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Abstract: Building footprint extraction from remotely sensed imagery is a critical task in the field
of illegal building discovery, urban dynamic monitoring, and disaster emergency response. Recent
research has made significant progress in this area by utilizing deep learning techniques. However,
it remains difficult to efficiently balance the spatial detail and rich semantic features. In particular,
the extracted building edge is often inaccurate, especially in areas where the buildings are densely
distributed, and the boundary of adjacent building instances is difficult to distinguish accurately.
Additionally, identifying buildings with varying scales remains a challenging problem. To address the
above problems, we designed a novel framework that aggregated multilevel contextual information
extracted from multiple encoders. Furthermore, we introduced an instance constraint into contrastive
learning to enhance the robustness of the feature representation. Experimental results demonstrated
that our proposed method achieved 91.07% and 74.58% on the intersection over union metric on
the WHU and Massachusetts datasets, respectively, outperforming the most recent related methods.
Notably, our method significantly improved the accuracy of building boundaries, especially at the
building instance level, and the integrity of multi-scale buildings.

Keywords: contrastive learning; feature aggregation; building extraction; remote sensing image;
semantic segmentation

1. Introduction

In recent years, the advancement of remote sensing technology has led to the avail-
ability of vast amounts of high-resolution remotely sensed imagery, which serves as a
reliable data source for regular building extraction. Since buildings are the primary object
of land cover and are closely related to human activity, efficiently and accurately extracting
buildings from large amounts of high-resolution remote sensing images has significant
implications in the fields of land use investigation and illegal building detection [1,2].
However, due to the varied appearance of buildings and the complex backgrounds present
in remote sensing images, along with other influencing factors such as sensor differences,
view angle, and climate, buildings exhibit clear interclass variability in remote sensing
images. Thus, the challenge of extracting buildings from a large range of remotely sensed
images with high accuracy and efficiency remains a major one in the field [3].

The development of Deep Convolutional Neural Networks (DCNN) in recent years
has led to the proposal of various algorithms for processing remote sensing images [4–6]. It
has been demonstrated that data-driven DCNNs can automatically identify specific objects
in remote sensing imagery by being trained on large numbers of labeled samples. This
technology benefits from Fully Convolutional Networks (FCN) [7], which replace the fully
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connected layers with convolutional layers, making dense prediction possible on large-scale
remotely sensed images.

The FCN-based method [8] efficiently extracts buildings from remotely sensed imagery,
but the boundaries of the buildings may still be blurry due to the loss of spatial information
during repeated downsampling operations in the encoder stage. This loss of information
can be challenging to recover through upsampling in the decoder stage. To overcome this
issue, encoder–decoder-based methods such as U-Net [9] have introduced skip-connections
to fuse multi-scale shallow features extracted from the encoder stage, which helps to recover
detailed spatial information.

Current building extraction methods primarily rely on encoder–decoder networks,
which extract multi-scale features and integrate them to restore detailed spatial information.
Advanced network architectures, such as attention mechanisms and transformer networks,
have been successfully utilized in remote sensing and have resulted in significant improve-
ments. However, these methods still exhibit certain limitations that hinder their ability to
accurately extract buildings.

Firstly, existing methods lack strong generalization ability. They learn features auto-
matically through labeled samples with pixel-wise supervision but fail to consider building-
specific global characteristics such as geometry and texture. Consequently, the extracted
features may be insufficient for accurately characterizing buildings and differentiating
them from their surroundings. Secondly, current methods suffer from blurred building
boundaries due to the underutilization of high-resolution features and an unbalanced rep-
resentation of spatial and semantic information. This leads to inaccuracies in distinguishing
adjacent building boundaries, as illustrated in Figure 1.
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Figure 1. An example of extracted blurred boundaries, especially in densely distributed buildings.
Columns (a–c) represent the image, label, and extracted results by HRNetv2. The second row
illustrates the details of the yellow box marked in the first row.

