.
A deficiency of mineral nutrients can lead to a decrease in the overall photosynthetic activity
of foliage [7,8] and reduced plant growth [9], affecting canopy development by reducing
the leaf area index (LAI) of the canopy [10]. Accordingly, nutrient deficiencies are expected
to express themselves through optical signatures both at the leaf, e.g., via pigment contents
and radiation absorption, and at canopy levels, via structural effects such as a decrease in
leaf area, offering opportunities for the remote detection of plant nutrient dynamics using
optical remote sensing techniques.

Vegetation indices (VIs) derived from leaf reflectance have been used in remote sens-
ing since at least the 1960s, the most well-known of which is the normalized difference
vegetation index (NDVI) [11], based on the red, which is absorbed by the vegetation, and
near-infrared, which is strongly reflected by the vegetation, reflectance difference. Origi-
nally used for differentiating vegetated areas from non-vegetated areas in satellite data [12],
it has since seen use in both commercial and scientific applications [4] and has been used
to detect N from crops [13,14]. It does, however, suffer from limitations due to saturation
under high canopy cover conditions [12,15,16].

Additional vegetation greenness-based indices (henceforth referred to as greenness
indices in this study together with NDVI) have been developed to refine the original
NDVI formulation, such as the MERIS terrestrial chlorophyll index (MTCI) [17]. The
MTCI is a proxy for the position of the red edge, which is the sharp increase in vegetation
reflectance between the red and near-infrared that shifts towards longer wavelengths
with increasing chlorophyll contents. While susceptible to soil background effects at
early growth stages [18], MTCI has been used for canopy chlorophyll [17] and N [18–20]
estimation on various plant species, while other related red edge indices have been shown
to correlate with canopy N status in grasslands and potato fields [21]. These approaches are
complementary to studies that make use of absorption features in the short-wave infrared
(SWIR) region of the spectrum that relate to N containing proteins [22,23].

Recent technological advances in both uncrewed aerial vehicles (UAVs) and field
spectroscopy offer new opportunities for optical remote sensing in precision agriculture at
increased spectral, spatial, and temporal resolution [24,25]. A range of spectral indices are
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available that do not only relate to plant greenness, but also capture plant photoprotective
dynamics and are thus potentially sensitive to both long-term and short-term impacts of
nutrient deficits. In contrast to indices based solely on plant greenness which are not sensi-
tive to rapid physiological adjustments in plants, the emission of chlorophyll fluorescence
(ChlF), measurable at the canopy level in terms of solar induced fluorescence, SIF [26–28],
is directly and instantaneously related to both photosynthetic light absorption and photo-
protection [29]. Likewise, the photoprotection-sensitive and carotenoid-dependent indices
photochemical reflectance index (PRI) [30] and chlorophyll/carotenoid index (CCI) [31]
(which in this study are referred to as photoprotection indices), could also provide new
opportunities to capture the optical expression of plant stress (e.g., nutrient deficiency)
across scales [32].

ChlF is electromagnetic radiation emitted by chlorophyll molecules when exposed to
photosynthetically active radiation (PAR). The intensity of the ChlF signal is dependent on
the fraction of absorbed PAR (fAPAR) absorbed by the leaf and related to its chlorophyll
content, as well as the fluorescence quantum yield, which is connected to the regulation
of the photosynthetic machinery [27,29,33]. ChlF is emitted from the leaf between 650 nm
and 850 nm, and it has two peaks, at around 685 nm (the red peak) and 740 nm (far-red
peak). In turn, the shape of the ChlF spectra has been shown to be strongly dependent on
the leaf chlorophyll (Cab) content, which mediates the predominant reabsorption of red
ChlF relative to far-red ChlF photons both at the leaf and canopy scales [34–37], affecting
the ratio of the red to far-red peaks. At the canopy scale, the SIF signal is influenced by
both scattering and re-absorption from the canopy [37]. Since ChlF is one of the three
alternative pathways for the utilization of absorbed excitation energy in the leaf, ChlF
carries information on the dynamics of the other two pathways: photochemistry leading
to photosynthesis and non-photochemical quenching (NPQ) related to photoprotection.
The dual role of ChlF, tracking both PAR absorption (related to plant greenness) but
also photoprotection and photosynthesis dynamics, makes ChlF a valuable tool in non-
invasive plant stress detection [38,39] and has been shown to track canopy Gross Primary
Production (GPP) [27,40].

Since the SIF signal is relatively weak compared to canopy reflected radiation, its
retrieval is accomplished within Fraunhofer or Telluric absorption bands, such as the
oxygen O2B and O2A-bands, located near the fluorescence peaks at circa 687 nm and
760 nm, respectively, using the Fraunhofer Line Discriminator (FLD) principle and its more
advanced variants [41]. Furthermore, since the SIF-signal is only emitted by chlorophyll
molecules, the signal is potentially less susceptible to non-photosynthetic background, than
e.g., soil reflectance-based vegetation indices [42]. In terms of plant nutrient research, the
capacity of SIF to detect foliar nutrient contents remains unclear and, to the best of our
knowledge, has been limited to studies focusing on N. As such, SIF has been successfully
used to estimate foliar N contents in winter wheat (Triticum aestivum) at the leaf and canopy
scales [43,44], as well as in almond (Prunus dulcis) on the canopy scale [25]. However, the
potential of SIF to detect a wider range of plant nutrients remains to be elucidated.

The PRI and CCI indices are optical proxies of plant carotenoid pigment contents,
which are closely related to photosynthetic light use efficiency and plant photoprotection.
Originally, PRI was found to correlate with the epoxidation state of the xanthophyll cycle
pigments as well as photosynthetic efficiency in plants, and CCI was developed as an
adaptation of PRI to measure evergreen photosynthesis at various scales [31]. PRI has been
found to correlate with leaf level N dynamics in sunflower plants (Helianthus annuus) [45]
and conifer seedlings [46], as well as canopy level N dynamics in several annual and
perennial species [47,48].

With these photoprotection indices, N dynamics are expectedly mediated through
indirect means, since N deficient plants that would suffer from lower photosynthetic rates
would tend to have increased photoprotection [47], which would then be reflected by
PRI and CCI. Research by Kawamura et al. [49] also showed that canopy level PRI was
correlated with P contents in several pasture species. Yet, despite the intrinsic potential,
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the capacity of photoprotection-related indices such as PRI and CCI to investigate a wider
range of foliar nutrients is yet to be explored, as are the factors underlying the relationship
at the leaf and canopy scales.

The goal of this paper is to characterize the relationship between greenness and
photoprotection-based vegetation indices, SIF, and the dynamics of foliar macro- and
micronutrients in potato plants using both leaf- and canopy-scale observations. We hy-
pothesize that SIF and photoprotection-related indices such as PRI and CCI will be more
strongly correlated with foliar micro and macronutrient dynamics compared to vegetation
indices such as the NDVI, MTCI, or red-edge, given their more direct coupling to nutrient-
related physiological and PAR absorption dynamics. We test this hypothesis by combining
observations across fertilization and water stress experiments in order to generate vari-
ability in terms of foliar nutrient contents, canopy development, and physiological stress.
Finally, using UAV-based measurements, we investigate how the correlations between
foliar nutrient contents and leaf spectral indices scale from the leaf to the canopy level,
identifying the indices with stronger potential for remote sensing applications.

2. Materials and Methods
2.1. Experiment Design

Experiments were conducted during May–September of 2018 in Helsinki, Finland, on
the University of Helsinki Viikki Campus (60.2269◦N, 25.0186◦E). Potatoes of the variety
‘Lady Felicia’ were planted at the end of May in 5 m × 5 m (see Figure 1) plots with a
distance between plants of 30 cm (within row) and 70 cm (between row), with an overall
density of 4000 kg/ha. The potato is an important food plant and was selected for this study
for its fast growth, broad leaves, and suitability to the northern climate. For the nutrient
treatments, plots were supplied with different combinations of two types of commercial
fertilizer (Yara, Finland; see details in Appendix A, Table A1): a nitrogen-rich (N) fertilizer
lacking other essential nutrients and a more general fertilizer containing all (A) essential
nutrients. By doing so, we could adjust the amount of supplied nitrogen independently
of the rest, allowing us to better investigate the optical expression of other, less studied
nutrients. This resulted in four nutrient treatment levels: a control treatment (N2A2), which
represented the typical fertilization levels supplied by potato farmers; a treatment with
half the recommended amount of both nitrogen (N) and all (A) nutrients (N1A1); and
two more treatments with the recommended amount of nitrogen but only half (N2A1)
or only minimal amount of additional nutrients added (N2A0), resulting in the nutrient
doses per treatment reported in Table 2. Measurement plots were randomized so that each
experimental row contained one plot from each nutrient treatment (Figure 1). Fertilization
was applied by hand on June 5 prior to the plants sprouting (June 11). On July 4 and 12,
plants were sprayed with Revus-fungicide spray (Sygenta, United Kingdom) containing
250 g of mandipropamid per litre to combat ‘potato blight’, a serious disease affecting
potato plants caused by Phytophthora infestans.

