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Abstract: Precise yield predictions are useful for implementing precision agriculture technologies
and making better decisions in crop management. Convolutional neural networks (CNNs) have
recently been used to predict crop yields in unmanned aerial vehicle (UAV)-based remote sensing
studies, but weather data have not been considered in modeling. The aim of this study was to explore
the potential of multimodal deep learning on rice yield prediction accuracy using UAV multispectral
images at the heading stage, along with weather data. The effects of the CNN architectures, layer
depths, and weather data integration methods on the prediction accuracy were evaluated. Overall,
the multimodal deep learning model integrating UAV-based multispectral imagery and weather
data had the potential to develop more precise rice yield predictions. The best models were those
trained with weekly weather data. A simple CNN feature extractor for UAV-based multispectral
image input data might be sufficient to predict crop yields accurately. However, the spatial patterns
of the predicted yield maps differed from model to model, although the prediction accuracy was
almost the same. The results indicated that not only the prediction accuracies, but also the robustness
of within-field yield predictions, should be assessed in further studies.

Keywords: convolutional neural network; heading stage; model depth; remote sensing; within-field
variability

1. Introduction

Precision agriculture is expected to contribute to the enhancement of crop productivity
by collecting, processing, and analyzing temporal and spatial data and combining them
with other information to support management decisions based on the efficient use of
resources. Yield predictions are crucial sources of information in site-specific agriculture,
allowing farmers to make informed decisions about resource allocation and management
practices based on a detailed understanding of the spatial and temporal variabilities in
crop performance [1]. Farmers can improve crop production and implement optimal
farm management techniques by carefully monitoring biophysical quantities, particularly
biomass and grain yield [2]. In the agricultural sector, timely, nondestructive, inexpensive,
and reliable large-scale yield forecasts are important and prerequisite for preventing climate
risks and ensuring food security [3]. Thus, yield monitoring and satellite-based remote
sensing technologies have been developed to quantify the spatial distribution of crop yields
in large-scale farming practices. Moreover, the precision agriculture demand for low-cost
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and accurate crop yield and quality prediction tools is urgently growing, especially in
Asian countries, where smallholders are dominant [4].

Traditional crop yield measurement approaches are destructive and laborious [5]. Yield
estimation models such as WOFOST (WOrld FOod STudies), APSIM (Agricultural Pro-
duction Systems sIMmulator), and DSSAT (Decision Support System for Agro-Technology
Transfer Model) can simulate crop development, crop growth, and yield formulation at a
daily time step [6]. However, such models are very dependent on substantial and specific
input information on the local soils, crop management practices, and weather data [3],
and require massive computational costs [7]. Since process-based models for simulating
physiological mechanisms are constrained by the availability of data for parameterization,
data analytical approaches using statistical and machine learning models are recommended
as possible alternatives.

Due to advancements in environments storing big data and high-performance compu-
tational technologies, machine learning approaches have become a popular technique for
modeling intercorrelated and nonlinear relationships [8]. Recently, artificial intelligence and
other machine learning algorithms have gradually replaced traditional statistical models
(e.g., linear regression models) due to the flexibility of self-adaptive learning methods
from large samples [5]. With minimal or no human intervention, machine learning algo-
rithms can develop innovative methods to solve real-world problems and assist farmers in
decision-making [9].

Since the 1970s, satellite data have been extensively employed to predict crop yields [2].
To establish a precise satellite-based yield prediction model for a variety of crops, the
potential of machine learning approaches, such as artificial neural networks (ANN) [10,11],
random forest regression (RF) [12–15], and support vector regression (SVR) [16,17], has
been examined. However, the limited spatial and temporal resolution of satellite data
hinders precise yield predictions [18]. Therefore, unmanned aerial vehicles (UAVs) have
been widely used to collect data due to their superior spatial, spectral, and temporal
resolutions compared to airborne and satellite platforms [19].