The different architectures of the encoders have varying capabilities in capturing
semantic features, each with its advantages. A well-designed strategy for fusing multi-scale
features extracted from multiple encoders can combine these advantages and enhance
the representation of features. To address the above challenges, we propose an MFA-Net
that aggregates multilevel features extracted from two lightweight encoders to maintain
multi-scale spatial and semantic context. Our approach adaptively screens and optimizes
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the multi-scale features from different backbones, enabling the model to better capture
building-specific features. Additionally, we introduce an instance-level contrastive loss
based on the multi-scale features with prior mask constraints, which increases the discrimi-
nation between buildings and their backgrounds and significantly improves the model’s
generalization ability.

The main contributions of this work are as follows:

(1) We proposed a channel attention-based multilevel feature aggregation framework that
adaptively fuses the spatial and semantic information, resulting in refined multi-scale
building extraction;

(2) We devised an instance-level contrastive learning strategy with global consistency con-
straints among buildings and backgrounds, which leads to robust feature representation;

(3) We conducted extensive experimentation on the WHU and Massachusetts datasets to
validate the performance and generalization of the proposed method.

The paper is organized as follows: In Section 2, we explore the existing literature on
building extraction. The details of the proposed method are illustrated in Section 3, followed
by Section 4, which describes the experiments and analyzes the results obtained from them.
Lastly, in Sections 5 and 6, we present a comprehensive discussion and conclusions of
this paper.

2. Related Works

In the past few decades, lots of algorithms have been developed for extracting build-
ings from remotely sensed imagery. These methods can generally be categorized into
two groups: traditional image processing-based methods and deep convolutional neural
network (DCNN)-based methods. Traditional methods for building extraction rely on
designing features that capture the texture, geometry, and shadow characteristics of the
buildings in the imagery [10–12]. However, traditional methods tend to not perform well
on a task with large-scale remote sensing imagery, since these specific features vary under
different illuminations, sensor types, and building architecture. Many researchers combine
optical imagery with multi-source data containing elevation information to distinguish
non-building areas that are similar to buildings [4,13]. This significantly increases the
robustness of building recognition; however, it is costly to obtain such a wide range of
corresponding multi-source data. In summary, traditional methods are heavily based
on prior knowledge to design appropriate features according to the specific data. It is
unfeasible to extract buildings from large-scale remote sensing images efficiently due to
the complex background and the diversity in appearance and scale of buildings in remote
sensing imagery.

DCNN-based building extraction methods have progressed with the development of
the fully convolutional network (FCN), realizing efficient pixel-to-pixel classification of
input images with any size. FCN-based methods [8,14–18] automatically extract building
footprints from the original images pixel to pixel and achieve high-quality results. Due
to the repeated downsample operation in the stage of feature extraction, detailed spatial
information was also weakened. To restore the potential spatial information that gets lost
in the feature extraction process, encoder–decoder-based semantic segmentation methods
have been developed, represented by the U-Net [9], gradually fusing high-resolution
features by skip-connection on the decoder stage.

Building extraction frameworks based on the encoder–decoder architecture [19–23]
have demonstrated significant advancements in accurately extracting buildings compared
to FCN-based methods, particularly for tiny buildings and boundaries. To further enhance
the quality of extracted building boundaries, recent studies [24–27] have incorporated the
structural information of buildings to improve the recognition and optimization of building
edges, by utilizing potential a priori forms of contours and employing post-processing
strategies. Additionally, learning-based regularized algorithms have been introduced to
refine the extracted building boundaries and generate building polygons, as demonstrated
in [28–31]. These approaches have shown promising results in improving the accuracy and
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efficiency of building extraction and are expected to have a significant impact on future
applications in remote sensing and geospatial analysis.

To tackle the problem of gradient explosion during backpropagation in deeper neu-
ral network architectures that hinders further performance improvements, ResNet [32]
introduced a novel residual block that employs identity mapping. This breakthrough
allowed for the design of deeper and more complex deep convolutional neural networks
(DCNNs), facilitating richer semantic feature extraction in image recognition tasks. As a
result, numerous frameworks [5,23,33] have utilized pre-trained ResNet models on large
datasets to encode features. These methods have significantly surpassed others that lack
transferred knowledge in tasks such as semantic segmentation and building extraction,
among others.