In parallel with our nutrient treatments, we also conducted a water stress experiment
by adjusting the irrigation (I) levels (I− and I+ in Figure 1). Plants in the water stress
experiment were supplied with the control level of nutrients (N2A2). The water stress
experiment had a paired design, with each pair having an I+ and an I− plot.

Since the natural rainfall of the 2018 summer in Helsinki was only ca. 10 mm (Figure 1),
all the nutrient treatment plots were irrigated two times per week, starting with the planting
of the potato seedlings. The irrigation in the nutrient plots was done with sprinklers
covering the whole nutrient treatment area. For the separate water stress experiment, the
irrigated plots (I+ in Figure 1) were irrigated by furrow irrigation using a hose. Overall,
there were 16 plots in the nutrient treatments (with n = 4) and 10 plots in the water stress
treatment (with n = 5).
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Figure 1. Experimental setup and meteorological data. Panel (A) shows measurement plots during
early (10.7) and late season measurements (25.7) with specific plots marked with white color. Photo
taken from a UAV using a MicaSense RedEdge M camera. Nutrient treatments are enclosed in the
green box, and water stress treatments are in the blue box. Panel (B) shows micrometeorological
conditions during the measurement campaign, showing daily mean temperatures with daily mean
precipitation in Helsinki, July 2018. Panel (C) shows a photographic example of the fully developed
potato plant canopy.

Table 2. Dosification in each of the fertilization treatments (Kg/ha).

Nutrient Doses per Treatment (kg/ha)

N1A1 N2A0 N2A1 CONTROL N2A2

N 32.5 65.0 65.0 65.0

P 13.6 0.0 13.6 27.2

K 53.2 2.4 54.4 106.4

Mg 4.7 2.4 5.9 9.5

S 29.5 9.6 34.4 59.1

B 0.1 0.0 0.2 0.3

Cu 0.1 0.0 0.1 0.2

Fe 0.2 0.0 0.2 0.5

Mn 0.7 0.0 0.7 1.5

Zn 0.1 0.0 0.1 0.2

Different levels of nutrient and water availability were generated to study spatial
differences in plant nutrient uptake as well as the interaction between water stress, leaf
nutrient contents, and canopy development (Figure 2). The interaction between leaf nutrient
contents and canopy development was further investigated by conducting measurements
at two different stages of canopy development: early measurements on the 10–11.7. and
late measurements on the 24–25.7. Leaf spectral measurements were done on the 10 and
25 of July around noon (11:00–13:00), while canopy spectral measurements were done on
the 10, 11, and 25 between 9:30 and 13:00. Samples for the nutrient measurements were
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collected around noon on July 11, as well as on July 24, while the specific leaf area (SLA)
samples were collected on July 11 and 25.
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level traits in response to fertilization, water stress, and canopy development were measured. Subse-
quently, we characterize the relationships between leaf and canopy-level traits and spectral indices,
investigating and discussing the mechanisms that underlie the relationships at each scale.

2.2. Leaf Level Measurements

Leaf level measurements were conducted by sampling fully developed top canopy
foliage for a better match with the drone-based spectral data. For leaf fluorescence and
reflectance measurements, three small shoots from each plot were sampled in randomized
patches from top canopy foliage around noon (11:00–13:00). Shoots were rapidly re-cut
under water and kept in water indoors at 20 ◦C for subsequent spectral measurements
within 1 h. In parallel, three top canopy leaves were collected around noon time from each
plot for measuring SLA, and four top canopy leaves were sampled, directly frozen in liquid
N, and stored at −80 ◦C awaiting pigment quantification.

2.2.1. Fluorescence and Reflectance Measurements

The fluorescence and reflectance spectra of the leaves were measured under standard-
ized conditions in the laboratory to facilitate intercomparability of results. These measure-
ments were conducted using two separate spectrometers: a USB2000+ (Ocean Optics Inc.,
Orlando, FL, USA) for spectral fluorescence measurements and an ASD Hand-Held (ASD
Inc., Boulder, CO, USA) for reflectance measurements with an integrating sphere. Note that
canopy-level spectral measurements were conducted using two additional spectrometers
coupled to a UAV (see below).

Spectral fluorescence measurements were conducted with a USB-2000+ spectrometer
(range (R): 300–1100 nm, sampling interval (SI): 0.5 nm, full width at half maximum
(FWHM): 1.5–1.8 nm). Attached to the spectrometer was a bifurcated reflectance probe
(R600-7-VIS-125F, Ocean Optics Inc., Orlando, FL, USA) and fiber holder (RPH-1, Ocean
Optics Inc., Orlando, FL, USA) used to conduct spectral measurements in the nadir position
in order to maximize the fluorescence signal. The probe was connected to a filter carrier
housing an OD4 short-pass 650 nm filter (Edmund Optics, Barrington, NJ, USA) to remove
99.99% of radiation above 650 nm and facilitate the measurement of spectral fluorescence.
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Finally, the filter carrier is connected to a halogen light source (HL-2000, Ocean Optics Inc.,
Orlando, FL, USA) through a fiber optic bundle.

Prior to spectral measurements, leaves were cut from shoots and dark acclimated for
20 min at room temperature. Spectral measurements were conducted at an integration
time of 300 ms, and a dark current (DC) measurement was conducted prior to ChlF
measurements and subtracted from the subsequent spectra. While this measurement
technique allowed us to record the whole fluorescence spectra of the leaf, we only used
the average of three measurements in the range from 685.110 nm to 685.780 nm and from
759.700 nm to 760.350 nm to represent F685 and F760, respectively (Figure 3A). For better
comparability between leaf and canopy scale results, the 760 nm region was used for
analysis instead of the 740 nm peak region. Further details on the measurement setup and
protocol can be found in Rajewicz et al. [50].
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Separately, a different subset of leaves was used to measure leaf directional-hemispherical
reflectance spectra and estimate a range of reflectance indices (Table 3). Measurements were
conducted using a RTS-3ZC Integrating Sphere (ASD Inc., Boulder, CO, USA) equipped
with a halogen light (10 W, 6 V, Model 64225, Osram, Munich, Germany) coupled to an
ASD Hand-Held Spectrometer (R: 325–1075 nm, SI: 1.6 nm, FWHM: 3.5 nm). Measurements
were conducted at an integration time of 540 ms, and 10 spectra were averaged. A DC
measurement was recorded before and after the measurements and subtracted from the
spectra. Leaf directional-hemispherical reflectance factors were obtained by factoring the
DC-corrected spectra obtained with the sample by those obtained using a Spectralon®

panel (Labsphere, North Sutton, NH, USA) after Olascoaga et al. [51].

Table 3. Vegetation indices used in this study. R denotes reflectance, and the number corresponds to
the wavelength in nanometers.

Vegetation Index Equation Reference

NDVI NDVI = R860−R660
R860+R660 Rouse et al. [11]

MTCI MTCI = R753−R709
R709−R681 Dash and Curran [52]

Red edge Red edge = R712nm−722nm Horler et al. [53]

PRI PRI = R531−R570
R531+R570 Gamon et al. [30]

CCI CCI = R531−R645
R531+R645 Gamon et al. [31]
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2.2.2. Specific Leaf Area

Specific Leaf Area (SLA) is calculated as projected leaf area (cm2) divided by leaf
dry weight (g). Fresh leaf samples were scanned on white paper with a ruler for scale,
allowing us to calculate the leaf area using the GNU image manipulation program (GIMP
development team, 2021). The dry weight was measured after drying the leaves at 50 ◦C
until no further weight decrease was observed.