Vegetation indices (VIs) from multispectral and RGB (red, green, and blue) images
are a conventional proxy for crop monitoring [20]. The physiological and geometric
properties of vegetation, such as the leaf chlorophyll content, leaf area index (LAI), nitrogen
concentration, plant height, biomass yield and grain yield, can be estimated from canopy
spectral information derived from UAV-based multispectral and hyperspectral imagery [19].
However, Zhou et al. [4] reported that machine learning methods based on vegetation
index values derived from UAV-based remote sensing data, such as the RF, SVR, and ANN
methods, did not outperform linear regression in terms of their wheat yield prediction
accuracies. The linear regression model may be able to provide approximate crop yield
predictions based on reflectance or vegetation indices. Due to the higher spatial resolution of
UAV-based remote sensing data, compared to satellite-based remote sensing data, a region
of interest of raw UAV images consists of a multidimensional matrix, which is difficult to
directly treat as input data for machine learning. Therefore, in the preprocessing steps of
general machine learning approaches, the pixel values of images within a certain region
of interest are aggregated into statistics such as the mean and median values. However,
this process causes spatial features that may be important for yield prediction to be lost.
To overcome the drawbacks of general data preprocessing for UAV-based remote sensing
and machine learning approaches, a convolutional neural network (CNN) was used to
precisely predict wheat [21,22] with the lowest RMSE (0.94 t ha−1) [22] and rice grain
yields [5,23], with a coefficient of determination (R2) of 0.499 [23]. The CNN can learn
pertinent information from images at different levels, similar to a human brain. The CNN
can then extract spatial features of the input images through convolutional, pooling, and
fully connected layers. CNNs have frequently been used in a variety of fields for image
classification, detection, segmentation, and retrieval problems [24], including image and
semantic recognition [25], natural language processing [26], and video analysis tasks [27].
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Weather is one of the major environmental factors affecting crop growth and yield.
For example, rice yields are largely affected by solar radiation in each growth stage [28].
Furthermore, rice is highly susceptible to heat stress during the flowering stage, and heat
stress negatively affects the crop yield [29]. Song et al. [30] assessed the impacts of heat
stress on wheat yields using both statistical models and satellite solar-induced chlorophyll
fluorescence (SIF) data. An ANN was used to predict winter wheat yield using satellite-
based remotely sensed and climate data [31]. Kim et al. [32] developed a deep neural
model for predicting crop yields by using satellite imagery and meteorological datasets. To
develop a precise yield prediction model on a regional scale, researchers have frequently
used satellite-based remote sensing and weather data to establish multimodal deep learning
models. To the best of our knowledge, multimodal deep learning methods, that is, the
integration of weather data into a CNN model, have rarely been attempted in studies
involving UAV-based remote sensing.

CNN models are known for their computational complexity and high memory require-
ments, which can limit their applicability in resource-constrained environments. Several
factors can impact the efficiency of CNN models, including the network architecture, train-
ing algorithms, optimization techniques, and available hardware. Using relatively small
network architectures and reducing the number of parameters can help lower the computa-
tional costs of training and prediction for practical applications. However, it is well known
that deepening and widening CNN architectures can enhance the model performance [33].
Therefore, there is a balance between the model performance and computational cost when
designing CNN architectures.

The objective of this study was to develop a multimodal deep learning model to
predict rice grain yield using UAV images at the heading stage and weather data. The
effects of CNN layers, layer depths, and weather data types on model performance were
assessed in terms of prediction accuracy and feasibility in terms of computational time.
Furthermore, the predicted yield maps were compared using the best-fitted model to
evaluate the robustness of the model predictions. Although CNN models can extract
important features related to crop yield at a time when image data is captured, other
environmental external factors hereafter would affect final crop yield. Thus, incorporating
weather data after image acquisitions into CNN models is hypothesized to enhance the
precision of the yield prediction model. Increasing the depth of the architecture after the
integration of weather and image data may also contribute to improving yield prediction
accuracy because it can learn complex relationships between temporal and visual data. To
establish a practical yield prediction model, a wide variety of yield and image data were
needed. These yield data were collected from farmers’ fields across Japan over six years.

2. Materials and Methods
2.1. Description of the Study Site

The research sites were located in Miyagi (140◦58′E, 38◦23′N), Gifu (136◦36′E, 35◦16′N
and 137◦06′E, 35◦38′N), and Kochi (133◦39′E, 33◦36′N) Prefectures in Japan, all of which
are located in the East Asian monsoon climate zone (Table 1). This region is known for its
abundant year-round rainfall [34] and is ideal for cultivating rice. Kochi Prefecture, located
in the southern part of Japan, has higher average temperatures and precipitation levels than
the central region (Gifu Prefecture) and the northern region (Miyagi Prefecture) [34]. The
primary soil type in all regions is gray lowland soil, except for one area in Gifu Prefecture
(137◦06′E, 35◦38′N) where the major soil type is brown forest soil [35].
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Table 1. Basic information on the research fields. The same letter of Environment ID represents locations having the same weather dataset.