The issue of multi-scale building extraction has been addressed in previous works
such as those proposed by [34–36]. These authors introduced a specific architecture that
integrated multi-scale input to enhance the precision of extracting multi-scale buildings.
However, these methods significantly increased computational complexity, which is a sig-
nificant challenge in practical applications. In response to this challenge, ref. [37] proposed
the atrous spatial pyramid pooling module (ASPP), which effectively extracted multi-
scale features through pooling layers with various kernel sizes. This approach captured
the global context without introducing additional computational complexity. Moreover,
ref. [38] presented the SRI-Net, which incorporated multi-scale features by means of a
spatial residual inception module, further improving the efficacy of multi-scale building
extraction. Additionally, for efficiently refined building extraction, MA-FCN [28] utilized a
feature pyramid network for multi-scale feature extraction and a boundary regularization
strategy for refined building extraction. The DeepLabv3 series networks [20,39] imple-
mented dilated convolution to enlarge the receptive field and efficiently fuse multi-scale
features, thereby improving the accuracy and consistency of object extraction without
increasing the computational complexity. It efficiently fused the multi-scale features, which
benefited multi-scale object extraction and improved the integrity of the objects.

The attention mechanism is an efficient technique for capturing long-range depen-
dencies in a spatial by exploiting self-relations and optimizing features from a channel
perspective. It has been shown to enhance the feature representation of tiny objects and
improve the overall integrity by leveraging intra-class similarities, as evidenced by nu-
merous studies [40–42]. To further retain the spatial details, HRNetv2 [43] proposed a
high-resolution parallel network to deal with multi-scale feature extraction for more precise
semantic segmentation. Based on the above idea, MAP-Net [44] proposed a multi-path
parallel feature extraction network that preserves detailed spatial information in high-
resolution features while maintaining rich semantic representation in deeper features.
Furthermore, an attention-based feature optimization module was introduced to adaptively
fuse the multi-scale features, resulting in refined building footprint extraction.

In summary, extant methodologies have emphasized multi-scale building extraction
via the incorporation of particular modules and post-processing techniques to refine bound-
ary recognition. Nevertheless, the majority of these methodologies continue to rely on
pixel-level supervision for model training and optimization, disregarding instance-level
consistency, which denotes the global similarity between buildings and their differentiation
from surrounding backgrounds. In addition, the potential of combining various encoders
for the extraction of multi-scale features has been infrequently explored.

3. Methods
3.1. Architecture Overview

To alleviate the problems above, we designed a novel instance-level contrastive learn-
ing constraint network for accurate multi-scale building extraction, which aggregated
two encoders to optimize the multilevel features with rich semantic and detailed spatial
information. The proposed MFA-Net is illustrated in Figure 2 and is mainly composed
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of two primary modules: (1) a multilevel feature aggregation module (AFFM) and (2) a
building instance-level constraint contrastive learning module (ICL).
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feature fusion module (AFFM), an instance-level contrastive learning loss (ICL), and a binary cross-
entropy loss (BCE). The AFFM fuses multilevel features through an attention mechanism, while the
ICL constrains building instances to enhance feature representation robustness. BCE is used as a
standard loss function for pixel-wise semantic segmentation.

Specifically, we extracted five distinct scales of features from two pre-trained encoders,
HRNet18 and Resnest26, which had differing architectures. To effectively fuse and com-
bine the advantage of each scale of features, we introduced a channel attention-based
aggregation module, which utilized channel-wise weighting. The resulting multi-scale
features were then fused and decoded using a Feature Pyramid Network (FPN) head,
ensuring that spatial details were maintained across the different scales. To optimize the
results, we employed a binary cross-entropy loss function. Unlike the existing methods, we
designed a building instance constraint contrastive loss to learn the global representation
of buildings. This helps to differentiate between buildings and non-buildings through
object-level consistency. Further details of these modules are described below.