2.3. Nutrient and Pigment Analysis

For nutrient analysis (all except N and C), samples were thawed and dried at 50 ◦C
prior to analysis. Afterwards, the samples were homogenized, and 200–300 mg (dry
weight) of each sample was taken for nutrient content analysis. Each sample was then
mixed with 10 mL of HNO3 and 1 mL of H2O2. The samples were inserted into a MARS
5—microwave digestion system (CEM Corporation, Matthews, NC, USA), and digested
for 10 min at 175 ◦C. After cooling, the resulting extract was filtered and analysed with
the ICP-MS—mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), using the
method by Thomas [54]. The N and C concentrations of the leaves were analysed separately
using a Variomax CN Analyzer (Elementar Analysensysteme, Hanau, Germany). To achieve
dry weight, the thawed samples were dried for eight hours at 50 ◦C and homogenized with
a mortar and pestle, after which 250 mg (dry weight) of each sample was analysed using
the dry combustion method, where the samples are burned at 1000 ◦C in pure oxygen [55].

For leaf Cab and carotenoid pigment sampling, samples were thawed and 70 mg (fresh
weight) of each sample was transferred into new tubes along with a pair of homogenization
pellets and 1.8 mL of dimethyl sulfoxide (DMSO), after Wellburn [56]. Following a two-
minute homogenization at 25 Hz, the samples were extracted for four hours in 50 ◦C.
After extraction, the samples were centrifuged for 10 min at 3600 rpm (5810-R, Eppendorf,
Hamburg, Germany) and the extracts analysed with a Shimadzu UV-1800 photometer
(Shimadzu Corporation, Kyoto, Japan). Chlorophyll a and b and carotenoid values were
estimated from absorbance measurements using equations by Wellburn [56] for DMSO:

Chlorophyll a = 12.47 × A665.1 − 3.62 × A649.1 (1)

Chlorophyll b = 25.06 × A649.1 − 6.5 × A665.1 (2)

Carotenoids = (1000 × A480.0 − 1.29 × Chl a − 53.78 × Chl b)/220 (3)

where A denotes the absorbance at a given wavelength in nm.

2.4. Canopy Measurements
2.4.1. SIF and Canopy Reflectance Measurements

For canopy reflectance and SIF measurements, we used a UAV-mounted dual field-
of-view spectrometer system, a Piccolo Doppio [57–59]. This system houses two spec-
trometers: a QE Pro (Ocean Optics Inc., Orlando, FL, USA) (R: 639–805 nm, SI: 0.18 nm,
FWHM: 0.31–0.35 nm) that was used for SIF measurements and a Flame spectrometer
(Ocean Optics Inc., Orlando, FL, USA) (R: 344–1019 nm, SI: 0.39 nm, FWHM: 1.33 nm) that
was used to measure canopy spectral reflectance. Irradiance and radiance were collected
with a 25◦ field-of-view bifurcated fibre using a cosine-corrected fore optic.

While measuring, the UAV hovered for approximately 1 min above each measurement
plot at around 8 m height, resulting in an approximately 1.77 m radius footprint on the
plot. The flights were conducted on three separate days in 2018, July 10 (two flights),
July 11 (three flights), and July 25 (four flights), between 09:30 and 13:00. The UAV also
housed a nadir-looking GoPro—camera to be able to later control that the measurements
were all done in appropriate positions. In addition to the measurement plots, a bare soil
plot was also measured as a “zero plot” to provide validation for our SIF measurements.
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25 spectra were averaged together and used to calculate plot-wise radiometric SIF and
spectral reflectance factors as the ratio of upwelling radiance to downwelling irradiance
using Matlab (The Mathworks Inc., Massachusetts). Integration times were algorithmically
optimized, depending on the sky conditions. SIF was retrieved using the Spectral Fitting
Method (SFM) [60] at spectral range 685.93–691.17 nm for oxygen B–band (hereinafter, and
for better comparison with leaf level data, addressed as FY685 (C), where C stands for
canopy) and 756.57–768.84 nm for oxygen A—band (hereinafter addressed as FY760 (C)).
Further details about the flight plan and SIF retrieval methods can be found in Xu et al. [28].

For logistical reasons, it was not always possible to time the canopy spectral measure-
ments with perfect clear sky conditions. Accordingly, some of the spectra data, especially
during the early measurements, was collected under a variable cover of thin clouds (see
Appendix D, Figure A14). In order to account for the potential impact of variable irradi-
ance on the analysis of red and far-red SIF, we estimated and used the SIF yield instead,
as follows:

FY 685 (C) =
F685 (C)

EPAR
(4)

FY 760 (C) =
F760 (C)

EPAR
(5)

where EPAR is the irradiance (W/m2, Appendix D, Figure A14) integrated for the PAR
region between 400 and 700 nm.

2.4.2. Fractional Vegetation Cover Estimation

Fractional vegetation cover (FVC), defined as the projected vegetated percentage of
the total study area [61], was here used to track the development of the potato crop canopy
between early and late measurements as well as between treatments. FVC was estimated
from multispectral images collected from two separate flights on July 10 and 25, 2018, with
a MicaSense RedEdge M (AgEagle Sensor Systems Inc., Wichita, KS, USA) sensor. The
flight height was approximately 54 m above ground level, providing a ground sample
distance of 3.55 cm. The images were processed to orthomosaics with a GSD of 3.5 cm
using Agisoft PhotoScan Professional commercial software (AgiSoft LLC, St. Petersburg,
Russia). From the multispectral data collected by the camera on board the UAV, we chose
to use the NIR band (centre wavelength 842 nm, bandwidth 57 nm) to classify each point
in each plot into two categories, 0 s and 1 s, based on the reflectance of each pixel, using
histogram-based segmentation with the QGIS-program (QGIS Geographic Information
System. QGIS Association. http://www.qgis.org (accessed on 1 September 2022)). On
each plot, the ground consisted of 0 pixels and the vegetation consisted of 1 pixels. This
segmentation from histogram data allowed us to estimate the fractional vegetation cover
for each plot as the ratio of the number of canopy pixels to the total (canopy + ground)
pixels. More sophisticated approaches to estimating FVC are commonly applied, as NIR
may be problematic under full canopy development [61]. However, due to the uncertainty
of the data captured by the Micasense RedEge M—sensor in the visible wavelength in our
study, we selected the NIR—band only.

2.5. Statistics and Linear Modelling Approach

To compare differences in leaf nutrient levels between the early and late measurements,
we used the Wilcoxon signed rank test to determine whether the amount of nutrients had
increased or decreased significantly. To detect differences between treatments within each
measurement point, we used the Kruskal-Wallis one-way analysis of variance (ANOVA) to
test for significance at p ≤ 0.05.

Multiple linear regression was used in the R-programming environment (R Core
Team, 2021) to model leaf nutrient results as the dependent variables, using optical pa-
rameters as the independent variables. In the multiple linear regression model approach,
a dichotomous “dummy” variable was added to the calculation to account for the sub-

http://www.qgis.org


Remote Sens. 2023, 15, 2498 10 of 33

groups of data, in this case the different measurement points. For each optical variable,
the models for both individual measurement points were then checked for significance
against the data from both measurement points with an ANOVA (p ≤ 0.05) test. In addition
to the ANOVA-test, we plotted the pigments and nutrients against the spectral indices
(Figures 8 and 9, Figures A1–A11 in Appendix B), and if the models were not significantly
different, a red line was used to denote the linear model including both the early and late
measurements, and the corresponding R2-value was added to the plot.

3. Results

The goal of our study was to characterize the relationship between greenness- and
photoprotection-based vegetation indices, SIF, and the dynamics of foliar micro- and
macronutrients using observations at the leaf and canopy scales. Changes in foliar nutrient
contents, along with other leaf and canopy-level traits, were induced by four different
fertilization treatments, two different water stress treatments, and their interaction with
canopy development (Figure 2). We investigate the relationship between foliar nutrient
contents and leaf spectral indices and how these relationships propagate to canopy level
observations under the action of a dynamic canopy structure.

3.1. Leaf Level Nutrients

Variation in leaf-level nutrient contents were largely dominated by the variation
between early and late measurements as canopy development interacted with nutrient and
water stress treatments. Interestingly, foliar nutrient contents were not fully consistent with
our applied range of fertilization treatments (Figure 4, Table 2), which could be related to
the history of our experimental research site, which may have contained heterogeneous
levels of background nutrients. However, significant differences in both foliar micro and
macronutrient contents were observed both between treatments (small letters in Figure 4)
and especially between early and late measurements (asterisk signs in Figure 4), allowing
us to investigate their connection with the spectral indices.