Field ID Prefecture Latitude Longitude Environment
ID

Sowing/Transplanting
Date

Planting
System

Uav Imagery
Acquisition Date Variety Camera

01 Miyagi 38◦13′N 140◦58′E A 25 April 2017 Direct Seeding 2 August 2017 Hitomebore Sequoia+
02 Miyagi 38◦13′N 140◦58′E A 7 May 2017 Transplanting 2 August 2017 Hitomebore Sequoia+
03 Miyagi 38◦13′N 140◦58′E B 29 April 2018 Direct Seeding 2 August 2018 Manamusume Sequoia+
04 Miyagi 38◦13′N 140◦58′E B 7 May 2018 Transplanting 2 August 2018 Hitomebore Sequoia+
05 Miyagi 38◦12′N 140◦58′E C 4 May 2019 Direct Seeding 8 August 2019 Hitomebore Sequoia+
06 Miyagi 38◦13′N 140◦58′E C 12 May 2019 Transplanting 8 August 2019 Hitomebore Sequoia+
07 Miyagi 38◦13′N 140◦58′E C 16 May 2019 Transplanting 8 August 2019 Hitomebore Sequoia+
08 Gifu 35◦38′N 137◦06′E D 11 May 2020 Transplanting 12 August 2020 Koshihikari Rededge Altum
09 Gifu 35◦13′N 136◦40′E E 11 May 2020 Transplanting 6 August 2020 Koshihikari Rededge Altum
10 Gifu 35◦14′N 136◦35′E F 11 May 2020 Transplanting 6 August 2020 Hoshijirushi Rededge Altum
11 Gifu 35◦15′N 136◦35′E G 23 May 2020 Transplanting 6 August 2020 Hoshijirushi Rededge Altum
12 Gifu 35◦15′N 136◦35′E H 25 April 2021 Transplanting 13 July 2021 Akitakomachi Rededge Altum
13 Gifu 35◦14′N 136◦35′E H 19 April 2021 Transplanting 13 July 2021 Shikiyutaka Rededge Altum
14 Gifu 35◦15′N 136◦35′E I 14 May 2021 Transplanting 11 August 2021 Hoshijirushi Rededge Altum
15 Gifu 35◦11′N 136◦38′E J 10 May 2021 Transplanting 11 August 2021 Hoshijirushi Rededge Altum
16 Gifu 35◦13′N 136◦40′E K 11 May 2021 Transplanting 11 August 2021 Hoshijirushi Rededge Altum
17 Gifu 35◦15′N 136◦35′E L 16 May 2022 Transplanting 9 August 2022 Hoshijirushi Rededge Altum
18 Gifu 35◦16′N 136◦35′E M 23 May 2022 Transplanting 9 August 2022 Hoshijirushi Rededge Altum
19 Gifu 35◦14′N 136◦39′E M 2 May 2022 Transplanting 9 August 2022 Hoshijirushi Rededge Altum

20 Kochi 33◦35′N 133◦38′E N 31 March 2022 Transplanting 1 July 2022 Nangoku
Sodachi P4 Multispectral

21 Kochi 33◦35′N 133◦38′E O 4 April 2022 Transplanting 1 July 2022 Yosakoi bijin P4 Multispectral
22 Kochi 33◦35′N 133◦39′E O 25 May 2022 Transplanting 29 July 2022 Koshihikari P4 Multispectral

Same letter indicates same environment.
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2.2. Field Experimentation, Sampling Procedures and Data Collection

Rice yield surveys were conducted in 22 farmers’ fields in Japan over six years
(2017–2022) (Table 1). Three of the fields were directly seeded, while the others were
transplanted. Nine rice varieties were planted during the growing season from April to
May. Crop management was conducted according to local conventional methods. How-
ever, strip trials for basal fertilizer application were performed for several fields (Field
ID: 14–19) to obtain high yield variations and to determine whether the effect of fertilizer
application rates on rice yields could be evaluated using a predicted yield map. In strip
trials, long strips are laid out side-by-side in a field, and each strip receives different rates
of fertilizer application based on the working width of rice transplanter (approx. 1.9 m).
Strip trials are an experimental design widely used for on-farm experimentation. These
on-farm experimental fields received different basal fertilizer rates (i.e., 0–500 kg ha−1;
N:P:K = 25:6:6 or 24:9:9 depending on the field).