3.2. Aggregation of Multilevel Features

Considering that the scale varies for buildings, our approach utilizes two lightweight
encoders, HRNet18 and Resnest26, to extract multi-scale features. HRNet18 is specifically
designed to maintain high-resolution representations throughout its encoder. The encoder
consists of four stages, each processing the input at a different scale. In the first stage,
the input image is taken and high-resolution feature maps are produced. Subsequently,
lower-resolution feature maps are combined with the initial set of feature maps in the
subsequent stages to generate even higher-resolution feature maps. The final output of
the encoder is a set of feature maps that possess high resolution and are rich in spatial
details. On the other hand, Resnest26 is an improved version of ResNet that includes
a nested-scale attention mechanism consisting of 26 layers. Similarly to HRNet18, it is
composed of multiple stages, with each stage consisting of multiple residual blocks. The
attention mechanism allows the network to attend to features at multiple scales, enabling it
to capture both local and global contexts. The output of each stage of Resnest26 is then fed
into the next stage, ultimately producing a set of multi-scale features, making it a suitable
choice for the proposed task.
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Compared with the existing methods, we maintained the five scales of features to
preserve the spatial details, especially for small buildings. Since different encoders have
their particular advantages, we designed an attention-based multilevel feature fusion
module (AFFM), as shown in Figure 3a, to optimize and channel-wise squeeze the features
extracted from two pre-trained encoders. It adaptively learned a weight for each channel
to select and enhance each scale of the fused features without increasing the dimensions.
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The channel attention module was based on the SE-Module with a channel reduction
in the middle fully connected layers, which significantly improved the effectiveness, as
shown in Figure 4. Apart from the feature aggregation during the encoder stage, we also
introduced the attention-based feature fusion layer into the FPN-based upsampling stage
(AFUP). Unlike the skip-connection for recovering spatial details, we upsampled the lower
resolution features through use of a transconvolution layer, as shown in Figure 3c, and effi-
ciently concatenated them with channel-attention fusion without increasing the dimensions
of the feature. Compared with existing methods, which directly upsample the features by
linear interpolation, the AFUP module upsampling features take the nearby pixels into
account in space and channel-wise to select the optimal features. Additionally, the proposed
multilevel feature fusion module balances spatial details and semantic information, which
helped to extract multi-scale buildings accurately.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

to capture both local and global contexts. The output of each stage of Resnest26 is then fed 
into the next stage, ultimately producing a set of multi-scale features, making it a suitable 
choice for the proposed task. 

Compared with the existing methods, we maintained the five scales of features to 
preserve the spatial details, especially for small buildings. Since different encoders have 
their particular advantages, we designed an attention-based multilevel feature fusion 
module (AFFM), as shown in Figure 3a, to optimize and channel-wise squeeze the features 
extracted from two pre-trained encoders. It adaptively learned a weight for each channel 
to select and enhance each scale of the fused features without increasing the dimensions.  

 
Figure 3. Details of the Attention-based Feature Fusion Module. 

The channel attention module was based on the SE-Module with a channel reduction 
in the middle fully connected layers, which significantly improved the effectiveness, as 
shown in Figure 4. Apart from the feature aggregation during the encoder stage, we also 
introduced the attention-based feature fusion layer into the FPN-based upsampling stage 
(AFUP). Unlike the skip-connection for recovering spatial details, we upsampled the 
lower resolution features through use of a transconvolution layer, as shown in Figure 3c, 
and efficiently concatenated them with channel-attention fusion without increasing the 
dimensions of the feature. Compared with existing methods, which directly upsample the 
features by linear interpolation, the AFUP module upsampling features take the nearby 
pixels into account in space and channel-wise to select the optimal features. Additionally, 
the proposed multilevel feature fusion module balances spatial details and semantic in-
formation, which helped to extract multi-scale buildings accurately. 

 
Figure 4. The channel attention module. The W, H, and C represent the dimensions of the features. Figure 4. The channel attention module. The W, H, and C represent the dimensions of the features.