Contrasting trends in the accumulation of foliar nutrients could be observed between
the early and late measurements as the potato crop canopy was developing under the
action of the nutrient and water stress treatments.

A group of nutrients (hereinafter Group 1), including the macronutrients K, Mg, P, and
N, had a tendency to decrease across all treatments between early and late measurements
(Figure 4A), whereas a second group of nutrients (hereinafter Group 2), including S, as
well as the micronutrients Cu, Mn, and Zn, displayed a general tendency to increase with
canopy development. The amounts of Fe decreased during the measurement period for the
nutrient treatments, while in the water-stressed treatments, a strong accumulation could
be noted. Finally, no temporal variation was registered in the foliar contents of Ca and
cadmium (Cd), with the exception of the water stress treatment (I−) where all nutrient
contents, excluding those of Group 1, significantly increased in concentration in response
to the water stress treatment.

In terms of leaf morphological properties, no significant differences could be noticed
in SLA between nutrient treatments during the early measurements (Figure 5) in response
to our fertilization, and differences appeared only towards the late measurements, where
SLA had significantly decreased in all treatments with full nitrogen load (N2A0, N2A1, and
N2A2) denoting thicker leaves but remained unchanged or even increased in response to
the water stress treatment (I−). Interestingly, despite the fact that the control water stress
treatment (I+) was supplied with a full dose of fertilizer (N2A2), its SLA did not decrease
between early and late measurements. These observations suggest a lower effectivity of the
furrow irrigation when compared to the irrigation done by sprinklers. Furrow irrigation
was used in the water-stressed control treatment (I+), which may have limited growth in
the treatment.
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 Figure 4. Macro- (A) and micronutrient (B) levels in the early and late measurements arranged by

treatments. Coloured bars signify different treatments, grouped by measurement point. Black bars
signify the standard deviation. Small letters denote significant differences between treatment groups
(p < 0.05) for that specific nutrient. For example, the bars with the letter “a” are not significantly
different from each other but are significantly different from the bars with the letter “b”. Stars denote
significant differences between early and late measurements for each treatment group (p < 0.05) (n = 4
in the fertilization experiment, n = 5 in the water stress experiment).

In foliar pigment contents, we observed no significant differences in total chlorophyll a
and b levels (Cab) between the nutrient treatments or between early and late measurements,
with the exception of the control irrigation treatment (I+), where Cab levels had decreased
relative to the first measuring point and the other treatments. Likewise, no significant
differences could be observed in terms of carotenoid contents relative to chlorophyll
(Car/Cab) between treatments or early and late measurements, although Car/Cab levels
presented a non-significant increase as the canopy developed.
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stress experiment).

3.2. Fractional Vegetation Cover

We estimated FVC from multispectral canopy data to investigate how different treat-
ments affected canopy development. We did not detect any statistical differences between
the treatments or between early and late measurements (Figure 6). There was a slight
tendency to increase in canopy fractional vegetation cover in the nutrient treatments with
full N content, which could also be appreciated from our drone RGB imagery (Figure 1A)
as a decrease in row gaps during the measurement period.

1 

Figure 6. Fractional vegetation cover (FVC). Spatial and temporal variation in vegetation fraction,
calculated from canopy level multispectral UAV data using the NIR-band. Colored bars signify
different treatments, grouped by nutrient and measurement point. Black bars signify the standard
deviation. Changes in treatments between early and late measurements were not significant. n = 4
in nutrient studies and n = 5 in the water stress experiment. A horizontal line has been added
(FVC = 0.75) to facilitate comparison of early and late measurements.
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3.3. Correlations between Leaf and Canopy Spectral Indices and Foliar Nutrient Contents

Given that most of the observed variability in foliar nutrient contents took place over
time between the early and late measurements (Figure 4A,B), we pooled together the
results from both measurements in order to assess how the observed dynamics in foliar
nutrient contents correlated with different spectral indices at the leaf level and how these
relationships scaled up to the canopy level (Figure 7). In addition, correlations between
different spectral indices and SLA, foliar pigment contents, and canopy FVC were used
to investigate the factors underlying the correlations. A similar analysis was conducted
separately for each of the measuring points (Figures A12 and A13).

Remote Sens. 2023, 15, x FOR PEER REVIEW  14  of  37 

Figure 7. Correlation matrix comparing leaf (L) and canopy (C) level spectral indices to leaf level 

nutrient and pigment contents. If the color of the correlation between the leaf and canopy stays the 

same, it indicates that the sign of the correlation scales up. If the color changes between the scales,

the correlation is reversed when moving from one scale to another. The data used in the matrix is a 

combination of early and late measurement points (n = 52). Color denotes the Pearson correlation 

coefficient R-value, which  is  explained in  the  color  chart  on  the  right. All  colored (non-white) 

squares are significant at the p ≤ 0.05 level. 

Correlations were clearly reflecting the grouping of nutrients introduced earlier, with 

Group 1 nutrients (macronutrients N, P, K, and Mg) being positively correlated to Cab 

and negatively correlated to Car/Cab, and Group 2 nutrients (including S and micronutri-

ents Cu, Mn,  and Zn) being negatively  correlated  to Cab  and positively  correlated  to 

Car/Cab (see also Appendix E, Figure A15). When variability in foliar nutrient contents 

was  reduced, such as  in  the case of Ca and Cd, or when examining  the early and late 

measurements separately (Figures A12 and A13), correlationswith spectralmeasurements

weakened or disappeared.

At the leaf level, the strongest correlations between VIs and nutrients were observed 

using the red-edge reflectance, which was negatively correlated with Group 1 macronu-

trients and Cab and positively  correlated, albeit only  slightly, with Group 2 nutrients. 

NDVI had only a weak negative correlation with Ca, Fe, and S, while MTCI was positively 

correlated with Group 1 nutrients and Cab and negatively but only slightly correlated 

with Group 2 nutrients. For fluorescence indices, F685 and the fluorescence peak  ratio 

(F685/F760), Fratio, presented a similar pattern of correlation to those of red edge reflec-

tance. In contrast, no correlations between nutrients and F760 were observed, other than 

minor positive correlations with Group 2 nutrients. For photoprotection-related indices,

the CCI displayed again a similar pattern of correlation with Group 1, comparable to F685, 

Fratio, and red edge reflectance, whereas correlations with PRI were very weak and of 

inverted  sign. In  terms  of  carotenoids,  the  correlation  between Car/Cab  and PRI was 

slightly negative, as expected, but CCI was only negatively correlated to Car/Cab during 

the first measuring point  (Appendix C, Figure A12). Overall,  the strongest correlations

Figure 7. Correlation matrix comparing leaf (L) and canopy (C) level spectral indices to leaf level
nutrient and pigment contents. If the color of the correlation between the leaf and canopy stays the
same, it indicates that the sign of the correlation scales up. If the color changes between the scales,
the correlation is reversed when moving from one scale to another. The data used in the matrix is a
combination of early and late measurement points (n = 52). Color denotes the Pearson correlation
coefficient R-value, which is explained in the color chart on the right. All colored (non-white) squares
are significant at the p ≤ 0.05 level.

Correlations were clearly reflecting the grouping of nutrients introduced earlier, with
Group 1 nutrients (macronutrients N, P, K, and Mg) being positively correlated to Cab and
negatively correlated to Car/Cab, and Group 2 nutrients (including S and micronutrients
Cu, Mn, and Zn) being negatively correlated to Cab and positively correlated to Car/Cab
(see also Appendix E, Figure A15). When variability in foliar nutrient contents was reduced,
such as in the case of Ca and Cd, or when examining the early and late measurements
separately (Figures A12 and A13), correlations with spectral measurements weakened
or disappeared.