In the maturity stage, the plant samples were harvested with a sickle from an approx-
imately 1.0 m2 area and kept in a warehouse for drying. After drying, the weight of the
collected plant samples was measured, and the number of tillers was counted. Then, the
samples were threshed and cleaned, and the weight of the threshed grain was measured.
A subsample of straw was collected and oven-dried at 70 ◦C to calculate the moisture
content of the aboveground dry matter. To calculate the moisture content of the grain, the
samples were oven-dried at 105 ◦C, and the dry weight was calculated. Finally, the weight
of the grain samples was converted to a 15% moisture content. A total of 894 samples were
collected throughout all yield surveys. The number of samples obtained in each year was
155, 156, 126, 136, 68, and 253 in 2017, 2018, 2019, 2020, 2021, and 2022, respectively.

Daily meteorological information was collected from the Agro-Meteorological Grid
Square Data, NARO (https://amu.rd.naro.go.jp/, accessed on 25 November 2022), for
each region. The weather data included precipitation, global solar radiation, temperature
(average, minimum, and maximum), average relative humidity, average wind speed, and
vapor pressure data [36]. Rice plants gradually complete the transition from the vegetative
to reproductive growth stage during the booting and heading stages, and during the mid
to late growth stage, the spike color eventually turns yellow, causing the overall spectral
pattern of rice to deviate from that of normal green vegetation [24]. The heading stage
is suitable for estimating the rice grain yield [37], as it is the vital stage when maximum
greenness appears. However, remotely sensed data at the heading stage cannot provide
subsequent information. Thus, it is assumed that integrating weather data collected after
the heading stage may contribute to improving the yield prediction accuracy. Weather
data collected for four weeks after the heading stage were aggregated into either weekly
cumulative or monthly cumulative values. The spatial resolution of the provided weather
data was 1 km × 1 km; thus, geographically adjacent fields had identical weather data
values. The summarized weather data for each unique environment is shown in Table S1.

2.3. Image Acquisition and Processing

Multispectral cameras (Sequoia+, Parrot, Paris, France; Rededge Altum, MicaSense,
Seattle, USA; and P4 Multispectral, DJI Innovations, Shenzhen, China) mounted on un-
manned aerial vehicles (UAVs) were used to obtain multispectral images of rice at the
heading stages in each field. The description of three multispectral cameras is shown
in Table 2. The prediction model may be influenced by various factors such as different
spectral bands, FOV, and spatial resolution. In a preliminary experiment, relationships
among spectral reflectance were compared between multispectral cameras by taking im-
ages in the same field on the same date. Red-edge band was very sensitive to camera
selection; thus, only three bands (green, red, and near-infrared (NIR)) were used for fur-
ther analysis. The sample images captured through UAV and multispectral cameras are
shown in Figure 1. The coordinates of the ground control points (GCPs) for the Sequoia+
camera were determined using global navigation satellite system (GNSS) receivers (M8T,

https://amu.rd.naro.go.jp/
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U-Blox, Switzerland) and an open-source program package for GNSS positioning (RTKLIB
version 2.4.3) with a 0.01 m precision. The coordinates of the captured images taken by the
Rededge-Altum multispectral camera were measured using KlauPPK (Klau Geomatics,
Nowra, New South Wales, Australia) with a precision of 0.03 m, allowing for very accu-
rate orthomosaic processing without GCP installation. The coordinates of multispectral
images taken by the P4 multispectral camera were calibrated with GCPs by referring to the
aerial orthomosaic map products (https://mapps.gsi.go.jp/maplibSearch.do#1, accessed
on 10 October 2022). All UAV flights were carried out on sunny days, between 8:00 am
and 3:00 pm, under full sunlight and low wind speeds, to avoid image distortion caused
by meteorological circumstances. Flights were carried out at the heading stage and just
after harvesting plant materials for yield survey. The UAV flew at a height of 65 m above
the ground at a speed of 5 m s−1. The forward overlap was set at 85%, while the side
overlap was set at more than 65% to successfully generate the orthomosaic images. Using
structure-from-motion software (Pix4D mapper version 4.4.12, Pix4D, Prilly, Switzerland),
the captured multispectral images were processed to generate reflectance imagery. The
ground sample distances ranged from 0.01 to 0.06 m pixel−1. The harvested area was
determined using the remotely sensed images obtained just after harvest, and the images
of the approximately 1 m2 harvested area were retrieved using GIS software (QGIS 3.22.4).
The retrieved images were resampled to 100 pixels × 100 pixels for the neural network
(ANN and CNN) inputs using the nearest-neighbor approach.

Table 2. The specs of multispectral cameras.