3.3. Instance-Level Constraint Contrastive Loss

Pixel-wise contrastive learning improves the robustness and quality of feature rep-
resentation by increasing the discrimination between positive and negative samples and
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decreasing the distance within pairs of positive or negative samples [45–47]. However, the
independent pixel-wise features ignore the building’s global consistency representations
such as structure and texture. Similar to the pixel-wise contrastive loss, we designed an
instance-level contrastive loss Lc by increasing the similarity of the paired global build-
ing representation mapping to the multilevel features Fa, and Fb extracted from the two
encoders, respectively. To learn the discriminated features between the buildings and
backgrounds, we randomly sampled a negative sample Fg from the background for each
building mask and enlarged the distance of the feature presentation. The distance D was
evaluated by cosine similarity. The presentation of the instance-level contrastive loss was
shown in Formula (1). The M represents the number of building instances, and the i
represents each building instance.

Lc =
1
M ∑M

i=1 D
(

Fi
a, Fi

b

)
+

1
M ∑M

i=1

([
1− D

(
Fi

a, Fg
a

)]
+
[
1− D

(
Fi

b, Fg
b

)])
(1)

Apart from the instance-level contrastive loss, we also introduced the binary cross-
entropy loss Lbce jointly with the Dice loss Ldice to optimize the segmentation results. The pi
and yi represented the pixel-wise predicted results and labels, respectively. To make the
model converge better [48], we balanced the Lc, Lbce, and Ldice by factors α, β, and γ, which
were set as 0.6, 0.1, and 0.3, respectively, as shown in Formulas (2)–(4).

Lbce =
1
N ∑

i
Li =

1
N ∑

i
−[yi·log(pi) + (1− yi)·log(1− pi)] (2)

Ldice = 1− 2 ∑N
i yi · pi + 1

∑N
i y2

i + ∑N
i p2

i + 1
(3)

Loss = α·Lbce + β·Ldice + γ·Lc (4)

3.4. Evaluation Metrics and Training Strategies

The proposed method for building extraction from remote sensing images relies on
semantic segmentation, where the objective is to classify each pixel as belonging to either
the building or the background. To evaluate the effectiveness of the proposed method,
we utilized standard binary segmentation metrics, including recall (R), precision (P), F1-
score (F1), and intersection over union (IoU). These metrics are commonly used to evaluate
the accuracy of binary segmentation methods and provide a quantitative measure of the
performance of the proposed method.

There were three classification conditions to consider: true prediction on the positive
sample (TP), false prediction on the positive sample (FP), and false prediction on the
negative sample (FN). The recall indicates the percentage of TP among all positive labels,
while the precision measures the percentage of TP among all positive predictions. The IoU
calculates the overlap between the predicted and labeled regions for buildings, relative to
their union. The F1-score is a weighted average of precision and recall, taking both metrics
into account. The formulas of these metrics are as follows:

R =
TP

TP + FN
(5)

P =
TP

TP + FP
(6)

IoU =
P ∗ R

P + R− P ∗ R
(7)

F1 =
2 ∗ P ∗ R
P + R

(8)
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We implemented our method using PyTorch on an 11 Gigabyte memory 2080Ti GPU.
To optimize the model, we used the stochastic gradient descent optimizer with an initial
learning rate of 0.01, which was weakened adaptively based on the validation accuracy.
To ensure fair comparisons, all compared methods were trained for 100 epochs with data
augmentation, including random scaling, rotation, and flipping, as detailed in Section 4.1.
We also maintained a consistent batch size and other hyperparameters to compare the
performance of the proposed MFA-Net against the other methods on the above metrics.

4. Experiments and Results
4.1. Datasets Description

We evaluate the effectiveness of the proposed method using two publicly available
datasets, the WHU building dataset [14], and the Massachusetts dataset [49].

The WHU building dataset contains a vast array of buildings with varying appearances
and sizes, allowing us to evaluate the robustness of the proposed algorithm. This dataset
spans over 450 km2 and comprises more than 187,000 buildings with a resolution of 0.3 m.
The images consist of three color bands, each with a size of 512 × 512 pixels. The dataset is
split into training, validation, and test subsets, containing 4736, 1036, and 2416 samples,
respectively. We employed the official dataset division for our experiments.

The Massachusetts dataset, on the other hand, covers about 340 km2 of the Boston
area and contains 151 tiles of aerial images and corresponding single-channel labels. The
resolution of this dataset is 1 m, and all images have a size of 1500 × 1500 pixels. The
dataset is divided into training, validation, and test subsets, comprising 137, 4, and 10 tiles,
respectively. For our experiments, we clipped the dataset into 512 × 512 pixels with an
overlap of 12 pixels.