At the leaf level, the strongest correlations between VIs and nutrients were observed
using the red-edge reflectance, which was negatively correlated with Group 1 macronu-
trients and Cab and positively correlated, albeit only slightly, with Group 2 nutrients.
NDVI had only a weak negative correlation with Ca, Fe, and S, while MTCI was positively
correlated with Group 1 nutrients and Cab and negatively but only slightly correlated
with Group 2 nutrients. For fluorescence indices, F685 and the fluorescence peak ratio
(F685/F760), Fratio, presented a similar pattern of correlation to those of red edge re-
flectance. In contrast, no correlations between nutrients and F760 were observed, other than
minor positive correlations with Group 2 nutrients. For photoprotection-related indices,
the CCI displayed again a similar pattern of correlation with Group 1, comparable to F685,
Fratio, and red edge reflectance, whereas correlations with PRI were very weak and of
inverted sign. In terms of carotenoids, the correlation between Car/Cab and PRI was
slightly negative, as expected, but CCI was only negatively correlated to Car/Cab during
the first measuring point (Appendix C, Figure A12). Overall, the strongest correlations
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between foliar nutrients and spectral indices were found for Group 1 macronutrients N, P,
K and Mg.

At the canopy level, when pooling data over both early and late measurements,
correlations between the red-edge and MTCI and foliar Group 1 macronutrient contents
were drastically reduced compared to the leaf level, but a slight negative correlation
between Group 1 nutrients and the NDVI appeared, which, at this scale, was positively
correlated to FVC. In contrast, the canopy-level correlation between F685 or Fratio and foliar
nutrient contents remained, but its sign inverted when moving from the leaf to the canopy
scale. Interestingly, the correlation trends between FY760 (C) and foliar nutrient contents
remained very weak, albeit with a reversed sign, despite the fact that FY760 (C) was
positively and strongly correlated with FVC. In fact, the only nutrient that correlated with
FY760 (C) was Fe, which turned out to be the nutrient with the strongest relationship to FVC
(Figure 7). Similarly, strong correlations emerged also at the canopy level between foliar
nutrient contents and PRI, here with positive correlations along with Group 1 nutrients and
Cab and negative correlations with Group 2 nutrients and Car/Cab. For CCI, correlations
with Group 1 macronutrients remained moderate and negative. Similarly, to FY760 (C), the
strongest correlation was found between CCI and Fe. At this scale, CCI was also positively
related to FVC and Car/Cab.

We also analyzed the correlations between spectral indices and leaf nutrients separately
for each of the measuring dates (see Appendices B and C and examples in Figures 8 and 9
for the cases of Cab and N, respectively). By separating the correlations between the early
and late measurement we could visualize how the temporal development of leaf and
canopy properties, in response to the nutrient and water stress treatments, influenced the
relationship between spectral indices and leaf nutrient contents, allowing us to identify
correlations that remained consistent over time as well as those that presented contrasting
patterns, denoting changes in the mechanisms underlying the relationships.
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Figure 8. Correlation between foliar Cab contents and spectral indices at the leaf level and the canopy
scale. Open circles represent measurements from measurement point 1 (n = 26), and closed circles
represent measurements from measurement point 2 (n = 26). The top row of data represents the leaf
level spectral measurements, and the bottom row of data represents the canopy measurements. The
R2 values in blue represent the model from the early July measurements, whereas the R2 values in
black represent the model from the late July measurements. A red linear correlation line in the plot
(together with a R2 value), indicates that the models from individual measurement points are not
significantly different from the model that includes data from both early and late measurements.
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Figure 9. Detecting leaf N contents with spectral indices at the leaf level and the canopy scale. Open
circles represent measurements from measurement point 1 (n = 26), and closed circles represent
measurements from measurement point 2 (n = 26). The top row of data represents the leaf level
spectral indices, and the bottom row of data represents the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from the late July measurements. A red linear correlation line in the plot (together with
a R2 value) indicates that the models from individual measurements are not significantly different
from the model that includes data from both measurements.

In terms of Cab, the correlations in Figure 8 indicate that the relationship between
leaf level F685, Fratio, MTCI, the red edge reflectance, and the CCI-index, and foliar Cab
remained consistent over time despite potential variations in leaf thickness and morphol-
ogy (Figure 5) between early and late measurements. Similar results were obtained for N
in Figure 9. These results suggest that the leaf-level relationship between these spectral
indices and Cab or N remains largely undisturbed by other factors. In fact, the relation-
ship between Cab and N or Mg remained constant across early and late measurements,
suggesting that the foliar partitioning of N and Mg into Cab synthesis would have re-
mained constant (Figure A15). Yet, leaf-level correlations between spectral indices and
foliar nutrients were not always consistent over time. For example, although the correlation
between leaf level red edge and Ca (Appendix B, Figure A2) or between leaf level F685
and Mg (Appendix B, Figure A6) presented a similar slope, their intercepts were different,
indicating that at least a third factor had changed between the early and late measurements
affecting the relationship. Likewise, we also observed reversed correlation patterns between
early and late measurements, such as in leaf level PRI and Cab (Figure 8) or leaf level F760
and K (Appendix B, Figure A8), suggesting that different factors mediate the relationships
at different points in time. These patterns lead also to correlations that were of opposite sign
within a single measuring point relative to the pooled dataset, such as for Fratio and Cu
(Appendix B, Figure A3). Finally, we also identified situations where correlations were ab-
sent within a measuring day but appeared only when pooling data from the two measuring
points, such as the relationship between F685 and Mn (Appendix B, Figure A5), suggesting
that indirect interaction mediates the relationship between nutrients and spectral indices.
For example, with nutrient contents influencing the leaf morphology instead of or above
the stoichiometry of the photosynthetic apparatus.
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At the canopy scale, we could also identify correlations that remained more consistent
between early and late measurements, such as CCI and N (Figure 9), albeit many less than
at the leaf level, which was expected due to the impact of a varying canopy structure not
present in the leaf level correlations. For example, in the correlation between N, NDVI, and
MTCI (Figure 9), the slopes remained similar between early and late measurements, but
the intercept was different.

In addition, reversed correlation patterns could be found at the canopy scale, such
as between Ca and Fratio (Appendix B, Figure A8). Similarly, as at the leaf level, these
patterns lead to correlations that have an opposite sign within measuring points relative to
the temporally pooled dataset; an example of this can be seen in the correlation between
Zn and CCI (Appendix B, Figure A10) and Cu and CCI (Appendix B, Figure A3). Stronger
correlations were found in the latter measurements between canopy optical properties
and nutrients and pigments relative to the earlier measurements. For example, there were
stronger correlations between Cab and canopy red edge reflectance, MTCI, and FY685 (C)
in the later measurements, which were not evident in the earlier or pooled measurements
(Appendix C, Figure A13), possibly due to the enhanced variability during the second
measuring point once nutrient and especially water stress treatments had time to impact
leaf and canopy development.

There were also some correlations between canopy spectral measurements and foliar
nutrient and pigment contents that were weak within measuring point data, but emerged
when pooling both early and late measurements together, such as, for example, between P
and Fratio (Appendix B, Figure A7), emphasizing the influence of canopy development in
mediating the relationships between foliar nutrient contents and spectral indices at this
scale, which is discussed further in the next section.

4. Discussion

We investigated how the relationship between spectral indices and foliar macro- and
micronutrient contents in potato plants was affected by canopy development under the
action of different fertilization and water stress treatments, combining observations at
the leaf and canopy scales. By doing so, we could compare the performance of different
indices and elucidate possible mechanisms that underpin the relationships at the leaf and
canopy levels (Figure 2). We measured foliar nutrient contents, pigments, SLA, and FVC
as well as leaf and canopy spectral indices from four nutrient treatments and two water
stress treatments at two different points in time, representing different states of canopy
development and stress conditions. Our hypothesis was that through their more direct
coupling to PAR absorption and photoprotection, ChlF and photoprotection-related indices
would be more strongly correlated with foliar nutrient contents compared to vegetation
indices related to plant greenness or chlorophyll content.

Results indicated that photoprotection-related indices such as the PRI and CCI, as well
as F685 and the fluorescence Fratio, were more strongly correlated to foliar nutrient content
dynamics compared to greenness-based indices when observed at the canopy scale and
when observations across different stages of canopy development were pooled together
(Figure 7). Furthermore, spectral indices, and in particular ChlF and photoprotection
indices, had the potential to track variation across a wider range of foliar nutrients beyond
the widely characterized N. These relationships were mediated by the dynamics in foliar
pigment contents and leaf morphology (when observed at the leaf scale), as well as canopy
structure (when observed at the canopy scale). In the following sections, we discuss the
possible mechanisms underlying the observed relationships at the leaf and canopy scales,
as well as possible steps towards future research.