Camera

Spectral Band Width
(nm) Field of

View
(H × V)

Resolution
(Pixel)

Green Red
Near

Infrared
(NIR)

Sequoia+ 550 ± 40 660 ± 40 790 ± 40 62 × 249 1280 × 960
Rededge Altum 560 ± 27 668 ± 14 842 ± 57 48 × 37 2064 × 1544
P4 Multispectral 560 ± 16 650 ± 16 840 ± 26 62.7 × 62.7 1600 × 1300
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1.0 m × 1.0 m area: (a) green, (b) NIR (near-infrared), and (c) red. The legend represents re-
flectance values.

2.4. Neural Network Architectures

To obtain a robust and accurate yield prediction model, the architectures must be
optimized based on the dataset. Two types of CNN feature extractor layers for multispectral
images, three different depths of fully connected layers, and three methods of integrating
weather data into deep neural network models were examined. The combinations created
a total of 18 architectures to be compared. CNN architectures are primarily composed of
convolutional layers and pooling layers. In the first layers, the model learns basic features
and then builds on these basic features in subsequent layers. Two types of CNN layers are

https://mapps.gsi.go.jp/maplibSearch.do#1
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AlexNet and CNN_2conv. The AlexNet layer is a unique architecture that consists of five
convolutional layers with the rectified linear unit (ReLU) function, three max pooling layers,
and three fully connected layers [38]. However, the original AlexNet layer was modified in
this study by adding three batch-normalization layers while removing three fully connected
layers (Figures 2 and 3). The CNN_2conv layer consists of two convolutional layers with
two batch-normalization layers (Figures 4 and 5). The input data for multispectral images
had three channels, the red, green, and NIR channels, and three different UAV-based
remote sensing platforms shared these bands. The three methods of integrating weather
data into the CNN model were the inclusion of no weather data and the inclusion of weekly
cumulative and monthly cumulative weather data collected after the heading stage. These
weather data are one-dimensional vector data. Thus, weather data are concatenated with
the output of the CNN layers (Figures 2 and 4) and passed through the fully connected
layers with different depths (Figures 2–5). Finally, the output layer of the fully connected
layer is fed to the output by a linear function (Figures 2–5).
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To assess the effectiveness of CNN layers, simple ANN was employed as a benchmark
preliminary experiment. The ANN architectures are all the same as the above-mentioned
CNN models (e.g., the number of layers, neurons, and activation functions) except that
there is no CNN layer. Instead of the CNN layer, 100 pixels × 100 pixels image data of each
band was averaged to reduce the dimensions of the input data. However, the performance
of ANN was not stable and had substantially lower performance than the models based
on the AlexNet and CNN_2conv architectures (Table S2). Thus, ANN was not included in
further analysis.
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2.5. Training and Validation Processes

All predictor variables underwent standardization (mean = 0 and standard deviation = 1)
before the models were trained. The model performance was evaluated using fivefold cross-
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validation. For each fold, the entire dataset was randomly split into sets for training and
testing the model: training (60%), validation (20%), and test (20%). To maintain consistency
among the training, validation, and test datasets, the seed number was fixed among the
models. The performance was measured using the R2, root mean squared error (RMSE),
and root mean squared percentage error (RMSPE) values, which were calculated as follows:

R2 = 1− ∑n
i (yi − ŷi)

2

∑n
i (yi − yi)

2 (1)

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(2)

RMSPE =

√√√√ 1
n

n

∑
i=1

(
yi − ŷi

yi

)2
(3)

where y and ŷ are the observed and predicted yields, respectively, i is the sample number,
n represents the total sample number, and y represents the mean of the observed data. The
mean R2, RMSE, and RMSPE values were calculated from the five-fold results.

Data augmentation was applied to alleviate overfitting and improve the accuracy
by increasing the total number of samples. The training dataset of multispectral im-
ages was augmented through buffer extraction, rotation, and flipping steps according to
Tanabe et al. [24]. In the buffer extraction step, images were clipped at locations that moved
one pixel away from the exact sampled location in the horizontal, vertical, and diagonal
directions, thereby increasing the data size by nine times. The combination of the image
rotation and flipping steps increased the data size by eight times. To avoid overfitting,
these two augmentation methods were applied to the original images separately rather
than simultaneously. In total, the original training dataset (n = 536) was multiplied sixteen
times (n = 8576).

The CNN model training and testing process was performed in Python (version 3.8.10)
using the Keras (version 2.8.0) machine learning application programming interface [39]
with the TensorFlow (version 2.8.0) [40] backend. The Adam optimizer [38,41] was used
with a learning rate of 0.001% (default value). To avoid overfitting, early stopping was used
to monitor the validation loss with a patience of 15 epochs during a total of 100 epochs in
the CNN models.