We illustrated sample images and corresponding building labels on the WHU and
Massachusetts datasets in Figure 5. The WHU dataset consists of higher-resolution aerial
images, while the Massachusetts dataset consists of lower-resolution satellite images.
Buildings in both datasets exhibit significant scale variations, which effectively validate the
feasibility and sophistication of our proposed method in accurately identifying fine-grained
boundaries of buildings at multiple scales.
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4.2. Performance Comparison with Semantic Segmentation Methods

To assess the effectiveness of our proposed approach, we conducted a compara-
tive analysis with several classical semantic segmentation methods, namely PSPNet,
DeepLabv3+, U-NetPlus, and HRNetv2, on the aforementioned datasets. The PSPNet
introduced a different-region-based context aggregation module for gathering global con-
text information to improve the quality of the results. The DeepLabv3+ explored the
depth-wise atrous separable convolution on the decoder, which effectively refined the
segmentation results, especially for the object boundary. The U-NetPlus introduced the
pre-trained encoder and replaced the transposed convolution operation with upsampling
based on U-Net which significantly improved the performance. The HRNetv2 designed a
multiple-path network for multi-scale feature extraction to recover detailed spatial infor-
mation. We implemented these compared methods according to the public source code.
The experimental results on the WHU dataset are shown in Table 1.

Table 1. Performance Comparison of Classical Semantic Segmentation Methods and Our Proposed
Approach on the WHU Datasets.

Method IoU (%) Precision (%) Recall (%) F1-Score (%)

DeepLabv3+ 88.16 94.64 92.79 93.71
PSPNet 88.81 94.33 93.82 94.07

U-NetPlus 89.35 94.73 94.02 94.37
HRNetv2 90.09 93.60 96.01 94.79

MFA-Net (Ours) 91.07 94.64 96.02 95.33

The proposed method demonstrated superior performance in comparison to other
semantic segmentation methods, as evidenced by its higher IoU and F1 metrics. In fact, our
method achieved a 0.98% IoU improvement when compared to the HRNetv2. To facilitate
the comparison of results obtained from our method with those from other techniques, we
included visual examples of results on the WHU dataset, which can be seen in Figure 6. The
figure presents two sample images alongside their corresponding extracted results. The
details of the areas marked with the red dashed box are shown in the right-hand column
for comparison.

To further evaluate the performance and generalization of the proposed method, we
conducted a comparative experiment on the Massachusetts building extraction dataset,
which with a lower image resolution. We re-implemented the above classical methods for
semantic segmentation including PSPNet, DeepLabv3+, U-NetPlus, and HRNetv2 on the
Massachusetts dataset. The experimental results, as shown in Table 2, demonstrate that our
method outperformed the other methods in terms of IoU and F1 metrics, achieving a 2.26%
improvement in IoU compared to HRNetv2. Furthermore, we provide visual comparison
results on the Massachusetts dataset in Figure 7. The right-hand column of the figure
highlights the detailed part, marked with a red box for easier comparison, between the
results obtained by our method and those obtained by the other methods.

Table 2. Performance Comparison of the Classical Semantic Segmentation Methods and Our Proposed
Approach on the Massachusetts Datasets.

Method IoU (%) Precision (%) Recall (%) F1-Score (%)

DeepLabv3+ 67.36 82.76 78.35 80.49
PSPNet 71.64 86.46 80.69 83.48
U-Net 71.05 84.02 82.15 83.07