4.1. Temporal Changes in Foliar Nutrient Contents Lead to Two Distinct Nutrient Groupings

Most of the observed variation in foliar nutrient contents during our study was caused
by the temporal variation between our early and late measurements. We found that
top canopy foliar contents of macronutrients N, P, K, and Mg tended to decrease over
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time in response to the combined effects of canopy development, fertilization, and water
stress treatments (Figure 4). When considering all the data together, these macronutrients
(Group 1) were positively correlated to foliar Cab (Figures 7 and A15). In turn, the contents
of micronutrients Cu, Mn, and Zn, as well as macronutrient S (Group 2), tended to increase
over time (Figure 4) and were inversely related to Cab (Figures 7 and A15). The patterns
of variation in Group 1 and Group 2 nutrients, as well as their covariation with leaf
level Cab and canopy level FVC, emphasized the observed relationship between spectral
indices and foliar nutrient contents at the leaf and canopy scales, which we discuss in the
following sections.

It is worthwhile noting the special increase in foliar nutrients observed in the water-
stressed I− treatment, where in addition to Group 2 nutrients, Fe, Ca and Cd also accumu-
lated in the top canopy leaves. These patterns could reflect the impact of the water stress
in the I− plots, which, combined with the high temperatures during our experimental
period (Figure 1B), would have interfered with overall canopy development, promoting
the accumulation of nutrients in the new leaves at the top of the canopy. In fact, low
canopy leaves in I− started to senesce a few days after our measurements, which would be
compatible with a relocation of nutrients to top canopy (younger) foliage under drought
stress [62]. The observed increase in SLA in I− (Figure 5) as well as the decreasing trend in
FVC observed in the I− treatment compared to other treatments (Figure 6) suggest that
canopy development in I− treatment was water-limited.

The contrasting temporal dynamics observed between the macronutrient-dominated
(Group 1) and Group 2 nutrients could be partly explained by the increased biomass of the
plants. This increase leads to a so-called dilution phenomenon [63] caused by an increasing
demand for macronutrients in e.g., cell-wall formation, which decreases macronutrient
concentrations in the leaves [64] and has also been noted in earlier research on potato plants
for N, P, and K [63,65]. In micronutrients, there was a noticeable pattern of accumulation
on the top leaves during the measurement period, with the exception of Fe. This could
in part be caused by the relatively high background amount of micronutrients in our
experimental fields [66].

The photosynthetic role of Group 1 nutrients K, Mg, N, and P is well documented
across species [67–69], being essential constituents of proteins and chlorophyll (N, Mg),
energy transfer and ATP synthesis (P), as well as stomatal movement and chloroplast
structure (K). Notably, we found a highly consistent and positive relationship between N,
Mg, and Cab throughout the study (Figure A15) indicating that the allocation of these nu-
trients into chlorophyll synthesis remained stable over time. Positive, albeit less consistent,
correlations were also found between Cab, P, and K. It is therefore reasonable to state that
Cab dynamics played a central role in mediating the leaf level correlations between spectral
indices and Group 1 nutrients, either directly, as in N and Mg, or indirectly.

In terms of Group 2 nutrients, previous research by Pätsikkä et al. [70] showed that
increasing leaf Cu in bean plants (Vicia faba L.) leads to a lowered Cab concentration in
leaves. Additionally, it has been demonstrated that higher S levels in wheat have a negative
effect on leaf Cab contents [71] and that Zn deficiency decreases leaf Cab amounts in pecan
(Carya illinoensis) [72] by limiting C fixation and protein synthesis. Earlier research on
tomato plants has also shown that too low or high concentrations of Mn in leaves decrease
leaf Cab concentrations [73]. Overall, these studies support the negative correlations
found here between Group 2 nutrients and Cab (Figure 7), which again would support the
indirect role of Cab, in addition to leaf morphology, in mediating the correlation between
Group 2 nutrients and our spectral indices.

4.2. Foliar Pigment Contents and Leaf Morphology Mediating the Leaf-Level Relationship between
Nutrients and Spectral Indices

Nutrients from Group 1 were found to be negatively correlated with leaf level F685,
Fratio, red edge reflectance, and CCI (Figure 7), while MTCI was positively correlated with
the same macronutrients. Opposite patterns, albeit much weaker, were observed between
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these indices and Group 2 nutrients, which also presented weaker correlations with Cab.
Likewise, nutrients that did not correlate with Cab, such as Ca, Fe, and Cd, presented the
weakest correlations with spectral indices at the leaf level, further emphasizing the role of
Cab in mediating these leaf-level correlations.

The NDVI was poorly related to foliar nutrient content dynamics, which is consistent
with previously reported limitations of the NDVI to track foliar N contents due to signal
saturation at moderately low foliar Cab contents [74,75]. Unlike the NDVI, the MTCI, which
has been formulated to track Cab contents [52], was positively correlated with foliar Cab
and therefore directly related to the nutrients from Group 1 (Figure 7). In turn, the negative
correlation between Cab and red edge reflectance is consistent with the effect of increased
Cab amounts shifting the red edge feature towards higher wavelengths [76], thus decreasing
the reflectance in the measured red edge region (Table 3), making it less susceptible to Cab
saturation compared to the red reflectance bands [77]. Leaf-level reflectance indices using
the red edge reflectance region have been previously shown to correlate well with foliar
N [78] and Cab [76] amounts in potato plants or with foliar Cab and Mg contents in different
wheat genotypes [79], which is in line with our results that expand these observations to
other macro and micronutrients.

In turn, the negative correlation between leaf-level F685 and Fratio, and nutrients from
Group 1 and Cab (and the opposite for Group 2 nutrients) (Figure 7) could be explained in
terms of the re-absorption of red fluorescence photons by chlorophyll inside the leaf [36].
Specifically, at low Cab contents, where reabsorption is minimal, a marginal increase in
Cab leads to an increase in PAR absorption and therefore an increase in fluorescence
across all wavelengths (F685 and F760). In contrast, at higher Cab contents, like the ones
observed in our leaves (Figure 5), a marginal increase in Cab has a very small effect on PAR
absorption due to self-shading inside the leaf but can further increase the reabsorption of
fluorescence in the red fluorescence bands that overlap with the chlorophyll absorption
spectrum [28,36,37]. This phenomenon would explain the poor correlation between F760
and Cab (and, by extension, nutrients) observed in our study (Figure 7), as well as the
negative correlation between F685 or the Fratio and Cab and their subsequent relationship
with the nutrient groups.

Wang et al. [25] recently reported how steady state PAM fluorescence (Ft), integrated
from 697–750 nm as measured with a FluorPen FP110 (PSI, Brno, Czech Republic), was
strongly correlated to foliar N contents. This contrasting observation could be due to
the lower foliar Cab contents in their almond experiment relative to our potato leaves,
where far-red fluorescence would be less saturated, or to the different spectral coverage
between studies. Foliar N has also been known to be detectable by red fluorescence and
the red to far-red ratio, for example, in wheat [43] and turf grasses [80]. However, as
Ač et al. [81] point out, the relationship between fluorescence and foliar N can be either
positive or negative, changing with how re-absorption and various leaf level processes
affect it, which may be an important consideration when observations are conducted in
developing or senescing leaves. Here, we extend these results showing that not only N but
also macronutrients P, K, Mg and S, and micronutrients Cu, Mn and Zn coexist with F685
as well as Fratio.

In terms of photoprotective pigment related indices, the CCI-index was found to be
negatively correlated with nutrients from Group 1 as well as foliar Cab (Figure 7), while
PRI was positively correlated with the same nutrients and Cab, albeit weakly. As expected,
PRI was negatively correlated with Car/Cab (Figure 7), while CCI had a weak positive
correlation with it. At the leaf level, both CCI and PRI are expected to be inversely related
to photoprotection via their sensitivity to the carotenoid/chlorophyll ratio [30,82]. In
other words, when leaves present increased levels of photoprotective carotenoid pigments
relative to chlorophyll, the PRI and CCI values should decrease. The difference between
these two indices is that CCI uses 645 nm as a reference band, which is near the peak Cab
absorption wavelengths and is thus expected to more accurately reflect changes in Cab
amounts relative to the PRI, which uses the 570 nm band as reference instead [30].
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Gitelson et al. [83] found a strong relationship between PRI and Car/Cab in maize and
soybean (Glycine max) and noted that in a period of water limitation where Cab decreases,
PRI did not follow foliar Cab contents. Our results would indicate that, unlike PRI, CCI was
mostly driven by changes in Cab levels rather than Car or Car/Cab. When comparing our
results to previous work, positive relationships between PRI and foliar Cab and N contents
have been observed on top leaves of a variety of annual, deciduous and evergreen perennial
species [47] and on Engelmann spruce (Picea engelmannii Parry ex Engelm.) with different N
fertilization regimes [46]. Our results here are aligned with these observations, suggesting
that the connection between carotenoid-based indices and foliar nutrient contents, via foliar
pigment dynamics, can be expanded to other macro- and micronutrients.