A randomly selected field (Field ID: 15) was utilized to forecast crop yields using
the developed models. Yield prediction was performed based on 1.0 m × 1.0 m unit as
same as input data of the yield prediction models. Yield prediction maps were visualized
by gradient-colored points representing centroids of 1.0 m × 1.0 m prediction unit using
QGIS 3.22.4. The chosen field was an on-farm experimental field where various fertilizer
rates were used to cultivate the crops, and the average yield was 5.92 t ha−1. One of the
best models from each combination was used for yield prediction, and the prediction time
was recorded to evaluate the feasibility. The workstation specifications applied for these
predictions were Intel Core i9-11900, Nvidia GTX 1650, 32.0 GB RAM, and Windows 10
64-bit system operation.

2.6. Statistical Analysis

Python (version 3.8.10) and SciPy (version 1.9.1) were used for the statistical analysis.
Analysis of variance (ANOVA) was performed to evaluate the effects of architectures on
the model performance. To examine the differences in the mean model performance values,
Tukey’s honestly significant difference test (Tukey’s HSD) was performed. A p value < 0.05
was considered statistically significant for all analyses.
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3. Results
3.1. Yield Variations

A histogram of the yield data is shown in Figure 6. The collected data showed
an approximately normal distribution, although there were a few extremely high-yield
observations (>10 t ha−1, n = 894). The mean value was 6.65 t ha−1, and the standard
deviation was 1.46 t ha−1 (coefficient of variation: 22.0%).
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3.2. Model Performance

To assess the effects of the layer number, architecture, and weather data type on the
RMSE, a three-way ANOVA was performed (Table 3). There was no significant difference
between the AlexNet and CNN_2conv architectures. The effects of the number of layers
and weather data types on the model performance were significant. However, there was
no significant difference in the model performance among different layers according to
Tukey’s HSD results. The models trained with weekly weather data exhibited significantly
lower RMSE values than those trained with no weather and monthly weather data.

The performance of each model estimating the rice yield is presented in Table 4.
Excluding the AlexNet models with no weather data (Models 1–3), the other models had
high RMSE values when the layer depth was 0. The computational time required for
prediction was approximately eight times longer in the AlexNet feature extractors than in
the CNN_2conv ones. The top two accurate models with the lowest RMSE values were
found in models integrating weekly weather data as input data with either AlexNet (Model
8) or CNN_2conv (Model 18). The relationships between the observed and predicted rice
yields of the most accurate models, based on the AlexNet and CNN_2conv architecture-
based models, are shown in Figure 7. There were no clear differences in the relationships
between the observed and predicted yields when the AlexNet and CNN_2conv architecture-
based models were compared.
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Table 3. Result of three-way ANOVA on the layer numbers, weather data types, and architectures.

RMSE
t ha−1

Layer
0 0.933 a

1 0.910 a

2 0.898 a

Weather
No 0.941 a

Monthly 0.917 a

Weekly 0.877 b

Architecture
AlexNet 0.909 a

CNN_2conv 0.910 a

ANOVA p value

Layer 0.024
Weather 0.003

Architecture n.s
Layer ×Weather n.s

Layer × Architecture n.s
Weather × Architecture n.s

Different small letters within each column indicate significant differences at a p-value < 0.05 according to Tukey’s
HSD test. n.s., not significant.
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Table 4. CNN model performance for predicting rice yields with the training, validation, and test datasets.

Model No. Architecture Weather Layer
Train Validation Test Time for

PredictionRMSE RMSPE R2 RMSE RMSPE R2 RMSE RMSPE R2

t ha−1 % t ha−1 % t ha−1 % s/ha

1 AlexNet No 0 0.985 16 0.54 0.867 15 0.65 0.929 15 0.59 25.91
2 AlexNet No 1 0.986 15 0.54 0.908 16 0.62 0.948 15 0.57 25.75
3 AlexNet No 2 0.964 15 0.56 0.882 15 0.64 0.940 16 0.58 25.69
4 AlexNet Monthly 0 0.953 15 0.57 0.897 16 0.63 0.917 15 0.60 25.67
5 AlexNet Monthly 1 0.938 15 0.58 0.869 15 0.65 0.920 15 0.59 25.53
6 AlexNet Monthly 2 0.905 15 0.61 0.862 15 0.65 0.897 15 0.61 25.82
7 AlexNet Weekly 0 0.897 15 0.62 0.859 15 0.65 0.905 15 0.61 25.56
8 AlexNet Weekly 1 0.842 14 0.66 0.830 15 0.68 0.859 14 0.65 25.69
9 AlexNet Weekly 2 0.839 14 0.67 0.845 15 0.67 0.868 14 0.64 25.75