HRNetv2 72.32 85.34 82.58 83.94
MFA-Net (Ours) 74.58 87.11 83.84 85.44
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tion methods. The rows (a,g) represent the sampled images and labels, respectively. The rows
(b–f) illustrate the results extracted by DeepLabv3+, PSPNet, U-NetPlus, HRNetv2, and our method.
The second and last columns are the local areas marked by red boxes.
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Figure 7. Comparison of the results obtained from the Massachusetts test dataset by various seg-
mentation methods. The rows (a,g) represent the sampled images and labels, respectively. The rows
(b–f) illustrate the results extracted by DeepLabv3+, PSPNet, U-NetPlus, HRNetv2, and our method.
The second and last columns are the local areas marked by red boxes.
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As can be seen from the results of the two datasets, our methods extracted a more
refined boundary than that of the compared methods, especially for distinguishing the
dense and close buildings. It benefited from the multi-scale features aggregation module
with an attention-based adaptive fusion, which maintained the multilevel information
contained in the multi-scale features and balanced the tradeoff between the semantic and
spatial details. Additionally, the instance-level contrastive loss enhanced the difference
between the buildings and backgrounds through global representation, which helped to
extract the discriminable features.

4.3. Comparison of Recent Related Methods

To fairly evaluate the significance of our proposed method, we compared the proposed
method with the most recently related building extraction methods including MC-FCN [18],
RSR-Net [15], SiU-Net [14], SRI-Net [38], BOMSC-Net [50], HD-Net [51], EU-Net [52], CBR-
Net [25], MA-FCN [28], MAP-Net [44], BRRNet [17], and BP-Net [25] on the above two
datasets. The experimental outcomes are displayed in Table 3.

Table 3. Performance Comparison of the Most Recently Related Building Extraction Methods with
Ours on the WHU and Massachusetts Datasets.

Datasets Methods IoU Precision Recall F1-Score

WHU

MC-FCN 87.10 94.60 91.70 93.13
RSR-Net 88.32 94.92 92.63 93.76
SiU-Net 88.40 93.80 93.90 93.85
SRI-Net 89.23 95.67 93.69 94.51

BOMSC-Net 90.15 94.80 95.14 94.50
HDNet 90.50 95.20 94.80 95.00
EU-Net 90.56 94.98 95.10 95.04

MA-FCN 90.70 95.20 95.10 95.15
MAP-Net 90.86 95.62 94.81 95.21

MFA-Net (Ours) 91.07 94.64 96.02 95.33

Massachusetts

MAP-Net 73.34 85.49 83.76 84.62
EU-Net 73.93 86.70 83.40 85.01
BRRNet 74.46 – – 85.36
BP-Net 74.51 85.44 85.34 85.39

CBR-Net 74.55 86.50 84.36 85.42
BOMSC-Net 74.71 86.64 84.68 85.13

MFA-Net (Ours) 74.58 87.11 83.84 85.44

For the WHU building extraction dataset, the MC-FCN designed a multi-constraint
on the multi-scale features based on FCN for accurate multi-scale building extraction. The
SiU-Net proposed a Siamese U-Net with two branches which significantly improved the
segmentation accuracy, especially for large buildings. The SRI-Net extracted multi-scale
features based on the ResNet101 backbone and aggregated the multilevel contexts, achiev-
ing 89.23% in the IoU metric. The EU-Net captured multi-scale features by introducing
the DSPP module and a focal loss to alleviate the unbalanced building label issue. This
method outperforms previous approaches, achieving a remarkable 90.56% in the IoU metric.
Similarly, the MA-FCN extracted multi-scale features based on the FPN, combined with a
postprocessing module to refine the extracted building boundary, obtaining comparable
results to the EU-Net. The MAP-Net constructed a parallel multi-scale feature extraction
network with an attention enhancement module, which outperformed the other methods
and achieved an outstanding 90.86% in IoU.

In the case of the Massachusetts dataset, MAP-Net and EU-Net achieved 73.34% and
73.93%, respectively, in the IoU metric, since the image resolution was much lower than
the WHU. The BRRNet, on the other hand, designed a refinement module for building-
boundary optimization based on the encoder–decoder framework, which enabled it to
outperform previous methods with a score of 74.46% in IoU. The BP-Net introduced a
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structural constraint module based on the MAP-Net, which significantly improved the
performance of building boundaries and achieved 74.51% in IoU.

In summary, our method surpassed most recently related building extraction meth-
ods under comparison, both on the WHU and Massachusetts datasets. This infers the
importance of context aggregation from multiple encoders as well as the significance of
instance-level global building representation constraints for more robust building extraction
from remote sensing imagery.