It is important to note that when pooling all our results together as in Figure 7, although
the mechanisms discussed in this section provide a direct (i.e., first order) explanation to the
relationships between foliar nutrients, pigments and spectral indices, this does not imply
that this is the only mechanism by which spectral indices are connected to foliar nutrient
contents. As shown in our Appendices B, C and E, other factors, possibly related to indirect
effects of our nutrient and water stress treatments or the development and morphology
of leaves, also influenced the relationships and should be kept in mind when developing
quantitative methods for data interpretation.

4.3. Impact of Canopy Structure on the Capacity of Spectral Indices to Track Foliar
Nutrient Contents

At the canopy scale we also found evidence of a dichotomous split in correlations
between optical indices and foliar nutrient contents (Figure 7). The nutrient groupings
(Group 1/Group 2) remained consistent with the leaf level correlations, but the correlations
displayed either an inverted pattern (FY685 (C) and Fratio), had strongly decreased (Red
edge and MTCI), increased (NDVI but especially PRI) or remained similar (CCI). Clearly,
these contrasting patterns were influenced by the dynamics in canopy structure that took
place between measuring points in response to the fertilization and water stress treatments.
It is important to note that we are here comparing canopy-level spectral data to leaf level
nutrients, instead of canopy level nutrients. Canopy-level spectral data is often compared
to scaled canopy nutrient contents using LAI or total leaf area [44,84,85]. Unfortunately,
the indirect estimation of total LAI in our potato crop was highly challenging due to highly
dynamic variation in leaf angle found in the same experiment [28]. In turn, direct estimation
of LAI using destructive methods was not practical in the context of this experiment.
Accordingly, we here focus our analysis on the correlations with leaf foliar contents, which
remains a key parameter for crop modelling and management [25], avoiding adding an
additional source of uncertainty. The implications of this point on the correlations between
variables are discussed below.

In contrast to the leaf level results, greenness-based indices were largely uncorrelated
with Group 1 nutrients, although a weak negative relationship appeared between Group
1 and NDVI. It is important to note however that all these indices, especially the NDVI,
were positively related to FVC, suggesting that their correlation with nutrients would
have probably improved if they would have been scaled to total canopy nutrient contents
using LAI or total leaf area. In previous research, Nigon et al. [86] showed that MTCI was
able to capture differences in leaf N concentrations, however, as reported earlier by Li
et al. [18], vegetation indices based on the red edge region are susceptible to the impact of
bare soil to the signal. This could in our case affect the signal and explain why the high
correlation between N concentrations seen at the leaf scale can no longer be detected at the
canopy scale.

The lack of a stronger correlation between NDVI and N at the canopy scale could
possibly be due to the NDVI signal saturating even in moderate LAI conditions. In fact,
the negative relationship between NDVI, Group 1 nutrients and Cab observed at this
scale (Figure 7) would point to a causal relationship caused by the contrasting patterns
observed here between Group 1 and Cab (tendency to decrease over time), and canopy
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development (tendency to increase over time). When correlations are analyzed separately
within each sampling point, where variation in canopy structure remains smaller, the
positive correlation between MTCI and Group 1 nutrients (Figure A12) or the negative
correlation between red edge reflectance and foliar Cab and Group 1 nutrients (Figure A13)
is maintained, as noted also in a previous study for N [87].

Overall, since canopy greenness indices are affected by FVC, their capacity to track
foliar nutrient contents seems to be dependent on the covariation between FVC and foliar
Cab, which was here very limited. In addition, soil reflectance effects may have also
influenced our results as canopy closure tended to increase over the experimental site.
The weaker correlations between greenness indices and foliar nutrients during the first
measuring day (Figure A12), when FVC tended to be lower, could support such an effect.
Likewise, variability in incoming illumination during the first measuring point could have
also contributed with some uncertainty (Figure A14).

In terms of ChlF, canopy FY685 (C) and Fratio presented inverted patterns of correla-
tion with foliar nutrients relative to leaf scale measurements, whereas canopy FY760 (C)
remained largely uncorrelated to foliar nutrient contents. The strong relationship between
FY760 (C) and FVC across the dataset (Figures 7, A12 and A13) points to the importance of
canopy structure and cover fraction in determining chlorophyll fluorescence variation at
the canopy scale.

As with leaf scale, canopy ChlF is also driven by APAR (modulating both FY685 (C)
and FY760 (C)) and reabsorption (influencing FY685 (C)). However, in contrast to the leaf
level, where these mechanisms are mediated by foliar Cab amounts, at the canopy scale they
are additionally mediated by the amount, arrangement, and dynamics of leaves and their
angles [28,37,88], here pooled together into a fractional vegetation cover (FVC) parameter,
which influences canopy APAR and by extension, ChlF emission. The fact that FY760 (C)
was positively correlated with FVC across the study would indicate that the effect of LAI
on canopy APAR was not yet saturated. In other words, increasing the number of leaves
would result in higher canopy absorption and FY760 (C). Increasing FVC did also increase
reabsorption of red fluorescence photons as seen by the negative correlation between FVC
and Fratio (Figures 7, A12 and A13). Yet, the fact that red fluorescence remained positively
correlated to FVC, (albeit much less than FY760 (C)) would suggest that the APAR effect
dominated the variation in FY685 (C) over the reabsorption effect at the canopy. This is in
contrast to the leaf level where the APAR effect of Cab had saturated, and reabsorption
mediated the connection between ChlF and Cab. These contrasting controls could explain
why the patterns of correlation between FY685 (C) and Fratio had reversed at the canopy
scale, where FVC (which tended to increase over time), instead of Cab (which tended to
decrease over time), was driving the variation in ChlF at this scale. Interestingly, the fact
that FY760 (C) did not relate to foliar nutrient contents despite being strongly correlated
to FVC further emphasizes the decoupling between FVC dynamics and foliar nutrient
contents observed in this study. Likewise, being sensible to both APAR and reabsorption
effects, F685 and Fratio would appear to have enhanced capacity to track foliar nutrient
dynamics. In a recent study, Wang et al. [25] reported positive and significant correlations
between foliar N and far-red SIF in a multiyear experiment in an almond orchard. Again,
one possible explanation for the contrasting results between this study and that of Wang
et al., is that in addition to differing Cab levels, also the nitrogen concentrations in their
leaves were about half compared to those in the present study. Besides, major differences
in canopy architecture between an almond and potato crop could have also contributed to
these contrasting results due to their impact on SIF [28,88].

As for the greenness indices above, the capacity of FY760 (C) to detect foliar nutrient
contents would have most likely increased should we have estimated canopy level nutrients,
factoring in the temporal and spatial variation in LAI. In fact, Jia et al. [44] have found a
positive relationship between far-red fluorescence and canopy N contents in wheat when
upscaling the leaf N measurements to the canopy using destructive leaf area measurements.
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In line with our hypothesis, canopy scale spectral measurements of PRI had strong
positive and negative correlations with nutrient Groups 1 and 2 respectively (Figures 7
and A1–A11 in Appendix B), while canopy level CCI was negatively correlated with
Fe, which is in line with other spectral indices that are positively correlated with FVC
amounts. In addition, PRI was weakly positively correlated with Cab, pointing to our
results confirming earlier research by Gitelson et al. [89]. This relationship is, however,
affected by vegetation growth stage, as well as changes in vegetation cover and foliar Cab
amounts [89]. In our study, increasing vegetation cover and changes in foliar Cab would
then naturally be the drivers behind the relationships between foliar nutrients and canopy
level PRI. The positive relationship found in our results between PRI and N has also been
documented in barley [48], as well a wide variety of annual and perennial species [47].
Gamon et al. [47] attributed this relationship to nutrient deficiencies leading to an increase
in photoprotection, which is then tracked by PRI. In addition to vegetation cover and foliar
Cab, this mechanism could be also driving the relationships between PRI and nutrients
found in our results.