10 CNN_2conv No 0 1.045 17 0.48 0.912 16 0.61 0.969 16 0.55 3.29
11 CNN_2conv No 1 1.024 16 0.50 0.894 15 0.63 0.931 15 0.58 3.24
12 CNN_2conv No 2 0.978 15 0.55 0.893 15 0.63 0.929 15 0.59 3.25
13 CNN_2conv Monthly 0 0.998 16 0.53 0.916 16 0.61 0.970 16 0.55 3.32
14 CNN_2conv Monthly 1 0.906 14 0.61 0.877 15 0.64 0.905 15 0.61 3.52
15 CNN_2conv Monthly 2 0.905 14 0.61 0.876 15 0.64 0.895 15 0.62 3.16
16 CNN_2conv Weekly 0 0.905 15 0.61 0.857 15 0.66 0.907 15 0.60 2.21
17 CNN_2conv Weekly 1 0.833 13 0.67 0.834 14 0.68 0.864 14 0.64 3.20
18 CNN_2conv Weekly 2 0.821 13 0.68 0.831 14 0.68 0.860 14 0.65 3.22

Bold letters represent the best model based on the model performance with the training, validation, and test datasets.
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3.3. Within-Field Prediction of Rice Yield

The predicted yield maps based on the best models with both architectures (Models
8 and 18) are shown in Figure 8. Both predicted yield maps show spatially heterogenous
yields (Figures 8 and 9). The treatment plots receiving different rates of basal fertilizer were
evident. The predicted yield range of the AlexNet architecture-based model (Model 8) was
higher than that of the CNN_2conv architecture-based model (Model 18). The predicted
yields ranged from 4.39 to 6.81 t ha−1 in Model 8 (mean value = 6.13 t ha−1), and from 4.11
to 679 t ha−1 in Model 18 (mean value = 5.82 t ha−1). The prediction yield maps, generated
using the UAV-based optimal models of both architectures (Models 1 and 12), are depicted
in Figure S1. Both models exhibit a nearly identical predicted pattern.
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4. Discussion

This study attempted to explore the potential of multimodal deep learning models
based on UAV multispectral and weather data to predict rice yields with high accuracy.
The model performances were compared among different neural network architectures.
The effects of the CNN feature extractor layers for multispectral images, depths of fully
connected layers, and weather data integration methods on the model performance were
examined. The results indicated that the best model could predict rice yields with an
RMSE value of 0.859 t ha−1 (RMSPE: 14%) (Table 4; Figure 7). The architecture of this
model consisted of an AlexNet feature extractor, weekly weather data, and one layer after
concatenation (Model 8). Moreover, the second-best model could predict rice yields with
an RMSE value of 0.860 t ha−1 (RMSPE: 14%). The architecture of this model consisted of
a CNN_2conv feature extractor, weekly weather data, and two layers after concatenation
(Model 18). These two best models indicated that multimodal deep neural network models
based on UAV multispectral imagery and weekly aggregated data might contribute to the
enhancement of prediction accuracies. The result of Tukey’s HSD also showed that the use
of weekly weather data resulted in significantly lower RMSEs than using no weather data
(Table 3). This finding was consistent with previous studies reporting that the crop yield
prediction accuracy obtained based on satellite imagery could be enhanced by integrating
weather data [31,32,42]. Notably, UAV-based approaches may provide more homogenous
climate data for each observation than satellite-based approaches because the spatial
resolution of available weather data is relatively coarse (1 km2) compared to the relatively
spatially fine resolutions and limited regions of interest of UAV-based remote sensing
data. For instance, a single field, or even adjacent fields, shared identical weather data
values in this study. Despite the inevitable nature of unbalanced training-data sampling for
UAV-based approaches, the integration of weekly weather data is important for improving
within-field yield prediction accuracies. However, monthly cumulative weather data did
not significantly improve the model performance (Table 3). The results indicated that
appropriate temporal intervals for aggregating weather data should be explored in future
studies. Deep learning models consisting of RNN or long short-term memory (LSTM)
layers for extracting the temporal features of weather data can contribute to improving the
model prediction accuracy in crop yield predictions [43].
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One of the key aspects of CNNs is their high capability to extract spatial features;
this capability is enabled by the deep and complicated architectures of these networks.
Therefore, deeper networks can learn more complex spatial features from the input data,
which might improve the accuracy and robustness of the prediction model [22,42,44]. In the
present study, the AlexNet feature extractor was assumed to outperform the CNN_2conv
feature extractor due to its architectural complexity. However, the spatial feature extractors
had no significant effect on the model performance (Table 3). Little difference was found
in the model performance between the two best models (Models 8 and 18) (Table 4).
Furthermore, the CNN_2conv feature extractor was eight times more efficient than the
AlexNet feature extractor in terms of the computation time (Table 4). Therefore, the results
indicated that the CNN architectural complexity might not be essential from the perspective
of the prediction accuracy, but computational feasibility of the model should be accounted
in practical applications.