4.4. Ablation Experiments on the WHU Dataset

To explore the significance of each proposed module, we conducted an ablation
experiment on the WHU dataset. Our backbone included a lightweight HRNetv2 with a
depth of 18 convolution layers and an improved ResNet with a depth of 26 convolution
layers represented as HRNet18 and Resnest26, respectively. The experimental results are
shown in Table 4.

Table 4. Comparison of the Performance of each Module for the Proposed Method on the WHU
Dataset. The

√
and × represent the corresponding module included in the method or.

Methods MEA ICL AUP IoU Precision Recall F1-Score

HRNet18 × × × 90.08 93.59 96.01 94.79
Resnest26 × × × 90.03 93.72 95.81 94.76

+ MEA
√

× × 90.36 93.90 96.00 94.94
+ ICL

√ √
× 90.77 94.71 95.62 95.16

+ AUP
√ √ √

91.07 94.63 96.02 95.33

First, we evaluated these two baselines with an FPN-based decoder which fused
the multi-scale features with skip-connection. The HRNet18 and Resnest26 achieved
90.08% and 90.03% on the IoU metric, respectively. Second, we evaluated the multiple
encoder aggregation module (MEA) which fused the multilevel features extracted from
those two encoders with a channel attention-based squeeze. The MEA module achieved
90.36% in the IoU metric, because the fused feature adaptively combined the optimal
features. Then, we added the instance-level contrastive loss (ICL) which captured the
global consistency constraint. It gained about a 0.41% boost compared to the MEA in the
IoU metric, which was the most effective module in our method. Finally, we introduced
the spatial and channel attention module during the upsampling decoder stage (AUP).
With this, the proposed method achieved 91.07% in the IoU metric, which obtained a 0.3%
performance improvement.

To summarize, the proposed modules achieved an obvious improvement compared to
the baseline, especially benefiting from the aggregated multiple encoders and object-level
contrastive constraints. Since the multiple encoders were lightweight, they did not cause a
heavy computational complexity. To compare the different methods, we show the extracted
samples in Figure 8.
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5. Discussion

In this article, we investigated the efficiency of different encoders for multi-scale fea-
ture extraction focusing on building extraction methods. Existing methods predominantly
rely on local pixel-wise feature representation while neglecting the importance of global
constraints, especially in the context of building-specific characteristics such as structure
and texture. Therefore, we proposed the multi-encoder combination, multi-scale feature
fusion, and instance-level contrastive loss optimization method that takes advantage of
multiple feature encoders and instance-level global constraints, which are under-utilized
by methods for building extraction. Since we utilized lightweight encoders to extract multi-
scale features while integrating their advantages and improving the global discriminability
of building and non-building, we ensured low model complexity. In terms of the loss
function, considering the significant differences between the feature representations of
buildings and their environments, we introduced instance-level constraint information
to guide the model to focus on pixel-level classification while also considering the global
building features, thereby improving the generalization of the model. Due to the higher
resolution of the aerial imagery in the WHU dataset compared to that of the Massachusetts
dataset, there is a significant difference in building extraction accuracy between the two
datasets. Nevertheless, the experimental results validate the effectiveness of the proposed
MFA-Net. Additionally, our method combines features from different encoders and im-
proves the foreground–background differences by utilizing object-level contrastive learning.
This approach can be applied effectively to the extraction of other land covers as well.

6. Conclusions

Our study presents a novel building extraction framework MFA-Net, which aggregates
multilevel features from different encoders with an attention-based feature adaptive fusion
module. In addition, we propose an instance-level contrastive loss with the constraint
of building masks. This is beneficial to enhance the discrimination of features between
buildings and backgrounds. We evaluate the proposed MFA-Net through comparative ex-
periments on two publicly available building extraction datasets. Our experimental results
indicate the superiority of our approach over existing semantic segmentation methods,
and even outperform the most recent related building extraction works, demonstrating its
efficacy in accurately extracting buildings while overcoming the limitations of previous
methods. Furthermore, we conducted an ablation study to assess the significance of each
proposed module, and our findings demonstrate the potential of the proposed framework,
particularly in capturing building boundaries.
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