5. Conclusions

ChlF and photoprotection-related indices demonstrated improved capacity to track fo-
liar nutrient contents over greenness-based indices (Figure 7) beyond the widely researched
nitrogen. The relationships between foliar nutrients and leaf-level spectral measurements
were largely mediated by the variation in foliar Cab and leaf morphology. Over the course
of the experiment, two groups of nutrient variations emerged. Group 1 nutrients (N, P,
K, and Mg) decreased over time and were positively related to Cab. Group 2 nutrients
(Cu, Mn, Zn, and S) increased over time and were negatively related to Cab. As a result,
relationships between spectral indices and foliar nutrients were of opposite sign between
Group 1 and Group 2 nutrients. To summarize, at the leaf scale, although many nutrients
were related to chlorophyll and spectral measurements, there was a heterogeneity of re-
sponses across the micro and macronutrients. At the canopy scale, spectral indices were
also influenced by canopy structure and so their capacity to detect foliar nutrient contents
depended on the spatiotemporal covariation between foliar nutrient contents, Cab and
canopy structure (e.g., FVC, Figure 7) within the observation. Accounting for this extra
factor is critical to scaling leaf-level processes to remote sensing platforms.

Our findings demonstrate that the measurement scale is of critical importance when at-
tempting to use optical data to estimate nutrients. As high resolution hyperspectral and SIF
imaging systems become more widespread, the capacity to resolve foliar nutrient contents
separately from canopy development should increase the potential of photoprotection-
related and SIF indices for plant nutrient detection. Novel imaging and modelling methods
that operate between the common scales of leaves and canopies can therefore play a key
role in unravelling the complexities found in our study. In particular, the combination of
multi-angle high spatial resolution observations [90,91] across a wider range of species and
treatments coupled to physically based 3D radiative transfer and machine learning meth-
ods for concurrent estimation of LAI, Cab and Car will be critical to develop quantitative
methods (e.g., Wang et al. [25]) for the estimation of foliar nutrient contents.
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Appendix A. Fertilizer Nutrient Contents

Table A1. Nutrient contents of fertilizers.

Nutrient YaraMila Hevi3, % of Weight YaraBela Suomensalpietari, % of Weight

N 11 27

P 4.6 0.0

K 18 1.0

Mg 1.6 1.0

S 10 4.0

B 0.05 0.02

Cu 0.03 0.0

Fe 0.08 0.0

Mn 0.25 0.0

Mo 0.002 0.0

Zn 0.04 0.0

Se 0 0.0015

Appendix B. Correlation of Nutrients with Spectral Signals, Divided into Early and
Late Measurements
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 Figure A1. Detecting leaf cadmium contents with spectral signals parameters at the leaf level and the
canopy scale. Open circles represent measurements from measurement point 1 (n = 26) and closed
circles represent measurements from measurement point 2 (n = 26). The top row of data represents the
leaf level spectral measurements, the bottom row of data the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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Figure A2. Detecting leaf calcium contents with spectral signals at the leaf level and the canopy
scale. Open circles represent measurements from measurement point 1 (n = 26), and closed circles
represent measurements from measurement point 2 (n = 26). The top row of data represents the leaf
level spectral measurements, the bottom row of data the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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Figure A3. Detecting leaf copper contents with spectral signals at the leaf level and the canopy scale.
Open circles represent measurements from measurement point 1 (n = 26), and closed circles represent
measurements from measurement point 2 (n = 26). The top row of data represents the leaf level
spectral measurements, the bottom row of data the canopy measurements. The R2 values in blue
represent the model from the early July measurements, whereas the R2 values in black represent
the model from late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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 Figure A4. Detecting leaf iron contents with spectral signals at the leaf level and the canopy scale.
Open circles represent measurements from measurement point 1 (n = 26), and closed circles represent
measurements from measurement point 2 (n = 26). The top row of data represents the leaf level
spectral measurements, and the bottom row of data the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from the late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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Figure A5. Detecting leaf manganese contents with spectral signals at the leaf level and the canopy
scale. Open circles represent measurements from measurement point 1 (n = 26), and closed circles
represent measurements from measurement point 2 (n = 26). The top row of data represents the leaf
level spectral measurements, and the bottom row of data the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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Figure A6. Detecting leaf magnesium contents with spectral signals at the leaf level and the canopy
scale. Open circles represent measurements from measurement point 1 (n = 26), and closed circles
represent measurements from measurement point 2 (n = 26). The top row of data represents the leaf
level spectral measurements, the bottom row of data the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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Figure A7. Detecting leaf phosphorus contents with spectral signals at the leaf level and the canopy
scale. Open circles represent measurements from measurement point 1 (n = 26), and closed circles
represent measurements from measurement point 2 (n = 26). The top row of data represents the leaf
level spectral measurements, and the bottom row of data represents the canopy measurements. The
R2 values in blue represent the model from the early July measurements, whereas the R2 values in
black represent the model from late from July measurements. A red linear correlation line in the plot
(together with a R2 value), represents that the models from individual points are not significantly
different from the model that includes data from both early and late measurements.
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Figure A8. Detecting leaf potassium contents with spectral signals at the leaf level and the canopy
scale. Open circles represent measurements from measurement point 1 (n = 26) and closed circles
represent measurements from measurement point 2 (n = 26). The top row of data represents the
leaf level spectral measurements, the bottom row of data represents the canopy measurements. The
R2 values in blue represent the model from the early July measurements, whereas the R2 values in
black represent the model from late July measurements. A red linear correlation line in the plot
(together with a R2 value), represents that the models from individual points are not significantly
different from the model that includes data from both early and late measurements.
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Figure A9. Detecting leaf sulfur contents with spectral signals at the leaf level and the canopy scale.
Open circles represent measurements from measurement point 1 (n = 26) and closed circles represent
measurement from measurement point 2 (n = 26). The top row of data represents the leaf level
spectral measurements, and the bottom row of data the canopy measurements. The R2 values in
blue represent the model from the early July measurements, whereas the R2 values in black represent
the model from late July measurements. A red linear correlation line in the plot (together with a
R2 value), represents that the models from individual points are not significantly different from the
model that includes data from both early and late measurements.
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Figure A10. Detecting leaf zinc contents with spectral signals at the leaf level and the canopy scale.
Open circles represent measurements from measurement point 1 (n = 26) and closed circles represent
measurements from measurement point 2 (n = 26). The top row of data represents the leaf level
spectral measurements, and the bottom row of data represents the canopy measurements. The
R2 values in blue represent the model from the early July measurements, whereas the R2 values in
black represent the model from late July measurements. A red linear correlation line in the plot
(together with a R2 value), represents that the models from individual points are not significantly
different from the model that includes data from both early and late measurements.
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Figure A11. Detecting leaf carotenoid/chlorophyll ratio with spectral signals at the leaf level and the
canopy scale. Open circles represent measurements from measurement point 1 (n = 26), and closed
circles represent measurements from measurement point 2 (n = 26). The top row of data represents the
leaf level spectral measurements, and the bottom row of data represents the canopy measurements.
The R2 values in blue represent the model from the early July measurements, whereas the R2 values
in black represent the model from the late July measurements. A red linear correlation line in the plot
(together with a R2 value), represents that the models from individual points are not significantly
different from the model that includes data from both early and late measurements.
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Figure A12. Correlation matrix comparing leaf and canopy level measurements to leaf level nutrient
measurements as well as leaf pigment contents from the early measurements (n = 26). The spectral
indices are presented so that the leaf level measurement is on the left (L column), followed by the
canopy level measurement (C column). If the color between the two scales stays the same, it indicates
that the sign of the correlation scales up. If the color changes between the scales, the correlation is
reversed when moving from one scale to another. Color denotes the Pearson correlation coefficient
R-value, which is explained in the color chart on the right. All colored (non-white) squares are
significant at the p ≤ 0.05 level.
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Figure A13. Correlation matrix comparing leaf and canopy level measurements to leaf level nutrient
measurements, as well as leaf pigment contents from the late measurements (n = 26). The spectral
indices are presented so that the leaf level measurement is on the left (L column), followed by the
canopy level measurement (C column). If the color between the two scales stays the same, it indicates
that the sign of the correlation scales up. If the color changes between the scales, the correlation is
reversed when moving from one scale to another. Color denotes the Pearson correlation coefficient
R-value, which is explained in the color chart on the right. All colored (non-white) squares are
significant at the p ≤ 0.05 level.
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