To present an efficient paradigm design architecture for multimodal deep learning
models, the effect of additional layers after the concatenation of outputs from CNN layers
and weather data on the model performance was also evaluated. The three-way ANOVA
test indicated a significant effect of the number of layers on the model performance (Table 3).
The RMSE values decreased with an increasing number of layers, although there was no
significant difference according to the result of Tukey’s HSD (Table 3). The best two models
(Models 8 and 18) had more than one layer after the concatenation of weather data (Table 4).
Therefore, adding at least one extra layer to the architectures, just after concatenating
the spatial data extracted by CNN layers and temporal weather data, could lead to an
improvement in the modeling accuracy. Accordingly, the nonlinear relationships realized
from spatial (i.e., multispectral images) and temporal information (i.e., weather data) can
be efficiently used to predict yields.

Although both best models (Models 8 and 18) exhibited similar prediction accuracies
(Table 4; Figure 7), the predicted yield levels and spatial patterns varied between them
(Figure 8). Specifically, Model 8 predicted a higher yield range than Model 18. Furthermore,
Model 18 predicted lower yields than Model 8 in the northeastern part of the field, while
near the northern boundary, where Model 18 predicted higher yields, Model 8 predicted
lower yields. On the edges of the east and west sides of the field, Model 8 predicted lower
yields, while Model 18 predicted extremely high yields. The effects of the fertilizer treat-
ments on the predicted yields were more evident in Model 8 than in Model 18. Both models
similarly predicted extremely high and low values, but values near the median showed
high variations (Figure 9). When a practitioner selected different models, the resultant
yield maps varied substantially. Yield data are basic information used for data analytics in
on-farm experiments to evaluate the effects of treatments on the crop yield [45]. Therefore,
there is a risk that different scenarios could be derived depending on which model is used
for the yield prediction and further data analytics in on-farm experimentations to provide
fertilization recommendations, although there were apparently no significant differences
in the yield prediction accuracies in this study. The results indicated that not only the
prediction accuracy, but also the robustness of the within-field yield predictions, should be
assessed in further studies.

Although this study indicated that integrating weekly weather data into CNN models
could contribute to enhancing yield prediction accuracy, several limitations should be
noted. Weather data were uniformly distributed across the adjacent fields due to the spatial
resolution of database (i.e., 1 km × 1 km). If there are more spatial and temporal variations
in weather data for each field, the impact of time-series data algorithms, such as recurrent
neural network and LSTM, on model performance should be assessed using daily weather
data in further research. Furthermore, this study could not identify which models were the
most reliable and robust, as indicated by the different spatial yield distributions between
models (Figures 7 and 8). The results highlighted an important finding; namely, that
models could differently predict spatial variations even with almost the same prediction
accuracy. Thus, further studies are required to evaluate site-specific prediction accuracy
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using independent field test datasets with more spatially dense observations (i.e., yield
monitor data).

5. Conclusions

This study indicated that a multimodal deep learning model integrating UAV-based
multispectral imagery and weather data has the potential to develop more precise rice
yield predictions. The results highlighted that the best models were trained with weekly
weather data. A simple CNN feature extractor for UAV-based multispectral image input
data might be sufficient to predict crop yields accurately. However, the yield levels and
spatial patterns of the predicted yield map differed among models, although the prediction
accuracy was almost the same. Further research will be required to explore the robustness
of this approach by collecting a variety of yield observations alongside weather data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15102511/s1, Figure S1: Yield prediction maps (using only UAV
images) of a surveyed field based on (a) Model 1 and (b) Model 12; Table S1: Weekly and monthly
summation of mean air temperature, solar radiation, and total precipitation for four weeks after
heading stage at the study sites; Table S2: ANN model performance for predicting rice yields with
the training, validation, and test datasets.
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